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Abstract. An important factor to control the accuracy of unsteady simulations is the
estimation of a numerical scheme’s temporal errors. This error estimation can be used to
control the time step size, which in turn is beneficial either to achieve a simulation with a
prescribed accuracy or to reduce the simulation time by increasing the time step size. The
latter procedure is of special interest, since it allows considerable simulation acceleration
at the same accuracy as a method with fixed time step size. Furthermore, the adaptive
time stepping technique may be considered as a more user-friendly method, since the user
does not have to estimate the time step size a-priori and the numerical error a-posteriori,
but simply prescribes the error tolerance, and the method automatically adapts to this
prescription. In this paper, six explicit first stage, singly diagonal implicit Runge-Kutta
(ESDIRK) methods together with different error estimators and corresponding time step
adaption have been applied to two generic and one realistic unsteady test cases.

1 INTRODUCTION

Unsteadiness is an essential feature in many kinds of flow, e.g. turbulent boundary
layers, turbomachinery, maneuvering, etc. Hence corresponding scientific and engineering
investigations largely depend on efficient methods for the numerical computation of time-
dependent flow. In this context accurate and robust time-integration schemes are required.

To avoid the time step size restrictions of explicit methods implicit time-integration
schemes are commonly employed in the numerical simulation of unsteady flow phenom-
ena. As adaptive time step control is difficult to implement with the popular implicit
Backward Differentiation Formulas, within this paper embedded Runge-Kutta methods
are used for time-integration and error estimation. These schemes are easy to implement
with variable time stepping while the computational costs to evaluate errors estimates
are marginal. The excellent stability properties and flexibility of implicit Runge-Kutta
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schemes (IRK) above second-order are demonstrated in the context of turbomachinery
flows and aerodynamic noise generation [1].

The main focus of this paper is to investigate and assess the error estimation properties
of several embedded IRK methods and their efficiency in the context of adaptive time step
control. For this purpose error estimators of second-, third- and fourth-order accuracy
which are embedded in IRK methods of third- and fourth-order are considered.

The paper is organized as follows. In Section 2 the flow solver used in this work is
first briefly described. The IRK methods investigated and their implementation are then
discussed in Section 3. The basic properties of methods are then investigated and demon-
strated using two academic problems in Section 6. Finally, the results of the investigation
are summarized in Section 7.

2 FLOW SOLVER

The high-order accurate time-discretization schemes are investigated in the present
work using the CFD code TRACE [2], [3]. TRACE (Turbomachinery Research Aerody-
namic Computational Environment) is a parallel Navier-Stokes flow solver for structured
and unstructured grids that has been developed at DLR’s Institute of Propulsion Tech-
nology in Cologne to model and investigate turbomachinery flows. The code solves the
compressible Navier-Stokes equations in the relative frame of reference using a multi-block
approach. The governing equations are discretized in generalized coordinates about the
cell centers using the finite-volume method.

Upwind-biased spatial differencing in conjunction with Roe’s flux-difference-splitting
method is used to evaluate the inviscid fluxes, with limiters used to obtain smooth solu-
tions in the vicinity of shocks. Viscous terms are discretized using second-order accurate
central differences. Turbulence modeling is effected by a k − ω two-equation approach
with turbomachinery-specific extensions.

For the present work it is sufficient to note that following the discretization of the spatial
operators in the Navier-Stokes equations the following system of ordinary differential
equations (ODE’s) is obtained

dU

dt
= R(t,U(t)) (1)

where U is the vector of conservative variables and t denotes the physical time.

3 IMPLICIT RUNGE-KUTTA METHODS

To avoid the time step size restrictions of explicit methods implicit time-integration
schemes are commonly employed in the numerical simulation of unsteady flow phenom-
ena. Although combinations are conceivable, most implicit methods can in general be
classified as either multi-step or multi-stage. Both classes of scheme have advantages and
disadvantages. Multi-step methods are generally efficient because they solve only one
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non-linear set of equations per time step. They are, however, not self-starting, are diffi-
cult to use with variable time steps and are not A-stable beyond second-order temporal
accuracy. Multi-stage implicit Runge-Kutta schemes on the other hand are self-starting,
easy to implement with variable time stepping and can be designed to be A- and L-stable.
They do, however, require multiple nonlinear systems to be solved per time step.

