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Abstract. In order to accurately predict the complex non-linear relationships between
the cyclone performance parameters (The Euler and Stokes numbers) and the four signifi-
cant geometrical dimensions (the inlet section height and width, the vortex finder diameter
and the cyclone total height), the support vector machines approach has been used. Two
support vector regression surrogates (SVR) have been trained and tested by CFD data
sets. The result demonstrates that SVR can offer an alternative and powerful approach
to model the performance parameters. The SVR model parameters have been optimized
to obtain the most accurate results from the cross validation steps. SVR (with optimized
parameters) can offer an alternative and powerful approach to model the performance
parameters better than Kriging. SVR surrogates have been employed to study the effect
of the four geometrical parameters on the cyclone performance. The genetic algorithms
optimization technique has been applied to obtain a new geometrical ratio for minimum
Euler number and for minimum Euler and Stokes numbers. New cyclones over-perform
the standard Stairmand design performance. A Pareto optimal solutions have been ob-
tained and a new correlation between the Euler and Stokes numbers are fitted. CFD
simulations for the Stairmand design and the new design for minimum Euler numbers are
performed using the Reynolds stress turbulence model. The analysis of the CFD results
reveal the changes in the flow field pattern which cause the better performance presented
by the new design.

1 Introduction

Cyclone separators are widely used in gas-solid separation for aerosol sampling and in-
dustrial applications [79] where both the gravity and centrifugal force are used to separate
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Figure 1: 3D view of cyclone geometry. In this study, h/D = 1.5,S/D = 0.5, B./D =
0.375.

solids from a mixture of solids and fluids. Cyclones have the following advantages. Sim-
plicity in construction, contain no moving parts, relatively maintenance free, can handle
high pressure and temperature mixtures and corrosive gases, relative economy in power
consumption. Due to these advantages, cyclone separators have become one of the most
important particle removal devices in both engineering and process operation [79] such
as, cement industry, oil and gas, coal fired boiler, workshops and vacuum cleaners.

1.1 Cyclone geometry

The cyclone geometry is described by seven geometrical parameters, viz. the inlet
height a, and width b, the vortex finder diameter D, and length S, the cylinder height
h, the cyclone total height H; and cone-tip diameter B, as shown in Fig. 1. It has
been approved in previous studies by the authors that only four geometrical parameters
significantly affect the cyclone flow pattern and performance [20-23, 25, 26, 28, 30]. The
four significant factors are the inlet section height a and width b, the vortex finder diameter
D, and the cyclone total height H;.

1.2 Cyclone performance

Besides the separation efficiency (or alternatively, the cut-off diameter for low mass
particle loading), pressure drop is another major index for cyclone performance evalua-
tion. Therefore, it is necessary to obtain an accurate model to determine the complex
relationship between the performance parameters and the cyclone characteristics. Table
1 presents more details about the two performance parameters.
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Table 1: The definition of the cyclone performance parameters

The Euler number Fu The Stokes number Stksg
The Euler number is the dimensionless pressure drop AP.
AP =(the area- and time-averaged static pressure at the Stkso is the dimensionless cut-off di-
inlet section) - (the area- and time-averaged static pressure ameter x50. x50 is the particle diam-
at the gas exit section). eter that produces 50% collection effi-

ciency. Stkso = ppmgo\/m/(l&uD) =

__ The pressure drop between the inlet and the gas exit 100 :—; [17]. It is the ratio between the

FEu =

The average kinetic energy at the inlet particle relaxation time (the time con-

stant in the exponential decay of the
particle velocity due to drag) 7, =

Fu= 1AP2 where p is the gas density and Vj, is the average
Vin

i Cutoff diameter

2 PVin 0 i 5 ppx2/(181) and the gas flow integral
inlet velocity. Eu is not affected by operating conditio‘l}s }:r)l Pariclo diameter time scale 7y = D/V;,, where p,, is the
the high Reynolds number range (Re > 5 x 10%, Re = ”% particle density and p is the gas vis-
) [20, 45]. cosity.

