
11th World Congress on Computational Mechanics (WCCM XI) 

5th European Conference on Computational Mechanics (ECCM V) 

6th European Conference on Computational Fluid Dynamics (ECFD VI) 
E. Oñate, J. Oliver and A. Huerta (Eds) 

 

 

MICROMECHANICAL FAILURE MODELLING OF COMPOSITE 

MATERIALS USING HFGMC 

DARKO IVANČEVIĆ AND IVICA SMOJVER 

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture 

I. Lučića 5, 10000 Zagreb, Croatia 

e-mail: divancevic@fsb.hr, ismojver@fsb.hr, http://aerodamagelab.fsb.hr 

 

Key Words: Micromechanics, damage modelling, multiscale analysis, composite structures. 

Abstract. In order to improve the failure analysis of complex composite structures, a two-

scale damage prediction procedure has been developed. The methodology is based on the 

High Fidelity Generalized Method of Cells (HFGMC) model which belongs to a group of 

computationally efficient semi-analytical micromechanical models. The methodology has 

been developed with the aim of modelling high velocity impact damage on aeronautical 

structures using Abaqus/Explicit to perform computations at the structural level. The link 

between the finite element macro-level analysis and the micromechanical model has been 

achieved with the user material subroutine VUMAT, which for each material point performs 

micromechanical calculations based on the applied macroscopic strain given by the FE 

analysis. As a result, failure processes of complex composite structures have been modelled 

using micromechanical principles. Several constituent based failure initiation criteria have 

been implemented in the methodology. A complex multiaxial damage model has been 

included in the calculations. The results of the micromechanical damage model agree well 

with ply-based calculation of the Puck failure model. The procedure has been tested on a 

numerical example in which a soft-body impactor impacts a GFRP plate. 
 

1 INTRODUCTION 

Failure modes of composite materials are a result of the material heterogeneous 

microstructure. Consequently, failure of composite materials is manifested as a fibre 

breakage, matrix failure, fibre pullout, delamination or as a combination of these failure 

modes. The conventional approach in design and seizing of composite structures is the 

application of failure criteria at the level of a homogenized composite ply. The accuracy of 

numerical failure predictions can be increased by modelling of damage processes at the 

micro-structural level of the heterogeneous material. In order to enable application of 

micromechanical design methods on engineering problems, a two-scale approach has to be 

employed.  

The presented work is a continuation of previous research in which a numerical damage 

modelling procedure has been developed focusing on the soft-body impact analysis of 

aeronautical composite structures [1, 2]. The methodology has been extended by application 

of a two-scale procedure in modelling of composite materials. The HFGMC micromechanical 

model [3] has been employed for analyses on the micromechanical level, while 

Abaqus/Explicit has been used for the solution of the macromechanical problem. 

mailto:divancevic@fsb.hr
mailto:ismojver@fsb.hr


Darko Ivančević and Ivica Smojver 

 2 

The micromechanical damage modelling procedure has been applied on a high velocity 

impact problem in this work. The methodology has been based on the computationally 

efficient HFGMC models [4], since explicit FE analyses solve dynamic nonlinear problems 

using a large number of very small time increments. Micromechanical modelling is 

particularly suitable for nonlinear phenomena in composite materials – e.g. damage effects 

and viscoplasticity caused by high strain rates. In these nonlinear problems, the constitutive 

responses of the fibre and matrix show significant differences. The resulting effect of the 

diverse mechanical responses of the constituents on the equivalent composite mechanical 

properties cannot be predicted accurately using homogenised theories. 

2 MICROMECHANICAL MODEL 

The HFGMC model belongs to a wide range of micromechanical models developed from 

the Method of Cells (MOC) [5]. Since the complete HFGMC theory is very complex, only the 

most important relations are summarized in this work. An important feature of 

micromechanical models is the Repeating Unit Cell (RUC) concept. The unit cell is a basic 

building element which characterizes the evaluated heterogeneous material. The RUC concept 

assumes a perfectly periodic pattern of the unit cells in the material. A common feature of all 

MOC-based micromechanical models is the discretization of the unit cell using N x N  

subcells. Figure 1 shows basic variables and discretization scheme of the HFGMC model. The 

right-hand side image on Figure 1 shows an example of a 30 x 30 HFGMC model for a 

composite material with 60% fibre volume fraction. The two-dimensional HFGMC model is 

applicable for unidirectional fibre-reinforced materials. Fibres, which extend in the x1-

direction, are arranged in a doubly periodic array in the x2 and x3 directions. The coordinate 

system used for the micromechanical model corresponds to the principal material coordinate 

system of the composite ply, as x1 is aligned with the fibre direction, x2 lies in the ply plane 

and x3 is perpendicular to the ply plane.   

