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Abstract. Numerical modelling has become an important tool in managing geothermal 
systems and planning their exploitation for renewable energy production. The TOUGH2 
simulator has been the industry standard tool for developing numerical models for many 
years. It includes several different equation-of-state modules and thus can be used for 
modelling many different kinds of geothermal fields as well as other complex sub-surface 
flow problems such as carbon sequestration and nuclear waste storage. Under certain 
conditions TOUGH2 simulations stall at a relatively small time step size and are unable run 
up to the very large times required for a natural state simulation. This behaviour leads to slow 
model development and also poses a significant obstacle to inverse modelling using 
iTOUGH2 or PEST as forward simulations are more computationally expensive and may not 
finish. In previous work the authors identified and analysed conditions leading to stalled 
simulations and proposed corrections to the air-water and CO2-water equation-of-state 
modules to eliminate the behaviour. 
 
While these improvements prevent simulations from stalling at small time steps they do not 
prevent a limiting time step size from occurring as simulations approach a large simulation 
time. This behaviour is observed often, affects all equation-of-state modules and can add 
significant computational time to simulations. Improvements to the convergence criteria used 
by the TOUGH2 algorithm during its internal Newton-Raphson iteration are proposed 
following an analysis of the algorithm’s behaviour as the time step size becomes very large. 
The results presented show that this improvement can dramatically reduce the total simulation 
time for all equation-of-state modules. In particular the improvement can reduce the 
computational time required for calculating numerical derivatives during inverse modelling 
by an order of magnitude. This has a profound effect upon our ability to carry out inverse 
modelling and uncertainty analysis of numerical models of large-scale, real geothermal 
systems. 

1 INTRODUCTION 

Numerical simulation is an important tool for planning and managing the development of 
geothermal systems [1]. Since its development in the 1980s TOUGH2 [2] has become the 
industry standard simulator and is now widely used. At the same time TOUGH2 has been 
extended to include several different equation-of-state modules allowing it to be used for 
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modelling many different kinds of geothermal fields, as well as other complex sub-surface 
flow problems. 
 
Many TOUGH2 simulations must be carried out in order to obtain a well-calibrated model of 
a geothermal system [3]. During the calibration process, model parameters such as 
permeabilities and heat and mass inputs are adjusted in order to match measured observations. 
When TOUGH2 simulations converge slowly or do not converge the calibration process 
becomes difficult, time-consuming and ultimately impossible. This is especially true when 
inverse modelling tools such as iTOUGH [4,5] or PEST [6] are used because they depend 
upon simulations converging without manual intervention. 
 
Most convergence issues encountered during TOUGH2 simulations occur due to two different 
types of behaviour. The first type of behaviour occurs when a specific set of circumstances 
cause the TOUGH2 simulator to stall at a relatively small time step size. This makes it 
difficult or impossible for the simulation to reach the large simulation time required for a 
natural state model. This behaviour is well known to geothermal reservoir modellers and has 
also been reported by [7] in CO2 sequestration simulations using TOUGH2. This issue was 
solved in our previous work [8] and is summarised here for completeness. 
 
The second type of behaviour does not prevent the simulation from reaching the natural state 
simulation time but does limit the maximum time step size that can be achieved during the 
simulation. This significantly increases the real time required to carry out natural state 
simulations and therefore has a large impact on model development. In particular, inverse 
modelling and uncertainty quantification become very computationally expensive when this 
behaviour occurs as many thousands of forward simulations may be required. 
 
The objective of the present work was to improve the convergence properties of TOUGH2 
simulations to allow efficient model development and enable the use of inverse modelling and 
uncertainty quantification tools. This required analysing the TOUGH2 solution algorithm, 
identifying the causes of the two types of behaviour and then developing changes within the 
AUTOUGH2 code, the University of Auckland version of TOUGH2 [9].  
 
To test the changes proposed a number of simulations of real geothermal systems that 
displayed poor convergence behaviour were collected over several months. The significant 
improvements in their convergence behaviour as a result of the changes are discussed in the 
following sections. A brief discussion regarding the impact of the improvements on the 
computational cost of inverse modelling and sensitivity analysis is also presented. 