As higher-order accurate methods are generally considered to be more efficient than
their lower-order counterparts, the excellent stability properties and flexibility of IRK
schemes at accuracies above second-order motivates their use in the simulation of time-
dependent flow phenomena.

The general form of an s-stage implicit Runge-Kutta scheme applied to Eqn. 1 is

Wi = Un + ∆t
s∑
j=1

aijR(tn + cj∆t,W
j) , i = 1, . . . , s (2)

Un+1 = Un + ∆t
s∑
j=1

bjR(tn + cj∆t,W
j) (3)

where the superscripts n and n+ 1 denote the time levels at the beginning and end of
the current time step, and the superscripts i and j refer to the stage values within the
current time-step. The values aij and bj denote the Butcher coefficients of the scheme. In
this paper several Explicit first stage, Singly Diagonal Implicit Runge-Kutta (ESDIRK)
schemes for the numerical integration of the compressible Navier-Stokes equations are
considered. This type of numerical schemes allows for embedded error estimation using
two methods with different orders of accuracy q = p ± 1, with q as order of the scheme
and p the order of the embedded scheme, respectively. Based on this error estimation an
adaptive time stepping is done using different controller types. The Butcher tableau for
these schemes takes the form

Table 1: Generic Butcher tableau of a four-stage ESDIRK with embedded error estimation

c1 = 0 0 0 0 0
c2 a21 γ 0 0
c3 a31 a32 γ 0
c4 = 1 b1 b2 b3 γ

order of accuracy q b1 b2 b3 γ

order of accuracy p± 1 b̂1 b̂2 b̂3 b̂4

where ci denotes the time in the time interval tn → tn + ∆t at which the intermediate
stage is evaluated. Diagonally implicit schemes are characterized by a lower triangular
form of the coefficient table. Each stage of the scheme therefore depends only upon
previously solved stages and the system may thus be solved in s successive steps. Singly
diagonal schemes use the same diagonal coefficient γ for each stage. The first stage is
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explicit (a1j = 0), which ensures the stages are at least second-order accurate, and the last
stage coefficients are such that aij = bj, j = 1, . . . , s which avoids the need to solve Eqn. 3,
as the solution of the final stage Ws is also the solution at the next time step Un+1. The
embedded method with b̂ depends only on linear combinations of already present stage
values Wi.

The ESDIRK methods investigated in this work are given in Tables 2- 5. The first two
schemes are the four-stage, third-order accurate ESDIRK methods proposed by Alexan-
der [4] with second- and fourth-order error estimators, respectively.

Table 2: Alexander 3(2/4): Four-stage, 3rd-order ESDIRK method with embedded 2nd- or 4th-order
scheme

0 0
2γ γ γ
c3 c3 − a32 − γ a32 γ
1 b1 b2 b3 γ

b1 b2 b3 γ

b̂1 b̂2 b̂3 b̂4

a32 = −c3(c3−2γ)
4γ

,

b1 = −18γc3+12γ2c3+3c3+12γ−12γ2−2
12γc3

,

b2 = 2−3c3+6γc3−6γ
12γ(2γ−c3)

,

b3 = 6γ2+1−6γ
3c3(c3−2γ)

γ = 0.435866521508

A second-order error estimation results from c3 = 1
2

+ γ
4
. Choosing δb3 = 0.096 and

δb4 = −0.284 the weights for the error-estimator are b̂1 = b1 − δb2 − δb3 − δb4, b̂2 = b2 +
−c3δb3−δb4

2γ
, b̂3 = b3 + δb3 and b̂4 = γ+ δb4. The third-order scheme of Table 2 has a fourth-

order error estimator if c3 = 18
13
γ2−2γ+ 14

13
using the following expressions for the weights

b̂1 = 12γc3−4γ−2c3+1
24γc3

, b̂2 = 2c3−1
24γ(2γ−c3)(2γ−1)

, b̂3 = 1−4γ
12c3(2γ−c3)(c3−1)

and b̂4 = 3+12γc3−4c3−8γ
12(2γ−1)(c3−1)

.

Stiffly accurate embedded pairs of ESDIRK methods are constructed in [5] in a slightly
different form. There the last two successive stages of the implicit scheme are used either
as solution or error estimation. A third-order scheme of this type is given in Table 3, here
the second-order scheme is not considered.