 

Figure 1: HFGMC model with displacement and traction components (left-hand side image) and example of 

30x30 RUC for a composite with 60% fibre volume fraction  

The constitutive response of each subcell is governed by the elasticity tensor 
 , 

C  of the 

,   subcell. Consequently, the number of material phases or constituents is limited only by 
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the number of subcells. Periodic boundary conditions are imposed on the boundaries of the 

RUC, whereas traction and displacement continuity conditions are applied at subcell 

boundaries within the RUC. Additionally, four displacement components are constrained in 

order to prevent unit cell rigid body motion as displayed by the four arrows at the unit cell 

borders in Figure 1. The aim of the micromechanical models is to determine the homogenized 

mechanical properties of the composite material. An additional capability of more advanced 

micromechanical models is prediction of the stress and strain fields within the unit cell of the 

composite material. For MOC-based micromechanical models, the strain field within the unit 

cell is calculated as 

( , ) ( , )   ε A ε , (1) 

where 
( , ) ε  is the strain tensor of the ,   subcell, while ε  is the homogenized strain state. 

( , ) A  is the strain concentration tensor of the ,   subcell which enables solution of the 

micromechanical problem. The homogenized mechanical properties of the composite material 

are determined using the relation 

* ( , ) ( , )

1 1

1
N N

h l
hl

 

   

 
  

 C C A , (2) 

where h  and l  are subcell dimensions as shown in Figure 1.  

The reformulated HFGMC model with enhanced computational efficiency [4] has been 

employed in this methodology. The model employs second order Legendre polynomials to 

approximate the displacement 
 ,

iu
 

 field within the RUC, after 
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 (3) 

The W variables in Equation 3 are micromechanical variables which have to be calculated in 

order to determine the micromechanical displacement field. As opposed to the original 

HFGMC model, the reformulated model introduces a local-global stiffness matrix approach 

with significant computational advantages [6]. The global stiffness matrices of the unit cell 

are assembled after application of traction and continuity conditions at subcell interfaces and 

periodicity equations at unit cell boundaries, as explained in [4,6]. The global system of 

equations can be decoupled into axial (Equation 4) and transverse (Equation 5) sets of 

equations  

2
1211 12 111

3
1321 22 221





        
       
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L L 0 Δcu
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. (5) 

Global L and K matrices are assembled from the subcell local stiffness matrices as explained 

in [6]. The submatrices  Δc   in the axial system and ΔC  in the transverse system of equations 

contain differences in elastic stiffness elements between adjacent subcells, after [6]. The 

solution of the global system of equations for the unknown fluctuating displacement 

components enables calculation of the microvariables W in Equation (3), which are used to 

calculate the unknown strain field 
( , ) ε . The strain concentration tensors are obtained using a 

numerical procedure as explained in [4]. 

2.1 Micromechanical failure criteria and damage model 

Constituent-based failure criteria are employed for modelling of damage initiation at the 

micromechanical level. Validation of several micromechanical failure models has been 

presented in [7]. The work in this paper focuses on the micromechanical damage model 

introduced in [8]. Only the most important relations of the damage model are provided in this 

work, while the complete overview of the theory is presented in [8]. The multiaxial 

continuum damage model is applied only for the matrix, whereas the failure initiation in fibre 

subcells results with complete subcell failure. This state is modelled by applying very low 

values to the subcell elasticity properties (0.0001 times the undamaged values). The maximal 

stress criterion has been used to predict failure in fibre subcells. The theory introduces 

damage strains defined as 

2 2 2
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, 

 

where X  , Y  and Z  variables denote the normal failure strains in the 1, 2 and 3 material 

direction, as defined in Figure 1. These allowable strain values usually have different values 

in tensile and compressive loading modes, as shown in Table 1 for the MY750 epoxy matrix 

which has been used throughout this work. R , Q  and S  variables in Equation 6 are failure 

engineering shear strains. Table 1 contains mechanical properties of the fibre and matrix as 

well as all necessary parameters of the matrix damage model [8]. The damage strains defined 

in Eq. 6 have the same function as the left-hand sides of commonly used failure criteria for 

fibre reinforced composite materials, indicating initiation of damage processes if their values 
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exceed 1.0.  