1.3 Literature review

To estimate the cyclone performance parameters there are five approaches:

1. Experimental investigations (e.g., Xiang et al. [74])

2. Theoretical and semi-empirical models (e.g., Stairmand [70])

3. Statistical models (e.g., Ramachandran et al. [62])

4. Computational fluid dynamics (CFD) (e.g., Chuah et al. [12], De Souza et al. [14],

Elsayed and Lacor [20, 21, 23, 26, 28], Kaya and Karagoz [51])

5. Artificial intelligence techniques (e.g., Elsayed and Lacor [22, 25], Zhao and Su [80]

Table 2 presents a summary of these five approaches with a sample of the available
studies in the literature.

The afore-mentioned prediction models (PR, KG and ANN) (cf. Table 2) have numer-
ous drawbacks, which include locally optimal solutions, low generalization, over-fitting,
and poor stability [54]. The support vector machine (SVM) surrogate can offer a better
alternative to these models. In the field of performance evaluation for cyclone separators,
unfortunately, SVM does not receive a great deal of attention on its algorithmic advan-
tages. There is only one study using the support vector regression (SVR) on cyclone
separator performed by Zhao [79]. Zhao [79] approved the potential of SVR to model the
effect of cyclone geometry on the pressure drop (based on experimental dataset collected
from different sources) but he did not go further to use the fitted SVR to study the ef-
fect of each parameter on the performance or for optimization. Moreover, he used the
traditional approach to find suitable values for SVR parameters.

1.4 Target of this study

This study aims to:
e Apply the SVR surrogate to model the variation of the two cyclone performance

parameters with the change in the most significant geometrical parameters based
on CFD based data set.
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e Introduce a computationally cheap framework for SVR parameter optimization us-
ing a Python code.

e Compare the accuracy of the fitted SVRs models with the KG models.

e Study the effect of each significant geometrical parameter on the cyclone perfor-
mance using the SVR models.

e Optimize the cyclone performance for minimum Euler number as well as for best
performance using multi-objective optimization technique.

2 Least Squares - Support Vector Regression (LS-SVR)

The least squares support vector regression (LS-SVR) was introduced by Suykens et al.
[71] as a reformulation to the standard SVR. LS-SVR simplified the standard SVR model
to a great extent by applying linear least squares criteria to the loss function instead
of a traditional quadratic programming method [71, 73]. As excellent examples of the
nonlinear dynamic system, least squares support vector regression (LS-SVR) based on
the structured risk minimization principle has been successfully applied to many fields
of function approximation and pattern recognition because of its high accuracy and gen-
eralization capabilities [6]. Compared with artificial neural networks, LS-SVR secks to
minimize an upper bound of the generalization error instead of the empirical error, and
can provide more reliable and better generalization performance under the same training
conditions [66].

In the LS-SVR model, the training dataset of | points is assumed to be zy, y, (k =
1,2,--+,1), in which 2y € R"™ is the input vector and y, € R is the corresponding tar-
get vector. The regression problem can be transformed into the following optimization
problem [54, 63]:

l
1 C

mi‘?}gjze U(w,e) = inw +3 ; e; (1)

subject to yp = w’ ¢(zy) +b+ex, (k=1,2,...,1) (2)

Where e;, is the error between the predicted value and the true value of the system,
C' > 0 is the regularization parameter applied to minimize estimation error and control
function smoothness, ¢(:) denotes the nonlinear mapping from input spaces to feature
space, w is an adjustable weight vector, and b is the bias (scalar threshold). Equation 2
is the constraint. In order to solve the optimization problem, the Lagrange function can
be presented by the following equation:

1 ol !
L(w,b,e,a) = §wTw + b E e; — E ap{w’ d(zr) + b+ ep — yr} (3)
k=1 k=1
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Table 2: Summary of the different approach used to estimate the cyclone performance

Approach

Comments

Experimental investigations

Different measurements techniques have been used to measure the cyclone performance parameters. At present
Laser Doppler anemometry (LDA) [e.g. 48, 68] and particle image velocimetry (PIV) [e.g. 60, 75, 77| are frequently
employed to study experimentally the flow structure in the cyclones. The experimental approach is very costly
due to need to construct the cyclone as well as the expensive measuring equipment.