Table 3: Kvaerno 32: Four-stage, 3rd-order ESDIRK method with embedded 2nd-order scheme

0 0
2γ γ γ

1 −4γ2+6γ−1
4γ

−2γ+1
4γ

γ

1 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3

γ

γ = 0.435866521508:
W4 = Un+1

W3 = ˆUn+1

A five-stage scheme of this form is given in Table 4 with the Butcher coefficients
a31 = 144γ5−180γ4+81γ3−15γ2+γ

(12γ2−6γ+1)2
, a32 = −36γ4+39γ3−15γ2+2γ

(12γ2−6γ+1)2)
, a41 = −144γ5+396γ4−330γ3+117γ2−18γ+1

12γ2(12γ2−9γ+2)
,

a42 = 72γ4−126γ3+69γ2−15γ+1
12γ2(3γ−1)

, a43 = (−6γ2+6γ−1)(12γ2−6γ+1)2

12γ2(12γ2−9γ+2)(3γ−1)
, a51 = (288γ4−312γ3+120γ2−18γ+1

48γ2(12γ2−9γ+2)
,

a52 = 24γ2−12γ+1
48γ2(3γ−1)

a53 = −(12γ2−6γ+1)3

48γ2(3γ−1)(12γ2−9γ+2)(6γ2−6γ+1)
and a54 = −24γ3+36γ2−12γ+1

24γ2−24γ+4
.
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Table 4: Kvaerno 43: Five-stage, 4th- or 3rd-order stiffly accurate ESDIRK

0 0
2γ γ γ

a31 + a32 + γ a31 a32 γ
1 a41 a42 a43 γ
1 a51 a52 a53 a54 γ

4th-order
γ = 0.5728160625:
Ws = Un+1

Ws−1 = Ûn+1

3-rd order
γ = 0.4358665215:
Ws−1 = Un+1

Ws = Ûn+1

The final scheme, shown in Table 5, is a six-stage, fourth-order stiffly accurate ESDIRK
method given by Kennedy, et al. [6].

Table 5: Kennedy 43: Six-stage, 4th-order ESDIRK method with embedded 3rd-order scheme

0 0
1
2

1
4

1
4

83
250

8611
62500

− 1743
31250

1
4

31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

1 82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

4586570599
29645900160

0 178811875
945068544

814220225
1159782912

−−3700637
11593932

61727
225920

4 ERROR ESTIMATION AND TIME STEP SIZE CONTROL

The selection of the time step size ∆t is performed using an accuracy based controller.
For embedded formula pairs with q = p ± 1 time step control can be conducted using
I-, PI-, PID- or PC-controllers. Following the basic definition of these controller types
according to [6] the coefficients have been adapted for use in TRACE, cf. Eq. 4-7.

∆tn+1
I = ρ ∆tn

(
TOL

||∆Un+1||∞

) 1
q

(4)

∆tn+1
PI = ρ ∆tn

(
TOL

||∆Un+1||∞

) 1
q
(
||∆Un||∞
TOL

)0.2

(5)
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∆tn+1
PID = ρ ∆tn

(
TOL

||∆Un+1||∞

) 1
p
(
||∆Un||∞
TOL

) 0.45
p
(

TOL

||∆Un−1||∞

) 0.1
p

(6)

∆tn+1
PC = ρ ∆tn

(
TOL

||∆Un+1||∞

) 2
p
(
||∆Un||∞
TOL

) 1
p
[

∆tn

∆tn−1

]
(7)

where q is again the accuracy of the solution scheme, p is the accuracy of the error
estimator and ρ = 0.95 − 0.98 is a constant. The error estimate of the IRK method is
defined as

∆Un+1 = Un+1 − Ûn+1. (8)

Within the context of the present investigation error is measured using the maximum
error norm ||∆Un+1||∞ = max(|∆Un+1

i |).