Damage evolution in matrix material is tracked using three tensile and three compressive 

damage variables 
iD . The incremental changes of damage variables and associated 

degradation of mechanical properties during a load increment are calculated using the relation 

'(1 )
D
i

i i i D
i

d
dD D k




   , (7) 

where 
D

id  is the increment of the damage strain. The post-peak tangent modulus is modelled 

using the slope parameter 
'

ik , calculated as 

/'
D
i B

ik Ae


 , 
(8) 

with A and B as the post-damage slope parameters. The damage model separates degradation 

processes in tensile and compressive failure modes 

   for 0,

   for 0.

T T

i i old i ii

C C

i i old i ii

D D dD

D D dD





  

  
 (9) 

The elasticity properties of the damaged matrix subcell are degraded using 

0     for  1,2,3i i iE d E i  , (10) 

0    for   , 1,2,3.ij i ijd i j    (11) 

where the 
id  variables are calculated as 

1  for 0

1  for 0.
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b D
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
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 

 
 (12) 

The b parameters in Equation 12 are the scaling parameters. The final failure of matrix 

subcells is predicted using damage energy principles. The strain energy density is calculated 

as 

    
1

2
i i i i i i idW d d         . (13) 

The final failure criterion is associated with the loading modes - Mode I (opening), Mode II 

(in-plane shear) and Mode III (out of plane shear). The mode-specific strain energy release 

rates (SERR) are 

1 1 1
1 1 11 1 1

1 1 111 61 51
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where ijb  denote scaling parameters, while 
il  is the characteristic material length. The 

i

MW  

variables in Equation 15 are mode specific strain energy density release rates, after [8]. 

Complete degradation of matrix subcells properties in tensile loading modes is determined if 

the mode-specific strain energy release rates reach the material critical strain release rate 

, , , .i C
M MG G M I II III   (16) 

Failure prediction in compressive loading modes has been predicted using the criterion  

  ,i i i C
I II III SW W W V W    (17) 

where V is the volume of the material and 
C

SW  is the critical compressive strain energy.  

Table 1: Fibre and matrix mechanical properties and properties of the damage model [8] 

Silenka E-glass fibre 

  GPaE        MPaTX    MPaCX  

74 0.2 2110 1290 

MY750 epoxy matrix 

  GPaE       TX    CX    S   

3.7 0.35 0.0125 0.0287 0.0443 

Post-damage slope parameters 

0.7TA   2.0CA   0.82TB   0.96CB   

Scaling parameters 

1.32T C

ii iib b   4 5 6 0.50i i ib b b    

Critical energy release rates 

Property Symbol Value 

Mode I SERR 
C

IG  2800 J/m  

Mode II and III SERR 
C C

II IIIG G  22400 J/m  

Critical compressive strain energy 
C

SW  61.86 10  J  

Material length il  59.0 10  m  

3 MULTISCALE FRAMEWORK 

The Abaqus/Explicit user material subroutine VUMAT has been employed in the 

presented methodology as to enable implementation of the HFGMC model. Within the two-

scale method, HFGMC has been programmed as a subroutine which is called from VUMAT 

at every material point of the FE model throughout the explicit analysis.  

The aim of the HFGMC model is to predict the equivalent composite constitutive 

behaviour, given mechanical properties of the constituents and parameters which define the 
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RUC of the composite material – unit cell morphology, fibre volume fraction, number and 

location of fibre centres. The determination of strain concentration tensors enables calculation 

of the micromechanical strain and stress tensors within the heterogeneous material unit cell, 

as explained in Section 2. The HFGMC model has also been employed to model damage and 

degradation effects of the composite material at the micro-structural level. In order to enable 

micromechanical modelling of nonlinear constitutive models as e.g. plasticity and damage, an 

incremental-iterative procedure has been included in the micromechanical model. 