Theoretical and semi-empirical models

Theoretical or semi-empirical models were successively developed by many researchers, e.g., Shepherd and Lapple
[64], Alexander [1], First [35], Stairmand [69], Barth [5], Avci and Karagoz [3], Zhao [78], Karagoz and Avci [49]
and Chen and Shi [10]. These models were derived from physical descriptions and mathematical equations were
based on a very detailed understanding of gas flow pattern and energy dissipation mechanisms in the cyclone. In
addition, different assumptions and simplified conditions were used in these models, leading to either enormous
error between the measured data and predicted results by these models or the conflict of these models when they
were used to evaluate different types of cyclone [79].

Statistical models

The representative researches included the models proposed by Casal and Martinez-Benet [9], Dirgo [19] and
Ramachandran et al. [62] to estimate the pressure drop. These models were developed through statistical regression
analysis based on large data set for different cyclone configurations. Zhao [79] stated that although the statistical
models are more convenient to predict the cyclone performance, it is rather difficult in this approach to determine
the optimal correlation function for fitting experimental data.

Computational fluid dynamics (CFD)

Recently, the computational fluid dynamics (CFD) technique has presented a new way to model the cyclone
performance. Several researchers successfully applied CFD calculation to predict and to evaluate the effects of
different geometrical and operational parameters on the performance of gas cyclones. CFD is able to provide
not only the performance parameters but also the detailed information of the flow field inside the cyclone. The
main drawback of using CFD results is that it is computationally expensive to solve the Navier-Stokes equations
using RANS such as Elsayed and Lacor [22, 26], Gimbun et al. [38, 39], Griffiths and Boysan [40], Hoekstra et al.
[43], Hoffmann et al. [44], Qian and Zhang [61] or LES such as Derksen [16], Derksen et al. [18], Elsayed and Lacor
[23, 28], Slack et al. [67]. Moreover, three levels of grid density is needed to achieve a grid independent results.

Surrogate models

The application of surrogate models is much cheaper than the other techniques such as experimental or CFD
especially if the target is to optimize the performance parameters. The widely used surrogate models in predicting
the cyclone performance parameters are:

Polynomial regression models (PR): The simplest form is the second order polynomial regression. This kind
of surrogate is suitable to mimic the input-output relationship of maximum quadratic relationships e.g.
Elsayed and Lacor [20].

Kriging (KG): Kriging surrogate models recently used by the authors to model the effect of cyclone separator
geometry on its performance, e.g., Elsayed and Lacor [27, 31], Elsayed et al. [34].

Artificial neural networks (ANNSs): With the interdisciplinary development of modern computational tech-
nologies, artificial neural networks (ANNSs), as typical artificial intelligence (AI) models and algorithms,
have become an attractive approach for modeling highly complicated and nonlinear system without un-
derstanding the nature of phenomenon [79]. Radial basis function artificial neural networks (RBFNN)
has been successfully used to mimic the cyclone performance in many studies such as Elsayed and La-
cor [22, 27, 29], Zhao and Su [80]. However, ANN has been applied in many studies, ANN has some
limitations.

- Unlike other models, ANN does not provide information about the relative importance of the
various parameters [63].

- The knowledge acquired during the training of the model is stored in an implicit manner and
hence it is very difficult to come up with reasonable interpretation of the overall structure of the
network [52].

- In addition, ANN has some inherent drawbacks such as slow convergence speed, less generalizing
performance, arriving at local minimum and over-fitting problems.