2 THE TOUGH2 SIMULATOR 

The TOUGH2 simulator solves mass and energy-balance equations to determine the 
properties of non-isothermal flows of multiphase, multicomponent fluids in porous and 
fractured media [2]. 

2.1  Governing equations 

The mass-balance and energy-balance equations solved by TOUGH2 can be written in the 
following form [10]: 
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where ܸ is the volume of integration, ܣ఑ is the amount of each quantity ߢ within the volume, 
 is the ܖ ,ܣ across the surface ߢ is the surface of the volume, ۴఑ is the flux of quantity ܣ
normal vector to the surface ܣ and ݍ఑ represents any sources or sinks in the volume. The 
number of quantities for which balance equations must be solved is determined by the 
equation of state (EOS) that has been selected to simulate the geothermal system. The EOS is 
selected by considering both the important properties of the system being simulated and the 
nature of the issues that being investigated. In this work four common types of EOS have 
been used. Their details are given in Table 1: 

Table 1: Types of Equations of State 

Equation of State Quantities Simulated 

EOS1 mass of water, energy 
EOS2 mass of water, mass of CO2, energy 
EOS3 mass of water, mass of air, energy 

EWASG mass of water, mass of non-condensable gas, mass of chloride, energy 
 
The amount of each component per unit volume is calculated as the sum of the contributions 
from each phase as shown in Equation (2): 

఑ܣ ൌ ߮ሺߩ௟ ௟ܵܺ఑௟ ൅ ௚ߩ ௚ܵܺ఑௚ሻ (2)

Here ߮ is the porosity and for each phase, ߚ, the density is given by ߩఉ, the saturation by ఉܵ 
and the mass fraction by ܺ఑ఉ. The liquid phase is indicated by the subscript ݈ and the gas 
phase by the subscript ݃. For the amount of energy in the volume the definition includes an 
additional term for the contribution of the rock: 

௘ܣ ൌ ሺ1 െ ߮ሻߩ௥ܿ௥ܶ ൅ ߮ሺߩ௟ݑ௟ ௟ܵ ൅ ௚ݑ௚ߩ ௚ܵሻ (3)

ܶ is the temperature, ߩ௥ the density of the rock, ܿ௥ its heat capacity and ݑఉ the internal energy 
of phase ߚ. The flux of each component ۴఑ in Equation (1) is calculated using the contribution 
of each phase ۴ఉ weighted by the mass fraction: 

۴఑ ൌ ܺ఑௟۴௟ ൅ ܺ఑௚۴௚ (4)

In some equations of state for TOUGH2 a dispersion term can be added to (4) but in most 
geothermal systems the effects of diffusion and hydrodynamic dispersion are small. For the 
energy flux a conductive term is also included where ܭ is the thermal conductivity and the 
enthalpy of each phase ߚ must be taken into account as shown in Equation (5). 

۴௘ ൌ ݄௟۴௟ ൅ ݄௚۴௚ െ (5) ܶ׏ܭ

The flux of each phase is given by the two-phase form of Darcy’s Law: 

۴ఉ ൌ െ
ܓ ݇௥ఉ
ఉߥ

ሺ݌׏ ൅  ሻ܏ఉߩ
(6)

Here ܓ is the permeability tensor (usually assumed to be diagonal),  ݇௥ఉ the relative 
permeability of the phase ߥ ,ߚఉ its viscosity, ݌ the pressure and ܏ is gravity. Note that for this 
work the effect of capillary pressure was not considered. 
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Discretising in space and applying implicit time stepping reduces Equation (1) to a set of 
coupled non-linear equations which can be written as: 
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(7)

In Equation (7) the superscript refers to the time step at which the quantity is calculated. The 
term ܽ௜௝ is the area of the interface between block ݅ and block ݆ and ܨ఑௜௝

௡ାଵ is the flux of each 
quantity ߢ across the same interface. The term ݍ఑௜௣

௡ାଵ represents ݌ separate source terms of 
quantity ߢ in block ݅ and finally the time step size is given by ∆ݐ௡ାଵ. 
 