5 SOLUTION ALGORITHM

To solve the individual stages of the ESDIRK methods a pseudo-time approach is ap-
plied. In this approach the pseudo-time term ∂Ui/∂τ is added to each stage of the scheme.
Discretizing the pseudo-time term using a first-order approximation and linearizing the
residual R(U) in pseudo-time yields the following linear system of equations[(

1
∆τ

+
1

∆t

)
I− aii

∂R
∂U

]
∆U = −

Um −Un

∆t
−

 i−1∑
j=1

aijR(Uj) + aiiR(Um)

 (9)

where I is the unity matrix. The solution to stage i is obtained by iterating Eqn. 9 in
pseudo-time using a specified number of iterations to drive ∆U→ 0. With ∆U = 0, we
have Um+1 = Um = Ui, and hence the solution Ui to the i-th stage is obtained. The
linear system of equations is solved using the Incomplete Lower Upper ILU(0) method.

6 APPLICATION

6.1 Non-linear stiff ordinary differential equation system

For the basic validation of the embedded error estimators the test problem E4 [7] is
used. This is a stiff, non-linear coupled system of ordinary differential equations for which
an analytical solution is available. The governing equations are

z′1 = −(β1z1 − β2z2) +
1

2
(z2

1 − z2
2) (10)

z′2 = −(β2z1 − β1z2) + z1z2 (11)

z′3 = −β3z3 + z2
3 (12)

z′4 = −β4z4 + z2
4 (13)
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with
z = U−1y (14)

where

U =
1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 , β =


β1

β2

β3

β4

 =


10
−10
1000
0.001

 .
For the initial conditions y(0) = (0,−2,−1,−1)T the analytical solution is shown in

Fig.1. Using the analytical solution the accuracy of the various error estimators can
determined.
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Figure 1: Analytical (symbols) and estimated solution (lines) of E4 problem using a fixed time step size

The results confirm the theoretical order of accuracy of the investigated methods and
their embedded schemes Fig. 2 over a wide range of time step sizes. The order of accuracy
reduces with decreasing temporal resolution until a certain threshold is reached. Since the
third-order methods yield the same error of the solution scheme, only one line is presented
in the left figure. Nevertheless it is worth to investigate these schemes, since their error
estimation is different, cf. right hand side of Fig. 2. To assess the error estimators, each
time step is initialized by the analytical solution. In this way, the exact error deviation
from the analytical solution is calculated (symbols in Fig. 3), enabling a comparison to
the estimated errors (lines in Fig. 3). A wide spread in the quality of error estimation
is observed, ranging from rather bad agreement for the Alexander 32 method (left hand
side) to a very good agreement for the Alexander 34 method (right hand side). In other
words, the higher order error estimator seems to work much more accurately than the
estimator of lower order, a trend which has also been observed for other methods.
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Figure 2: L2-Error of ESDIRK schemes (left) and of error estimation (right)
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Figure 3: Error estimation compared to analytical error: Alexander 32 (left) and Alexander 34 (right)

6.2 Advection of a two-dimensional entropy disturbance

The second academic test case investigated is the advection of a two-dimensional en-
tropy disturbance in an otherwise uniform subsonic flow. To simulate this problem the
compressible Navier-Stokes equations are solved on a uniform, two-dimensional compu-
tational domain. The computational domain used in the simulations comprises a simple
rectangular block extending 40l and 20l in the x- and y-directions respectively. The
mesh with a total of approximately 12800 cells, split equally over 8 blocks, is used in the
simulations. The velocity and pressure fields are uniform and are initialized such that
u = U∞, v = w = 0 and p = P∞. The two-dimensional entropy disturbance is obtained
by initializing the density field as follows:

ρ =
[
T∞ − c3e(1−r

2)
] 1
γ−1

(15)

where c3 = 0.001, r =
√

(x− x0)2 + (y − y0)2 and γ is the ratio of specific heats. At t =
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0 the entropy disturbance is centered about the point (x0, y0) = (10l, 10l). The freestream
values of axial velocity, pressure and temperature are U∞ = 135.6 m/s, P∞ = 90500 Pa
and T∞ = 278.977 K, respectively. The ability of the applied controller types to closely
keep to the prescribed error value is demonstrated by the development of the estimated
error L∞ and the corresponding time step size ∆t in Fig. 4. Starting with a large time step
size, which also yields a large error, the step size is reduced below the tolerance in only six
error checking loops. At this moment, the first unsteady simulation iteration is conducted,
and the time step size is subsequently increased, always keeping the estimated error very
close to the tolerance. As a representative scheme, Alexander 32 is displayed here. Tests
with other ESDIRK schemes (not shown here) show slightly increased distance to the
prescribed tolerance, that means to slightly smaller L∞ values. However, the impact on
the time step size and simulation time was not always disadvantageous, as can be seen
in the reduced simulation times for some schemes in Tab. 6. As additional information
from this table, the third order schemes with second order error estimator (Alexander 32
and Kvaerno 32) yield the best (lowest) simulation times in combination with the P-type
controllers. This may not always be a general result, since the controllers have been tuned
to this scheme.
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Figure 4: Alexander 32: Linf and ∆t

