
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
E. Oñate, J. Oliver and A. Huerta (Eds)

ADJOINTS OF FIXED-POINT ITERATIONS

A.TAFTAF∗,V.PASCUAL∗ AND L. HASCOËT∗

∗ INRIA, Sophia-Antipolis, France, {Elaa.Teftef, Valerie.Pascual, Laurent.Hascoet}@inria.fr

Key words: Automatic Di�erentiation, Adjoint, Fixed-Point algorithms

Abstract. Adjoint algorithms, and in particular those obtained through the adjoint
mode of Automatic Di�erentiation (AD), are probably the most e�cient way to obtain
the gradient of a numerical simulation. This however needs to use the �ow of data of
the original simulation in reverse order, at a cost that increases with the length of the
simulation. AD research looks for strategies to reduce this cost, taking advantage of the
structure of the given program. One such frequent structure is �xed-point iterations,
which occur e.g. in steady-state simulations, but not only. It is common wisdom that
the �rst iterations of a �xed-point search operate on a meaningless state vector, and that
reversing the corresponding data-�ow may be suboptimal. An adapted adjoint strategy
for this iterative process should consider only the last or the few last iterations. At
least two authors, B. Christianson and A. Griewank, have studied mathematically �xed-
point iterations with the goal of de�ning an e�cient adjoint. In this paper, we describe
and contrast these two strategies with the objective of implementing the best suited one
into the AD tool that we are developing. We select a representative application to test
the chosen strategy, to propose a set of user directives to trigger it, and to discuss the
implementation implications in our tool.

1 INTRODUCTION

The adjoint mode of Automatic Di�erentiation (AD) is widely used in science and
engineering : assuming that the simulation has a scalar output (objective function), the
adjoint algorithm can return its gradient at a cost independent of the number of inputs.
The key is that adjoints propagate partial gradients backwards from the result of the
simulation.

The main di�culty of adjoint AD lies in the management of intermediate values. The
computation of the partial gradients involves the partial derivatives of each run-time
elementary computation of the original simulation. As these partial derivatives are needed
in reverse execution order, and they use values from the original computation, strategies
must be designed to retrieve the original values in reverse order. For instance,

1

A.Taftaf, V.Pascual and L. Hascoët

time

p{

time

Figure 1: left : single check point P, right : nested checkpoints

• the Recompute-All approach recomputes the intermediate values whenever needed,
by restarting the program from the stored initial state,

• the Store-All approach stores the original intermediate values into a stack or at least
those that will be needed, during a preliminary execution of the original program
known as the forward sweep (FW). Then follows the so-called backward sweep (BW)
which computes the partial derivatives using these stored values. The needed push

and pop primitives are provided by a separate library.

In the rest of this paper, we assume a Store-All approach. Extension to the Recompute-
All approach is possible, but is beyond the scope of this paper. On large real applications
both RA and SA approaches turn to be impracticable due to their cost in time or memory
space respectively. The answer to this problem is called checkpointing: for instance in
the SA setting, checkpointing consists in selecting some part of the program, and in not

storing its intermediate values, but rather storing the minimum amount of data to run
this part again later (�a snapshot�). After taking the snapshot, P is run with no storage
of intermediate values. Then P is run again when it is time to propagate derivatives
backwards through P.

The result of checkpointing part P is shown on the left of �gure 1. The snapshot (big
black dot) memorizes whatever is needed to run P again. The peak stack size is reduced,
at a small additional cost which is the duplicate execution of P. The right part of the �gure
shows the execution of the program when there are many nested checkpoints. The peak
stack size is reduced again at the cost of some snapshots and some duplicates executions.
In our AD tool, we use the SA approach and by default checkpointing is applied at each
subroutine call. To summarize, the structure of an adjoint code is a FW sweep followed
by a BW sweep, and recursively for each checkpoint P a copy of P (with no push) in
the enclosing FW sweep and the sequence of FW and BW of P in the enclosing BW
sweep. This strategy to orchestrate reversal of the data-�ow is general, and as such are
unable to take advantage of algorithmic knowledge of the speci�c simulation. Exploiting
knowledge of the algorithm and of the structure of the given simulation code can yield
a huge performance improvement in the adjoint code. In our tool, special strategies are
already available for parallel loops, long unsteady iterative loops, linear solvers... We
focus here on the case of �xed-point loops, i.e. loops that iteratively re�ne a value until
it becomes stationary.