The discrete form of Equation (6) is used to calculate the fluxes of each quantity: 

ఉ௜௝ܨ
௡ାଵ ൌ െቆ

݇ ݇௥ఉ
ఉߥ

ቇ
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௡ାଵ
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(8)

To calculate the relative permeability and viscosity term in Equation (8) upwind differencing 
is used: 
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(9)

The direction in which each phase flows is determined by the pressure gradient and the effects 
of gravity as defined by the following equation: 

ఉ௜௝ܩ
௡ାଵ ൌ

௝݌
௡ାଵ െ ௜݌

௡ାଵ

݀௜௝
െ ఉ௜௝ߩ

௡ାଵ
௜݃௝ 

(10)

Now ܩఉ௜௝
௡ାଵ ൐ 0 means that phase ߚ flows from block ݆ to block ݅ and ܩఉ௜௝

௡ାଵ ൏ 0 means the 
opposite. 
 
In both Equation (8) and Equation (10) ݃௜௝ is the component of gravity acting normally to the 
interface between block ݅ and block ݆ and the density of the phase at the interface ߩఉ௜௝

௡ାଵ is 
calculated simply from the average for the two blocks: 

ఉ௜௝ߩ
௡ାଵ ൌ

ఉ௜ߩ
௡ାଵ ൅ ఉ௝ߩ

௡ାଵ

2
 

(11)

In Equation (8) the permeability and block distance terms are combined and calculated as a 
harmonic weight: 

݀௜௝
݇௜௝

ൌ
݀௜
݇௜
൅ ௝݀

௝݇
 

(12)

In Equation (10) the block distance term is simply the sum of the distance from each block 
centre to their shared interface: 

݀௜௝ ൌ ݀௜ ൅ ௝݀ (13)

The values of the secondary parameters hβ, uβ, ρβ and νβ are calculated using the primary 
variables and steam table data supplied through the EOS modules. 
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2.2 Solution process 

Gathering all the terms in Equation (7) to the left hand side gives a coupled system of 
nonlinear equations, which must be solved at each time step to calculate the new values of the 
primary variables in each block: 

ሻܠሺܚ ൌ ૙ (14)

This system of equations is solved iteratively using the Newton-Raphson (NR) method which 
can be written in the following form [2]: 

െ۸௞ሺܠ௞ାଵ െ ௞ሻܠ ൌ ௞ሻ (15)ܠሺܚ

where ݇ represents the NR iteration number and ۸ is the Jacobian matrix of the system of 
equations defined as: 

۸ ൌ ൤
ܚ߲
ܠ߲
൨ 

(16)

 
Note that in TOUGH2 the Jacobian is calculated numerically by evaluating the change in ܚ 
corresponding to a small change in ܠ. 
 
The NR method is complete and the values of the primary variables at the new time step have 
been calculated once ܚሺܠ௞ሻ has been reduced sufficiently to meet one of two convergence 
criteria [2]. The first is that the absolute value of the ratio of ܚሺܠ௞ሻ to ۯ఑ has been reduced to 
less than a specified value 1ߝ: 

ฬ
௞ሻܠሺܚ
఑ۯ

ฬ ൑  ଵߝ
(17)

The second criterion is used when ۯ఑ is smaller than the convergence parameter 2ߝ. In this 
case the following relationship is used: 

|௞ሻܠሺܚ| ൑ ଶ (18)ߝଵߝ

TOUGH2 uses adaptive time stepping which means that if the NR method successfully 
converges within a specified number of iterations then the time step size is increased. If it 
successfully converges, but only after more than the specified number of iterations, the time 
step remains the same. When the NR does not converge within a specified iteration number 
limit then the time step is reduced and another attempt is made at solving for the primary 
variables. 
 
The simulation is complete for a natural state model once the total simulated time reaches the 
required target, usually set at ~1.0x1016 seconds. This large target time does not reflect the 
real time that the system took to develop over geological time but rather is a computational 
technique for ensuring that the system is at equilibrium. 

3 TWO TYPES OF CONVERGENCE ISSUES IN TOUGH2 

In general the solution process described in the previous section is robust and relatively 
efficient. The highly nonlinear nature of the equations governing flow in geothermal systems 
mean that the adaptive time stepping often reduces and increases the time step size many 
times during the solution process. This behaviour is expected and doesn’t prevent successful 
simulations. However, in certain circumstances two types of behaviour occur that prevent 
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TOUGH2 simulations from converging efficiently. The first is when simulations stall at a 
relatively small time step size and the simulation is unable to progress. The second is when 
simulations approach the natural state simulation time but reach a limiting time step size 
causing additional computational cost.  