Support vector machines (SVM): SVM is a supervised learning theory from the field of machine learning
applicable to both nonlinear classification called SVMC or SVC and regression called SVMR or SVR.
Rooted in the statistical learning theory developed by Vapnik [72], SVM quickly gained attention from
many research areas due to a number of theoretical and computational merits and marked the beginning
of a new era in the learning from examples paradigm [79]. In recent years, SVM is fast becoming a
powerful tool of scientific research and technological development. It has been successfully applied to
many engineering fields [11].
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Where ap(k = 1,2,--- 1) are the Lagrange multipliers. Accordingly, the Karush-
Kuhn-Tucker (KKT) conditions are used for optimality by differentiating L in Eq. (3)
with the w, b, eg, and ay, which is shown as follows [54]:

g_i =0—-w= 22:1 arp(zy)
l
O =0—= Y =0

oL __ _
aek—0—>6(k—06k

a—L:0—>wT¢(xk)+b+ek—yk:0

Bak

(4)

Elimination of the z and ey, from Eq. (4) results in the following set of linear equations:

oo o) = g

where [ is the unit matrix, ® = ¢(xp) d(x) = K(xp,2), Y = [y1, 42, ,w|’. The
resulting LS-SVR model for function estimation is obtained as:

)= f(x) = arK(xpz)+b (6)

In Eq. (6), K(xg, x) is the kernel function which satisfies Mercers condition correspond-
ing to a dot product in some feature spaces [57]. Four common Mercer kernel functions
are widely used [54]:

Linear kernel: K (x;,z) =zlx

Polynomial kernel: K (zy, 1) = (zlz/0? + ~)?
RBF kernel: K (zp,z) = exp(—7 || 2 — x ||?)
Sigmoid kernel: K(xy,z) = tanh(yriz + 1)
where d, 7, and o are constants.

Because RBF kernels map samples into high dimensional space in a nonlinear fashion
and have fewer parameters to set, and because this method handles the nonlinear rela-
tionship well and has an excellent overall performance, it is by far the most popular option
for kernel function types [71]. This study consequently adopted an RBF kernel function,
shown in Eq. (7) in order to contribute to the LS-SVR model’s achieving optimal solution.

K(zy, ) = exp(—y || 2 — 2 ||*) (7)

Generally, LS-SVR solves linear equations and will lead to important reductions in
calculation complexity. Compared with SVR, LS-SVR is characterized by faster training
speed, higher stability and better control strategy [54, 63].
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2.1 LS-SVR parameter optimization

The LS-SVR performance heavily depends on the choice of several hyperparameters,
which are necessary to define the optimization problem and the final LS-SVR model.

To design an LS-SVR, one must choose a kernel function, set hyperparameters such as
the kernel parameters, and determine a regularization parameter C'. The hyperparameters
that should be optimized include the regularization parameter C' and the kernel function
parameters such as 7 for the radial basis function (RBF) kernel. Thus, selecting appropri-
ate model parameters has a crucial impact on prediction accuracy. Unfortunately, there
is no exact method to obtain the optimal set of LS-SVR hyperparameters; consequently,
a search algorithm must be applied to obtain the parameters.

For the nonlinear LS-SVR, its generalization performance depends on the proper setting
of parameters C' and kernel parameters v. Inappropriate hyperparameters combinations
in LS-SVR lead to over-fitting or under-fitting. One procedure to obtain the LS-SVR
parameters follows the trial and error approach to minimize some generalized error mea-
sures such as the mean squared error [4]. This procedure is time-consuming, tedious and
unable, in many cases, to converge at the global optimum. Zhao [79] applied the two-step
search technique to dynamically seek the optimal values for the LS-SVR parameters. The
two steps are: First perform a coarse search to identify a better region in search field
according to contour lines of MSE. Then perform a fine search over that region. The dis-
advantage of the multi-step search technique is that it will be more prone to be trapped
in local optimum point especially if a limited number of points are used.

In this study, we propose an alternative approach. The proposed approach employs
the simulated annealing optimization technique to heuristically seek the optimal values
for the LS-SVR parameters that minimize the difference between the predicted and the
true values.