As Fixed-Point algorithms often start from a �random� guess initial state, one intu-

2

A.Taftaf, V.Pascual and L. Hascoët

ition is that at least the �rst iterations are in a sense meaningless and should not be
�remembered� for the adjoint computation. Furthermore, there is a discrete component
of an iterative algorithm, namely the number of iterations, and this makes di�erentiability
questionable : a small change of the inputs may add or remove one iteration of the loop,
which is a discontinuous change. For these reasons we are looking for a speci�c strategy
for the adjoint that reverses only the necessary data-�ow, and that restores con�dence in
the validity of the derivative.

At least two authors have studied mathematically �xed-point iterations with the goal of
de�ning an e�cient adjoint. Griewank's �Delayed Piggyback�(AG) [3, 4] ultimately targets
computation of the adjoint derivatives together with the tangent derivatives in the same
order. Both will be the ingredients of a so-called �reduced approximation estimate� that
exhibits improved convergence properties. Christianson's �Two Phases� (BC) method [1,
2] focuses exclusively on building adjoints. His method is applicable to arbitrary �xed-
point loops.

In the following sections, we will see in more detail the two methods, their common
points and di�erences. We will explain our choice and we will demonstrate on a represen-
tative example the bene�ts of this strategy.

2 STRATEGIES FOR FIXED-POINT ADJOINTS

Consider a piece of code that solves a �xed-point equation, i.e. �nds z∗ such that

z∗ = φ(z∗, x)

where x is some �xed parameter and therefore z∗ is a function z∗(x) of x. This code
initializes z with some initial guess z0, then iteratively calls zk+1 = φ(zk, x) until meeting
some stopping criterion that express stationarity of z. Finally z∗ is used by the sequel
code to compute some �nal result y = f(z∗, x).

2.1 Standard adjoint strategy

The standard adjoint, sketched on the right of �gure 2, propagates the partial gradients
in the reverse order across each iteration, reusing the intermediate zk in reverse order. To
this end, the successive zk must be stored as they are computed during the FW sweep.
This also implies that the number of iterations in the BW sweep is the same as in the
FW sweep. In other words, whereas the forward loop is a �xed-point loop, the backward
loop is not, as it does not test for stationarity of z. Notations: φz and φx respectively
represent ∂

∂z
φ and ∂

∂x
φ.

2.2 Griewank's �delayed piggyback� method

Griewank's method (AG) observes �rst that the adjoint algorithm must wait for the
original �xed-point to be �su�ciently� converged before starting derivative computations.
More importantly, the method aims at computing the adjoint iterations in the same order

3

A.Taftaf, V.Pascual and L. Hascoët

Figure 2: left : example of code containing a �xed-point loop, right: standard adjoint strategy applied
to this code

as the original. This unconventional adjoint structure comes from the targeted application,
which is to compute a so-called �reduced approximation estimate� that involves both
adjoint and tangent derivatives. This has also the consequence that the adjoint of the
downstream computation f must be repeated inside the adjoint �xed-point loop. As a
last restriction, the method assumes that the �xed-point function φ is in fact split into
computing some w = F (z, x) followed by updating z with w times some preconditioning
matrix P . The method is sketched in �gure 3 : once the original �xed-point loop is
su�ciently converged (not shown in �gure), the remaining iterations are augmented with
derivative computations, and there is no need for a backward sweep. These iterations
continue until some stopping criterion is met, which combines stationarity of the original z
and of the adjoint w. The adjoint of the �xed-point computation terminates by computing
the required z using the �nal z∗, w∗, and the adjoint derivatives of F and f with respect
to x.