The plots in Figure (1) show two examples of each type of behaviour from four simulations of 
different geothermal systems. In plot (a) results are shown from the simulations of the Wyang 
Windu system in Indonesia and the Lihir Island system in Papau New Guinea. The Wyang 
Windu simulation uses EOS2 while the Lihir Island simulation uses EOS3. It is clear that both 
simulations have stalled at relatively small time steps that cycle around values less than 1x107 
seconds. Plot (b) shows examples of the convergence issues experienced as simulations 
approach the natural state simulation time. These results are taken from an EOS2 simulation 
of the Ohaaki system and an EWASG simulation of the Rotorua system, both of which are in 
New Zealand. The Ohaaki simulation was started from a good set of initial conditions and so 
quickly achieves a large time step size before reaching a limit around 2x1013 seconds. The 
Rotorua simulation takes many more time steps for the solution to evolve but also eventually 
reaches a limiting step size of around 5x1013 seconds. In the following sections the 
circumstances leading to each of these behaviours is analysed and described before changes to 
the TOUGH2 algorithm are given that correct the behaviour. 

3.1 Stalled simulations due to a moving unsaturated zone 

When the solution process stalls with the time step unable to increase above a relatively 
small value the simulation is prevented from reaching the specified total time and hence it 
does not complete. This behaviour is often manifested by a cycle of time step reductions 
followed by a single time step increase as can be seen in Figure (1a). 

This situation occurs when the NR method is able to converge within the maximum number 
of iterations at one time step size, but cannot converge at a larger time step size. TOUGH2 
can be set to output the maximum residual, ܚሺܠ௞ሻ, at each iteration throughout the simulation 
which reveals that the problem is usually caused by the residual at the larger time step not 
falling below the convergence criterion for some particular block. 

a) b) 

Figure 1: Two types of convergence problems experienced in TOUGH2 simulations. Plot (a) shows the time 
step size evolution for two stalled simulations; the Wayang Windu model using EOS2 (-) and the Lihir Island 
model using EOS3 (-). Plot (b) shows the time step size evolution for two simulations with slow convergence at 
large time steps; the Ohaaki model using EOS2 (-) and the Rotorua model using EWASG (-). 



John O’Sullivan, Adrian Croucher, Angus Yeh and Mike O’Sullivan. 

 7

Often the block in question is close to the interface between a saturated and an unsaturated 
zone. The interface is usually moving and hence two-phase conditions are either evolving or 
disappearing within blocks in the local area. By examining the conditions in the area, it is 
possible to determine how the interface is moving and estimate the new primary variables. In 
the past modellers have attempted to implement this fix by intervening in the simulation either 
manually or by using scripts [11] to adjust the primary variables in the block or in its 
neighbours. 
 
In some cases this allows the simulation to progress and complete, but in others it does not, in 
which case it may be necessary to take the more drastic step of adjusting local permeabilities. 
This is unsatisfactory not only because there may be no physical basis for the permeability 
change, but also because it is not guaranteed to solve the problem. A much more satisfactory 
approach is to analyse and understand the problem and develop a solution within the 
AUTOUGH2 code itself [8]. 
 
In Figure (2) plots show the gas saturation and the gas density calculated in the blocks that 
caused the Wyang Windu and the Lihir Island simulations to stall. In the case of the Lihir 
Island system the problem occurs in a block which is two-phase initially while the block 
below it is single phase liquid. Plot (a) shows that the gas phase in the block disappears 
slowly but as soon as it has disappeared completely it evolves again immediately creating the 
cycling behaviour and time step stall shown in Figure (1a). Physically this corresponds to the 
water table rising and falling within the block. Plot (b) reveals that the problem causing the 
behaviour is the discontinuity in the value of the gas density ߩ௚ calculated using Equation 
(11). This in turn causes discontinuities in the calculations of ܚሺܠሻ and ۸ during the NR solve 
which causes the time step to stall. 
 