Simulated annealing (SA) is an optimization technique that proposed by Kirkpatrick
et al. [53]. SA attempts to find the global minimum of a cost function that may possess
several local minimum. SA is able to deal with cost functions with quite arbitrary degrees
of nonlinearities, discontinuities and stochasticity and can process quite arbitrary bound-
ary conditions and constraints imposed on them [2]. The method works by imitating the
physical process whereby a heated solid is slowly cooled. When eventually its structure is
frozen, which happens at a minimum energy configuration. The slow cooling gives atoms
more chances of finding configurations with lower internal energy than the initial ones [2].

From the initial state with fitness value F1, the system can be perturbed stochastically
leading to a new state with fitness value Fy. The newly generated state is accepted or
rejected based on the following relation [76]:

o 1, if Ey, < B,
Pa= {ea:p[—(Eg — E1)/T;], otherwise (8)

Where parameter T; is called analogous or synthetic temperature at the ith step, which



Khairy Elsayed, Chris Lacor

controls the cooling down or annealing dictated by user specified cooling schedule.
T,=T,1—AT, i=1,2--- N. 9)

For Ty as starting value of temperature, and N number of total annealing steps: AT =
To/N. A large initial value of temperature allows more frequent up-hill moves enabling
system to escape local minimum while the down-hill moves dominate like steepest descent
for lower values of temperature near the end.

The simulated annealing (SA) is used in this study to optimize the parameters of SVR:
C and kernel parameter 7 of RBF-kernel function. In the training and testing process of
LS-SVR, the objective is to minimize the errors between the actual and predicted values of
the testing samples. Therefore, the objective (fitness) function of SA is the mean squared
error from the cross validation.

In the parameters optimization process, K-fold cross validation is employed to avoid
the over-fitting and to calculate the fitness function. The original sample is randomly
partitioned into K subsamples. In these subsamples, a single subsample is used as the
validation data for testing the model while the other K-1 subsamples are used as training
data. The cross validation process is then repeatedly performed K times, with each of
the K subsamples selected exactly once as the validation data. The cross validation error
is estimated as the average mean squared error (MSE) on test subsamples, as shown in
Eq. (10). Commonly, 5-fold and 10-fold cross validation is the most widely used method.
In this study, the 5-fold cross validations are employed to estimate the MSE.

Nt;

MSE = %; > G- (10)

—1

where K is the number of folds (5 in this study), Nt; is the number of testing points
in fold j, y; represents the actual values, and g; represents the predicted values.

Figure 2 presents a flow chart for the complete optimization framework. The main
steps are explained as follows:

Selection of the design variables : In this study, the four significant design variables
are selected a, b, D, and H,. This is based on several previous studies performed by
the authors [20-23, 25, 26, 28].

Design of experiment (DoE) : The Statgraphics XVI has been used to create the
sampling plan. The Box-Behnken design create 33 test cases. The minimum, center
and maximum values of the four significant factors.

Preparing the training CFD data set : In this (most time consuming) process, three
steps are performed. (1) Use the Gambit grid generator to create the cyclone ge-
ometry and create hexahedral meshes using gambit journal files. (2) The CFD
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Figure 2: Flow

chart for the complete optimization framework
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simulations are performed using the Ansys Fluent 6.3.26. The simulations are auto-
mated by Fluent journal files. (3) The post-processing to estimate the pressure drop
using the surface integral panel and consequently the Euler number. The discrete
phase modeling has been used to inject particle with different diameter from the
inlet. After constructing the grade collection efficiency curves. Tecplot is used to
precisely estimate the cut-off diameter and consequently the Stokes number.

Fitting the two SVR models : This is the parameter optimization step. We start
with initial guess for the two parameters v and C. The simulated annealing (SA)
from Scipy is used for optimization. The fitness function is the mean squared error
MSE from the cross validation. The k-fold cross validation is performed using the
Scikit-learn Python code. The optimization process stops when the MSE is less
than a threshold e = 1072,

Optimization process : Several optimization studies can be performed using Scipy [§]
for classical optimization techniques (such as Nelder-Mead technique). The Deap
Python optimization library [37] has been applied for optimization using the genetic
algorithm (GA) technique. For the multi-objective optimization study, the NSGA-
IT [15] is used to obtain the Pareto front. The MatPlotLib Python plotting library
has been used for plotting.