2.3 Christianson's �two-phases� method

Christianson's method (BC) observes that only the converged value z∗ and the con-
verged intermediate values occurring in z∗ = φ(z∗, x) must be used in the derivative
computation. All intermediate values of previous iterations are inexact and should not
be used. Furthermore, the computation of the derivative of φ with respect to x needs

4

A.Taftaf, V.Pascual and L. Hascoët

Figure 3: Delayed piggyback method (AG)

to be computed only once and does not need to be included in the �xed-point iteration
that solves for w. This results in the algorithm sketched in �gure 4 : globally this algo-
rithm keeps the standard structure of adjoint codes for everything before and after the
�xed-point loop. It also keeps the structure of the forward sweep of the �xed-point loop,
except that only the last iteration's intermediate values are stored. On the backward
sweep however the method introduces a new variable w of the same shape as z, which
must be computed as the solution w∗ of a new �xed-point equation:

w = w.
∂

∂z
φ(z∗, x) + z

where z results from the adjoint of the downstream computation f . The adjoint of the
�xed-point computation terminates by computing the required x, using w∗ and the adjoint
derivatives of φ with respect to x. The above adjoint derivative computations repeatedly
use the intermediate values stored by the last forward iteration, which are z∗ plus whatever
was used to compute it during the last iteration.

3 Selecting the method to be implemented

Both BC and AG methods yield an adjoint convergence rate similar to original �xed-
point loop. Derivatives convergence may lag behind by a few iterations, but will eventually
converge at the same rate. Both methods achieve to di�erentiate only the last or the few
last iterations i.e. those who operate on physically meaningful values. Both manage also
to avoid naïve inversion of the original sequence of iterations, therefore saving the cost

5

A.Taftaf, V.Pascual and L. Hascoët

Figure 4: Two-phases method (BC)

(AG): (BC):0 1 2 ? ? ? * * * 0 1 2 * * * * * *

Figure 5: comparison of executing adjoint code with each strategy

of data-�ow reversal. Consequently the adjoint, which is itself a �xed-point, must have a
distinct, speci�c stopping criterion.

Because of its setting, AG method makes some additional assumptions on the shape of
the iteration step and on the structure of the surrounding program whereas BC remains
general. Another di�erence, visible on �gure 5, is that BC starts adjoining the iteration
step, actually the last one, only when the original iteration has converged �fully� (indicated
by *), whereas AG triggers the adjoint iterations earlier, together with the remaining
original ones, when those are converged only �su�ciently� (indicated by ?). This may
be hard to determine automatically. Since AG adjoint computation starts with slightly
approximate values, it may require a few more iterations than BC. A last di�erence is
that AG requires adjoining the sequel of the program i.e. the part f after the �xed-point
iteration, repeatedly inside the adjoint iteration step. This is �ne in the chosen setting
where the sequel is assumed short, but it has a signi�cant cost in general when the sequel
is complex or when �xed-point loops are nested.

Both methods provide some correctness proofs and our choice is mostly based on im-

6

A.Taftaf, V.Pascual and L. Hascoët

plementation reasons. We want to implement in our AD tool the strategy that covers
more cases, so we prefer not to have assumptions in the iteration shape. We are also
worried by the cost of the sequel fz in AG. We also consider that BC has the advantage of
preserving the two-sweep structure. For these reasons, we currently select Christianson's
strategy.

4 USER DIRECTIVES

One question is how to trigger the special-purpose strategy for �xed-point loops. Ob-
viously, it is very hard to detect automatically every instance of a �xed-point loop com-
putation in a given code. It is even impossible in general because of undecidability of
general static data-�ow analysis. Therefore we must rely on the end-user to provide this
information, for instance by means of the following two pairs of directives :

• One pair named ($AD_START_FP_LOOP, $AD_END_FP_LOOP) designates the starting
and ending of the �xed-point loop. The deliminated code fragment contains in
particular the stopping test. These directives must also specify the �xed-point
variables z and the stopping criterion to be used in the adjoint loop.

• Another pair named ($AD_START_FP_ITERATION, $AD_END_FP_ITERATION), desig-
nates the body of the �xed-point loop, i.e. the piece of code that implements φ.

The data-�ow analysis already present in our tool help us to identify the input and output
variables of the �xed-point loop body, so that the user-given speci�cation of z is enough
to determine x.