For the Wyang Windu simulation the problem occurs in a single phase liquid block that is 
above a two-phase block. Plot (c) in Figure (1) shows that the gas evolves in the liquid block 
but the quickly disappears before evolving once again. Physically this corresponds to a 
boiling zone that is moving up and down on the edge of the problem block. The gas density in 
the block is shown in plot (d) which reveals that although it does not drop to zero when only 
liquid is present it is also discontinuous. 
 
As described previously [8] the discontinuities occur in the calculations of ܚሺܠሻ and ۸ because 
of the upwind differencing used by TOUGH2 in Equation (9). A situation can exist (and 
occurs surprisingly often) where the flow direction for each phase, calculated by Equation 
(10), can be from a block where the phase is present to one where it is not. From Equation (9) 
the upwind differencing means that a non-zero relative permeability will be calculated at the 
interface between the blocks and subsequently a non-zero flux will be calculated for the phase 
across that interface using Equation (8). Because Equation (8) also contains a contribution 
from gravity and the phase density, if the value of the density of the phase is discontinuous 
then the calculated flux is also discontinuous. 
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a) b) 

c) d) 

Figure 2: Results for (a) gas saturation, (b) gas density in the problem block in a stalled simulation of the Lihir 
Island system. The results for (c) gas saturation, (d) gas density in the problem block in a stalled simulation of 

the Wyang Windu system 

The solution to the problem is to ensure that the value of a phase density is continuous prior to 
a phase evolving or after it disappears. This is achieved by calculating the phase density in the 
same way as it would be for the two-phase mixture regardless of whether or not the phase is 
present in the block. The corrections are given in Table 2 and the time step behaviour as a 
result of the corrections is shown in Figure (3) for both examples. In plot (a) the Lihir Island 
simulation immediately progresses to a large time step once the correction has been applied 
and achieves the natural state simulation time within 70 time steps. The Wyang Windu 
simulation had clearly stalled further from the natural state solution and required over a 100 
time steps before the natural state solution was achieved. The maximum time step sizes in 
both corrected simulations were around 4x1013 seconds. A further improvement to the 
TOUGH2 algorithm is proposed in the next section that eliminates this limiting time step size.	
 

Table 2: Corrections to the gas density calculations 

Equation of State Previous Calculation New Calculation 

EOS2 ߩ௚ ൌ 0 ௚ߩ ൌ ௩௔௣௢௨௥ߩ ൅  ௔௜௥ߩ

EOS3 ߩ௚ ൌ ௩௔௣௢௨௥ߩ ௚ߩ ൌ ௩௔௣௢௨௥ߩ ൅  ஼ைଶߩ
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a) b) 

Figure 3: The convergence behaviour before (-) and after (-) the gas density calculation correction for (a) the 
Lihir Island model using EOS3 and (b) the Wayang Windu model using EOS2. 
 

3.2 Time step size limitation approaching large simulation times  

Since corrections to the density calculations described in the previous section have been 
made, many models have been tested and no longer exhibit the stalling behaviour during the 
main part of the simulation. However, as simulations approach large simulation times they 
often still display poor convergence behaviour due to the development of a limiting time step 
size. The results for the corrected simulations in Figure (3) show a limiting time steps of 
approximately 4x1013 seconds. For most simulations a natural state is deemed to be obtained 
once a total time of 1x1016 seconds is reached, meaning that at least 250 time steps would be 
required for these simulations. In some models the limiting time step at can be much smaller, 
hence requiring hundreds or thousands of time steps to reach a natural state simulation time. 
 
Investigations have shown that the limiting time step size does not affect all simulations. In 
particular, pure water simulations (EOS1) are rarely affected. This information allowed us to 
focus our efforts on certain areas of the TOUGH2 algorithm to identify the cause of the 
problem. These efforts revealed that the time step size limitation is caused by loss off 
significance when updating the primary variables during the NR iteration. 
 