Implementation of the iterative-incremental procedure solves problems which occur by 

acceptance of the linearized trial solution of the micromechanical model. These errors would 

be generated by micromechanical strain field calculation using strain concentration tensors 

which have been determined with initial subcell elasticity properties, after [9]. The HFGMC 

and VUMAT coupling has been achieved using a total of 44 Solution Dependent state 

Variables (SDV) and 47 common blocks which are necessary to transfer variables of the 

micromechanical model in matrix form from the current to the following time increment in 

the explicit analysis. 

4 RESULTS 

4.1 Multiscale application 

The described multiscale approach has been developed as an upgrade to the bird strike 

damage methodology presented in [1,2]. In order to demonstrate the multiscale damage 

procedure, a high velocity soft body impact has been simulated in which a numerical bird 

replacement impactor impacts a composite plate. Parameters of the numerical setup have been 

derived from the experimental high velocity gas-gun experiments, provided in [10]. Details of 

the numerical setup have been provided in [2], while the parameters of the model in this work 

have been adjusted as to employ the E-glass/epoxy micromechanical model with properties 

listed in Table 1.  

The numerical model is shown in Figure 2. The impactor has been modelled by the 

Coupled Eulerian Lagrangian (CEL) formulation [11]. The CEL approach is a numerical 

technique employed in those analyses where large deformations of conventional (Lagrangian) 

finite elements could cause numerical difficulties. Within the CEL method, the soft-body 

impactor has been modelled as Eulerian material which flows through the static Eulerian 

finite element mesh, while the impacted plate has been modelled using Lagrangian shell 

elements. The general contact algorithm has been used to model the contact between the FE 

mesh of the composite plate and the impactor material. 

Dimensions of the composite plate are 216 x 102 mm. The boundary conditions have been 

selected as to replicate the experimental setup in [10]. In these experiments, a 25 mm wide 

clamp has been applied to one of the shorter plate edges. This boundary condition has been 

simulated by the restriction of all degrees of freedom of the nodes in the clamped part of the 

composite plate, as shown in the right-hand side image in Figure 2. The plate geometry has 

been discretized using 860 conventional shell finite elements. The composite plate is 3 mm 

thick and consists of 21 CFRP E-glass/epoxy plies with a [(02/ 902)2/0/90/ 0 ]S layup, where 

the layup reference angle has been measured with regard to the longer plate edge. The 

mechanical properties of the unidirectional plies have been predicted using the 30x30 
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HFGMC model in Figure 1 and the constituent properties provided in Table 1. The calculated 

homogenized properties are shown in Table 2.  

Table 2: Homogenized composite properties calculated by HFGMC, Vf = 60% 

 1
GPaE   2

GPaE   12
GPaG   12

    23
   

45.911 16.332 5.043 0.249 0.259 

  

 

Figure 2: CEL numerical model 

The size of the cube containing the Eulerian elements has to be sufficiently large to prevent 

the impactor material from escaping the Eulerian mesh. The dimensions of the cube are 

therefore 0.45 x 0.4 x 0.2 m, while the Eulerian mesh consists of 487,920 elements. The 

impactor has been defined in [10] as a body with a 25 mm diameter, mass of 10 g and 

material density of 1010 kg/m
3
. As the exact shape of the impactor has not been specified, the 

conventional shape used in the numerical bird strike simulation has been employed in this 

work as well. Accordingly, the substitute bird geometry has been replaced by a cylinder with 

hemispherical ends. The impactor material model has been modelled using the Mie-Grüneisen 

Equation of State with properties similar to water, as explained in [1]. 

The initial velocity vector, with a magnitude of 100 m/s, is deflected by 40° with respect to 

the composite plate plane, as shown in Figure 2. The impact point is located at the centre of 

the unclamped part of the composite plate. The results provided in this work show the initial 

impact event for which a total time of 0.2 ms has been analyzed.  

4.1 Results of the analysis 

Figures 3 – 6 show results of the soft-body impact. The clamped end of the composite plate 

is located on the right side of the images in Figures 4 - 6. The impact event and bird material 

deformation is shown in Figure 4. The contours in Figure 4 visualize the displacements in the 

z direction, which is perpendicular to the composite plate as defined in Figure 2. The results 

demonstrate the ability of the numerical bird model to replicate the very high deformations of 

the soft-body impactor. 