5 EXTENSION OF STACK MECHANISM

We mentioned in section 2.3 that the intermediate values are stored only during the
last forward iteration. Then they are repeatedly used in each of the backward iterations.
Our standard stack mechanism does not support this behavior. We need to de�ne an
extension to specify that some zone in the stack (a �repeated access zone�) will be read
repeatedly. Our choice is to add three new primitives to our stack, supposed to be called
in the middle of a sequence of stack pop's.

• start_repeat_stack() states that the current stack position is the top of a re-
peated access zone.

• reset_repeat_stack() states that the stack pointer must return to the top of the
repeated access zone.

• end_repeat_stack() states that there will be no other read of the repeated access
zone.

In the adjoint generated code, these procedures must be called :

7

A.Taftaf, V.Pascual and L. Hascoët

• start_repeat_stack() at the start of the adjoint backward �xed-point loop.

• reset_repeat_stack() before each call to φz and before the call to φx.

• end_repeat_stack() at the end of the adjoint backward �xed-point loop.

However this set of primitives doesn't handle the case of checkpointing occurring inside the
adjoint iterations. Checkpointing implies that the stack may grow again (with push'es)
and the danger is to overwrite the contents of the repeated access zone. Our solution to
keep this zone safe is to store the new values at the real top of the stack, i.e. above the
repeated access zone. This requires two additional primitives.

• freeze_repeat_stack() saves the current stack pointer and says that all coming
push'es must go above the top of the current repeated access zone.

• unfreeze_repeat_stack() states that previous pop's have returned the stack pointer
to the top of the current repeated access zone, and therefore resets the stack pointer
to its saved location so that next pop's will read in the repeated access zone.

This is illustrated by �gure 6. Notice that unfreeze_repeat_stack() is in principle
unnecessary, since every pop could check if the stack pointer is at the top of a repeated
access zone and react accordingly. However this would slow down each call to pop, which
are frequent. On the other hand, unfreeze_repeat_stack may be called only once, at
a location that can be statically determined by the AD tool. Therefore, in the adjoint
generated code, we will call :

• freeze_repeat_stack() before each checkpointed adjoint subroutine call or code
fragment during the adjoint backward iteration.

• unfreeze_repeat_stack() after the corresponding adjoint subroutine call or code
fragment.

This also allows us to handle nested �xed-point loops, as demonstrated in the following
experiment.

6 EXPERIMENTAL RESULTS

Before actually implementing the �xed-point strategy in our AD tool, we have chosen
to validate it on a representative example (sketched in �gure 7), applying the strategy
by hand but as mechanically as possible. The representative example must be complex
enough to capture the following features of real codes : non-trivial calculations whose ad-
joint need many values stored on the stack, �xed-point loops with possibly non-quadratic
convergence rates, and possibly nested. We chose an algorithm that solves for u in an
equation similar to a heat equation, with the form :

−∆u+ u3 = F (1)

with F given. The solving algorithm uses two nested �xed-point resolutions.

8

A.Taftaf, V.Pascual and L. Hascoët

: stack top : repeated access top : frozen top

call pop() ...

call start_repeat_stack()

call pop() ...

call freeze_repeat_stack()

call push() ...

call pop() ...

call unfreeze_repeat_stack()

call pop() ...

call reset_repeat_stack()

call pop() ...

Figure 6: extension of stack mechanism to manage a repeated access zone

• On the outside is a (pseudo)-time integration, considering that u evolves with time
from an arbitrary u(0) towards the stationary solution u(∞), following the equiva-
lent equation

u(t+ 1)− u(t)

∆t
−∆u(t+ 1) + u3(t) = F (2)

• On the inside is the resolution of the implicit equation for u(t+ 1) as a function of
u(t) and F with a Jacobi iterative method, which is in turn a �xed-point algorithm.

We have di�erentiated the complete algorithm using our AD tool that applies the standard
adjoint algorithm described in section 2.1. Then we have manually modi�ed the adjoint
code to apply BC strategy on both �xed-point loops. We arbitrary set the stopping
criterion of the adjoint �xed-point loop so the stationarity of w is up to the same level of
accuracy as the original value. We compare performance of the modi�ed code with the
standard adjoint.