Once the residuals ܚሺܠ௞ሻ have been calculated and neither of the convergence criteria in 
Equations (17-18) have been met, then the primary variables ܠ௞ are updated to their new 
values ܠ௞ାଵ using Equation (15). As the simulation approaches the natural state simulation 
time the system approaches a steady state and these updates become very small. In Equation 
(7) this equates to the fluxes, sources and sinks being balanced and the accumulation terms 
being divided by the large time step size ∆ݐ௡ାଵ. Because TOUGH2 uses dimensional 
variables, very small updates can lose significance when applied to large values such as the 
pressure. Also for very small variables such as the mass of air deep in a geothermal system, 
the updates can become so small that they are affected by machine zero. When the 
significance of the updates to the primary variables is lost, they remain unchanged from one 
NR iteration to the next and hence the residual does not reduce. This creates a limit to the time 
step size for the simulation. 
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The solution proposed in this work is to include the relative change in the primary variables as 
well as the residuals when determining convergence. This means that when the updates to the 
primary variables that are calculated by the NR method are below a prescribed level the block 
in question is considered to be converged and the NR method is allowed to proceed. 
 
This additional convergence criterion can be written as: 

ฬ
௞ାଵܠ െ ௞ܠ

௞ܠ
ฬ ൑ ઽ૜ (19)

For this work a value of ઽ૜ ൌ 1x10-10 was found to be sufficient to allow simulations to 
progress without reaching a limiting time step size without altering the simulation behaviour. 
Detailed analysis of many different simulations was carried out to ensure that this additional 
criterion gave exactly the same simulation results and altered only their convergence 
behaviour. 
 
Figure (4) shows the convergence behaviour for four different simulations with and without 
the additional convergence criterion. The examples are from simulations using a different 
equation of states in order to demonstrate the importance of the improvement for all 
TOUGH2 simulations. Note that the simulations in plots (a) and (c) started from initial 
conditions close to the natural state where as simulations (b) and (d) did not. 
 
a) b) 

c) d) 

Figure 4: The convergence behaviour of simulations using the previous convergence criteria (-) and using the 
proposed convergence criteria (-). For simulations using EOS1 (a), EOS3 (b), EOS2 (c) and EWASG (d). 
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Plot (a) shows that the time step limitation also affects pure water simulations but only at very 
large time steps (above 5x1014 seconds). This is because these simulations do not include the 
mass of a non-condensable gas as a primary variable and hence do not experience the same 
loss of significance when this mass approaches zero in certain parts of the geothermal system. 
In plot (b) the simulation using the new convergence criterion appears to suffer from a new 
time step limitation around 1x1015 seconds. This behaviour occurs because at very high time 
step sizes the system of equations solved by the NR become more ill-conditioned and in some 
case the linear solver can fail to converge. Including improvements to TOUGH2’s linear 
solver is an area of on-going research. 

3.3 Implications for inverse modelling and uncertainty quantification  

Both inverse modelling and uncertainty quantification rely upon sensitivity analysis of 
models to their parameters. This may require hundreds or thousands of forward model runs 
often from initial conditions close to the final solution and with only small changes to a single 
parameter. Using the previous convergence criteria even small changes to a model parameter 
could lead to simulations requiring several hundred time steps. Using the proposed 
convergence criteria this is often reduced to less than fifty and significant reductions in the 
number of NR iterations required at each time step. 

To demonstrate the impact of the speed up achieved tests were carried out using the Lihir 
Island model. It consists of 9683 blocks, covers a physical area of 103 km2 and is solved 
using EOS3. For more details of the model refer to O’Sullivan et al. [12]. Table 3 show a 
comparison of the real time required for carrying out an inverse modelling analysis using the 
previous convergence criteria and the new criteria. Both sets of results were generated on Intel 
Xeon 3.20 GHz processors. 

Table 3: Simulation speed-up during inverse modelling analysis 

 Number of Simulations Total Simulation Time 

Previous Convergence Criteria 4000 ~ 2 x 105 s 

New Convergence Criteria 4000 ~ 1 x 104 s 

 

4 CONCLUSION 

Corrections to density calculations in the TOUGH2 algorithm have been developed and 
tested that prevent simulations from stalling at relatively small steps. This ensures that 
simulations converge to a large natural state total time. A new convergence criterion has also 
been introduced to the Newton-Raphson method used in the TOUGH2 algorithm that prevents 
simulations from reaching a limiting time step size. The new criterion has been tested and 
shown to significantly reduce real simulation time while producing identical simulation 
results. These two improvements to the TOUGH2 algorithm allow for more efficient model 
development and enable effective use of inverse modelling and uncertainty quantification 
tools. 
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