3 Results and discussion
3.1 The training dataset

Figure 3 presents a scatter plot for the training data set. The training dataset has
been created using the Box-Behnken design of experiment (DoE) [7] and has been used in
a previous study to optimize the cyclone geometry using the polynomial regression and
radial basis function artificial neural network surrogates [26]. The minimum and maximum
values for the four design parameters are listed in Table 3. To avoid scaling effect, all
values are scaled (using the preprocessing.MinMaxScaler class from Scikit-learn) to
be in range of 0 to 1 before being used in training the surrogates.

It is worth to mention that the Box-Behnken design of experiments [7] are widely used
sampling plan to fit a multi-dimensional polynomial (including interactions) [58]. This sampling
plan is known as space-filling. It requires uniform spread of points, consequently it leaves a
gap in the projections [36]. Latin hypercube sampling (LHS) [56] is a better alternative to the
stratified sampling plan [31]. This means the given training data to the SVR is not the best for
testing the SVR, so we consider this as a severe test for the SVR meta models. In future studies
a new data set based on LHS will be created whereas the current one will be used for testing.

The variation of the two performance parameters (Euler and Stokes numbers) are
shown in Fig. 4 for the 33 (27 from the DoE and 6 extra cases) test cases (cf. Table 10,
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Figure 3: Scatter plot for the training dataset generated using the Box-Behnken DoE

(scaled from 0 to 1).
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Table 3: The values of the cyclone geometrical parameters used in the DoE (cf. Fig. 1)

Variables Minimum Center Maximum
Inlet height, x; = a/D 0.4 0.55 0.7
Inlet width, zo = b/D 0.14 0.27 0.4
Vortex finder diameter, 3 = D, /D 0.2 0.475 0.75
Total cyclone height, 4 = Hy/D 3.0 5.0 7.0
Cylinder height, h/D 1.5

Vortex finder length, S/D 0.5

Cone-tip diameter, B./D 0.375

The values of the cylinder height, vortex finder length and the cone tip diameters are kept at the Stairmand design values,
where h — S = 1 which is the optimum difference between the two dimensions as reported by many researchers [27]

GL) 35_I 1 1 1 1 1 1 1 1 1 1 3 ]
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Cyclone

Figure 4: The variation of the cyclone performance from cyclone to cyclone.

p. 258 in Elsayed and Lacor [30]).

Table 4 presents the statistical descriptive parameters for the SVR (before and after
parameter optimization) and Kriging surrogate. It is clear that the SVR with optimized
parameter superior the performance of the Kriging model as is clear from the better
matching between the statistical descriptive parameters of the input and the output results
from the surrogate as well as the smaller value of MSE and the R? value close to unity.
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Table 4: Statistical descriptive parameters for the SVR and KG models using the 5-fold
cross validation®

SVR before parameter optimization (using the default values of C' and «)

Eu Stkso x 103
X y X y

Average 7.2436 4.3035 1.9496 1.9404
Standard deviation 6.9465 1.1746 0.9211 0.7573
Minimum 1.2110 2.0240 0.5880 0.6646
Maximum 27.2570 6.5702 3.8400 3.2680
Range 26.0460 4.5462 3.2520 2.6035
Coefficient of determination, R? 0.131 0.900

Mean squared error 47.750 0.076

Intercept 3.2928 0.3480

Slope 0.1395 0.8168

The SVR regularization parameter, C 10.0 10.0

The kernel parameter, v 10.0 10.0

SVR after parameter optimization

Eu Stkso X 105
x y X y

Average 7.2436 7.2966 1.9496 1.9938
Standard deviation 6.9465 6.9108 0.9211 0.9271
Minimum 1.2110 1.3118 0.5880 0.4882
Maximum 27.2570 27.1573 3.8400 3.7398
Range 26.0460 25.8455 3.2520 3.2517
Coefficient of determination, R? 0.9991 0.9941