Results of the micromechanical failure model have been compared with results of the ply-

based Puck’s failure model, as this failure theory has showed very good results in the World 

Wide Failure Exercise (WWFE) [12]. The strength properties of the homogenized GFRP 
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plies, used to calculate Puck’s ply-based failure criterion have been taken from [13], while the 

parameters of the Puck failure model have been defined in [14]. The results of the Puck’s 

failure criteria have been used only to compare results of the micromechanical damage model, 

whereas progressive damage models have not been applied to this ply based failure model. 

The SDV’s associated with micromechanical failure criteria show the maximal value 

within the RUC associated to the relevant FE material point. The results in Fig. 4 show the 

maximal through thickness values of the criterion.  

 

Figure 3: Visualization of the impact event. The contours show displacements in the direction perpendicular the 

composite plane [m] 

 

Figure 4: Visualization of the evolution of 2

D  damage strain (maximal through thickness values are shown) 

Figure 4 shows contours of the damage strain criterion for three time steps of the analyzed 

impact event. Results of the analysis show that 2

D  damage strain reached the highest value of 

the three damage strains defined in Equation 6 and predicts degradation of mechanical 

properties in a very large part of the composite plate. 2

D is the primary mode of failure in this 

analysis, while 1

D  and 3

D reach lower values.  

Although the impact caused severe matrix damage, fibre failure has not been predicted to 

occur in the analysis. The maximum stress criterion has reached maximal values of 0.23. This 
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result agrees well with the Puck’s ply-based fibre failure criteria which reaches maximal 

values of 0.26.  

The results shown in Figures 5 and 6 refer to the composite plies oriented by 0° and 

located on the side of the composite plate opposite to the impact location. The damage effects 

are more pronounced on material points of this side of the composite plate due to lower 

failure initiation properties in the tensile loading regime, as shown in Table 1. 

The effect of degradation on homogenized composite E2 and G12 elasticity properties is 

shown in Figure 5. The initial values of E2 and G12 have been degraded in the areas where the 

2

D  damage strains reach values above 1.  

 

Figure 5: Degraded values of E2 and G12 [GPa] 

 

Figure 6: Comparison of  Puck mode A failure criterion (left-hand side image) with the SDV controlling 

material point failure as predicted by the micromechanical model (right-hand side image) 

Figure 6 shows a comparison of Puck’s Mode A matrix failure criterion and the SDV 

controlling element deletion from VUMAT, calculated by the micromechanical model. In 

order to remove an element from the analysis, this SDV has to be set to zero in all material 

points of the element. Complete failure of a material point has in this analysis been 

determined if subcell failure occurs in at least one subcell of the RUC. None of the finite 

elements has been removed from the analysis, indicating that subcell failure has not been 

predicted in all material points of the composite layup. The contours of the failed material 

points agree well with the contours of the Puck matrix criterion. 
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5 CONCLUSIONS 

The analysis in this work shows results of a multiscale methodology application on a 

numerical model simulating experimental high velocity soft-body impact conditions. Within 

this two-scale approach, damage effects at the structural level have been determined using 

micromechanical principles. As explained in Section 2.1, a complex multiaxial damage 

model, based on a continuum damage mechanics, has been employed to model micro-

structural matrix damage. The contours and sizes of the part of the composite plate in which 

micromechanical degradation effects have been calculated agree very well with results of the 

Puck failure model. This observation is very promising since Puck’s failure model has 

achieved very good results in the WWFE.  

Complete failure of a material point of the FE model has in this work been determined if at 

least one subcell of the associated unit cell reaches the failure criterion, as explained in 

Section 2. Validation of micromechanical failure and damage model with WWFE results has 

been presented in [7]. The results showed that the first subcell failure state for the 30x30 

HFGMC model, employed in this work, corresponds to extensive damage evolution 

throughout the unit cell. Further testing and validation with experimental results are necessary 

to determine if the selected final failure criterion is physically correct. 

This work presents the first results of the micro-structural damage implementation on a 

macro-structural level, as the methodology is still in development. In the next phase further 

damage models have to be evaluated. In order to enhance versatility of the methodology, the 

mesh objective Crack band damage model [15] will be included in the micromechanical 

damage procedure. The application of micromechanical models for modelling of high velocity 

impact problems in composite structures is particularly suitable, since such effects in 

composite materials affect only the matrix. Consequently, viscoplastic effects will be included 

to matrix constitutive models using the Bodner-Partom model [16].  
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