Performance comparison is made di�cult by the fact that the two algorithms do not
produce the same result: only the BC approach has a stopping criterion that takes into
account actual stationarity of the adjoint. As a result, the BC approach iterates slightly
fewer times than the standard:

9

A.Taftaf, V.Pascual and L. Hascoët

Figure 7: representative example containing two nested Fixed-Point loops : outside loop φ_out() and
inside loop φ_in()

• number of iterations in the outside �xed-point loop is 289 instead of 337.

• number of iterations in the inside �xed-point loops is 34 instead of an average of 44.

However the result is less accurate than with the standard AD tool, although inside the
prescribed accuracy of 10−15. Accuracy is estimated by comparison to a result obtained
with a much smaller stationarity criterion (10−40). We then choose to take an alternate
viewpoint, forcing the BC approach to iterate as much as the standard approach and
examining the accuracy of the result. The result of the standard adjoint deviates from
the reference result by 2.1 ∗ 10−5 %. The result of BC adjoint deviates by 1.1 ∗ 10−5 %.
This a small improvement, due to the fact that BC adjoint is computed using only the
fully converged values. Notice however that the principal bene�t of the BC method is
not about accuracy nor run time but about reduction of the memory consumption, since
the intermediate values are stored only during the last forward iteration. The peak stack
space used by the standard adjoint is about 86 Kbytes, whereas the BC adjoint uses only
a peak stack size of 268 bytes. These measurements are coherent with our understanding
of the BC adjoint method.

7 CONCLUSION

We are seeking to improve performance of adjoint codes produced by the adjoint mode
of Automatic Di�erentiation, by taking advantage of common structures occurring in sci-
enti�c codes. We considered here the frequent case of �xed-point loops, for which several

10

A.Taftaf, V.Pascual and L. Hascoët

authors have proposed adapted adjoint strategies. We explained why we consider the
strategy initially proposed by Christianson as the best suited for our needs and imple-
mentation context. We experimented this strategy on a representative code and quanti�ed
its bene�ts, which are marginal in terms of runtime, and signi�cant in terms of memory
consumption. Implementation of this strategy inside our AD tool is under way, and we
discussed some of the implementation implications.

Theoretical numerical analysis papers discuss the question of the best stopping criterion
for the adjoint �xed point loop. However these criteria seem far too theoretical for an
automated implementation. We believe that the initial implementation will have to ask
the end user to specify this adjoint criterion, but hope remains to derive it mechanically
from the original loop's stopping criterion, perhaps using software analysis rather than
numerical analysis.

An interesting further research is the question of the initial guess. A �xed point al-
gorithm starts from a �random� initial guess, which must have no in�uence on the �nal
converged value, but may vastly a�ect the number of iterations needed to attain con-
vergence. In fact a very good initial guess, that leads to the converged value in few
iterations, may be adverse to adjoint convergence in the general setting where the adjoint
loop mimics the number of iterations of the original loop. This remark is at the source of
several theoretical papers on the limitations of adjoint AD. Christianson's strategy solves
this problem since the adjoint iterations are unrelated to the original iterations. Going
further, we feel that this strategy could be improved by looking, when possible, for a
better initial guess for the adjoint �xed point loop.

ACKNOWLEDGEMENT

This research is supported by the project �About Flow�, funded by the European Com-
mission under FP7-PEOPLE-2012-ITN-317006. See �http://about�ow.sems.qmul.ac.uk�.

REFERENCES

[1] B. Christianson. Reverse accumulation and attractive �xed points. Optimization

Methods and Software, 3:311�326, 1994.

[2] B. Christianson. Reverse accumulation and implicit functions. Optimization Methods

and Software, 9(4):307�322, 1998.

[3] A. Griewank and C. Faure. Piggyback di�erentiation and optimization. In Biegler
et al., editor, Large-scale PDE-constrained optimization, pages 148�164. Springer,
LNCSE #30, 2003.

[4] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of

Algorithmic Di�erentiation. Other Titles in Applied Mathematics, #105. SIAM, 2008.

11