Mean squared error 2.579 0.00883

Intercept 0.0935 0.0372

Slope 0.9944 1.0036

The SVR regularization parameter, C' 13502 283.151

The kernel parameter, v 0.154 0.041

Kriging (KG)

Fu Stkso X 105
b y X N
Average 7.2436 7.2436 1.9496 1.9496
Standard deviation 6.9465 6.9465 0.9211 0.9211
Minimum 1.2110 1.2110 0.5880 0.5880
Maximum 27.2570 27.2570 3.8400 3.8400
Range 26.0460 26.0460 3.2520 3.2520
Coefficient of determination, R2 0.876 0.999
Mean squared error 5.506 0.001
Intercept 0.0 0.0
Slope 1.0 1.0

*

x is the input to the SVR and y is the predicted value. Both x and y represent the Euler number and Stokes number.

Note that the values of the average, the standard deviation, the minimum, the mazimum and the range have been
calculated using all data for training the meta model. Consequently, for Kriging interpolation metamodel, these values are
identical for x and y columns.

SSres

The average coefficient of determination R? using cross validation can be calculated as R? = % > JK,l (1 — SS:E:J )
= e
J

. Nt; ~ . . Nt; _ .
where K is the number of folds, SSres; = >_; t1] (ys — §3)? is the sum of squares of residuals, SStot; = Zzztf (yi —75)? is

i=
. . . . . _ Nt
the total sum of squares, Nt; is the number of testing points in fold j, y; represents the actual values, 7; = ﬁ ZZ:tl’ Yi
J

is the mean of the observed data in fold j and 7; represent the predicted values.

Q-Q plot is a plot of the percentiles (or quintiles) of a standard normal distribution
against the corresponding percentiles of the observed (given) untrained data. If the ob-
servations follow approximately a normal distribution or the two compared datasets are
of the same statistical distribution, the resulting plot should be roughly a straight line with
a positive slope. Deviations from this would indicate possible departures from a normal
distribution or the two datasets belonging to different statistical distributions. The ob-
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tained Q-Q plot is linear (a straight diagonal line) for the SVR models with optimized
parameters as shown in Table 5. Whereas the Q-Q plot shape of distribution appears
to be left skewed and right skewed in case of Stokes number and the Euler number val-
ues respectively predicted by the traditional SVR. This indicates that the traditional
SVR (without parameter optimization) model is less accurate model with respect to the
SVR with optimized parameters. The interested reader can refer to [50] and the Matlab
statistics toolbox user’s guide [55] for more details about the Q-Q plot.

It is clear that the accuracy of the surrogate model has been increased due to parameter
optimization. Moreover, the linear fit for the input-output relationship has been enhanced
by optimizing the SVR parameters.

3.2 Geometry effect

One of the benefit of using surrogate models is to apply them to study the effect of
each design variable on the response (performance parameters). The two optimized SVR
models are used to study the effect of the four geometrical parameters on both the Euler
number and the Stokes number. As is clear from Fig. 5, the SVR and KG models give
the same trend of variation but the SVR models can predict more local variation than the
KG model. It is worth to mention that the variation of the Euler number with the change
in the vortex finder diameter D, predicted by the SVR model is similar to that reported
by the authors in previous studies [20, 26]. For the variation of the cyclone performance
with the total height (H;), the reduction in the Euler number (pressure drop) stops after
H; = 4.625 whereas the enhancement in the collection efficiency (reduction in the cut-off
diameter) continue with lengthen the cyclone.

The highly non-linear relationship between the two performance parameters and the
four geometrical parameters can be understood in a deeper way by inspecting the 3D
plots presented in Fig. 6. The following conclusions are drawn from the analysis of Fig. 6.
There is clear interaction between the four geometrical parameters. The sensitivity of
the Euler number to the change of the geometry is much more than that of the Stokes
number.

3.3 Geometry optimization

Two optimization techniques have been applied to obtain new geometrical ratio set,
namely the Nelder-Mead technique [59] and the genetic algorithms [25, 46]. Table 6 lists
the new generated cyclone geometry ratios for minimum pressure drop (Euler number).