To demonstrate the dynamic adaption capabilities of the controllers, a variable toler-
ance has also been prescribed for this test case. The tolerance variation is governed by
following function:

TOL = 0.001 + 0.0008 cos(20 · 2 π f t). (16)

The corresponding results in Fig. 5 indicate a reasonable adaption of the estimated error
to the prescribed one. The best adaption is achieved with the PC-controller, even for the
rejected time steps, which can be recognized by horizontal tolerance displacement in the
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Figure 5: Alexander 32 scheme using variable tolerance and different controller types

left direction. In this case, the PC-controller quickly reduces the time step. Since the
other investigated controllers (I, PI and PID) behave very similar, only the PID-controller
is presented in this figure. In this case, the adaption is clearly slower.

Table 6: Number of time steps and simulation time for the advection problem with TOL = 0.001 using
different controller types

Tol = 0.001 I-Control PI-Control PID-Control PC-Control
nSteps tsim nSteps tsim nSteps tsim nSteps tsim

3rd Alexander 32 96 120.69 96 79.21 95 78.54 96 86.15
3rd Alexander 34 96 100.57 96 97.75 101 93.68 107 108.68
3rd Kvaerno 32 96 92.83 96 76.44 95 80.71 96 66.78
3rd Kvaerno (4)3 97 145.93 97 143.30 99 144.69 103 133.71
4th Kvaerno 4(3) 99 119.94 99 126.29 99 128.87 102 122.06
4th Carpenter 99 194.34 99 183.75 100 178.42 103 182.14
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6.3 Flow around a circular cylinder

The last testcase presented in this paper is the flow around a circular with a diameter
of 0.10137 m, Reynolds number 140000, free stream velocity of 21.20 m/s and free stream
temperature of 24 C. The vortex shedding period is 0.02665s (Strouhal number 0.179).
Instantaneous eddy viscosity contours from the turbulent cylinder flow simulations are
plotted in Fig.6. The simulation results presented here are performed using the third
order scheme of Alexander 32 with a given tolerance for the maximal pressure error of
5 Pa (Fig.7). The pressure error level using a fixed time step size ∆t = 2.0870e− 04 (128
time steps per period) oscillates between 10 and 12 Pa (red line, left). With adaptive time
stepping conducted with the PI-controller the error is held below the specified tolerance
and following the passage of initial transients the time-step size is increased (right).

Figure 6: Instantaneous eddy viscosity contours of turbulent cylinder flow
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Figure 7: Maximal pressure error and time-step size for cylinder flow
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7 CONCLUSIONS

Several implicit Runge-Kutta methods with embedded error estimators have been im-
plemented in a compressibly Navier-Stokes solver and applied to a range of test problems.

As a first step to use these methods for error estimation an academic problem has been
investigated to show that the proposed embedded schemes are able to estimate the error
correctly. Here a wide spread in the quality of the error estimation was observed. In par-
ticular, the third-order ESDIRK method Alexander 34 displays excellent error estimation
properties.

The ability of the investigated methods to adapt the time step size in order to keep the
prescribed tolerance is demonstrated with the second testcase, the advection of entropy
disturbance. Both constant and variable tolerances have been prescribed. Here, the PC-
controller shows the best properties. Furthermore, the error estimation methods of second
order accuracy seem to lead to the shortest simulation times.

As a final test case, the flow around a turbulent cylinder has been analysed. The results
demonstrate the ability of the methods in the context of realistic unsteady turbulent flows.
The time step size is increased until the prescribed error tolerance is achieved. In this
way the simulation accuracy and reliability is considerably improved.
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