For single objective and one parameter optimization using the Nelder-Mead technique
from Scipy. The total cyclone height H; is optimized for minimum Euler number. The
optimum value of H; is 4.694, i.e., h, = 3.194, where h = 1.5 which results in Fu = 3.432.

Since the cyclone performance has two major performance indices (the Euler and the
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Table 5: Q-Q plots and the input-output linear fit before and after parameter optimization
(using all data points for training)
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Stokes numbers) a multi-objective optimization process is needed for optimum cyclone
performance. In this study, NSGA-II [15, 26] available from deep (evolutionary toolbox
for python) [37] has been used to obtain the Pareto front shown in Fig. 7 and Table 7.

The obtained Pareto front has been used to fit a correlation between the two perfor-

mance parameters. The application of the polyfit function from Numpy Python package
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Figure 5: Comparison between the effect of each geometrical parameter on the cyclone
performance parameters using SVR (black lines) and KG (blue lines).

[8] results in the following correlation Stksy x 103 = 1070:0652°~01952"-0.193:40372 where
z = logio(Eu). It is worth to mention that the accuracy of the new third order correla-
tion is R? = 0.996 which is superior that proposed by the authors in a previous article
[25]. This correlation can be used to predict the Stokes number (the cut-off diameter)
given the pressure drop (Euler number).

Table 6: Optimum geometrical ratios for minimum Euler number

a b D, H: Fu
Optimum cyclone total height (Nelder-Mead technique) 0.25 0.15 0.5 4.694 3.432
Optimization of the four factors (Nelder-Mead technique) 0.499 0.15 0.658 3.0 0.667
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Figure 6: Surface plots for the effect of each geometrical parameter on the cyclone per-
formance parameters using SVR
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Table 7: The Pareto-Front points and the corresponding geometrical parameters values

a b D, H, Eu Stksy x 103
0.302 0.238 0.643 4.103 0.193 2.590
0.284 0.246 0.572 4.229 0.622 2.420
0.294 0.246 0.546 4.484 1.170 2.200
0.298 0.239 0.520 4.529 1.690 2.050
0.318 0.241 0.501 4.479 2.330 1.920
0.265 0.240 0.471 4.549 2.630 1.820
0.259 0.230 0.435 4.601 3.490 1.650
0.275 0.241 0.440 4.992 4.140 1.570
0.251 0.215 0.396 4.831 4.690 1.450
0.250 0.215 0.363 4.772 5.700 1.290
0.253 0.219 0.349 4.991 6.570 1.180
0.250 0.203 0.319 4.940 7.310 1.070
0.250 0.203 0.302 4.940 7.940 0.993
0.255 0.151 0.266 5.000 8.730 0.918
0.255 0.169 0.250 4.999 9.580 0.802
0.255 0.193 0.250 4.999 10.100 0.755
0.251 0.232 0.250 5.000 11.100 0.691
0.273 0.244 0.250 4.995 12.400 0.641
0.294 0.245 0.250 5.000 13.300 0.612
0.306 0.266 0.250 4.992 14.800 0.566
0.319 0.273 0.250 5.000 15.800 0.537
0.359 0.273 0.250 4.996 17.700 0.491
0.346 0.306 0.250 4.996 18.900 0.468
0.381 0.300 0.250 4.994 20.300 0.437
0.402 0.308 0.250 4.963 21.800 0.411
0.420 0.331 0.250 5.000 24.100 0.373
0.464 0.340 0.250 5.000 26.700 0.336
0.500 0.351 0.251 5.000 28.900 0.313

3.4 CFD comparison between the Stairmand and optimal design

In order to understand the flow pattern of the optimum points, the Pareto front point
which produces the minimum Euler number has been simulated and compared with the
Stairmand design. The Reynolds stress turbulence model has been used to model the
turbulent flow in the two cyclone separators. For the detailed governing equation for the
Reynolds averaged Navier-Stokes equation (RANS) we refer to Elsayed and Lacor [21].
The geometrical values are given in Table 8 for the two cyclones (cf. Fig. 8).
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Figure 7: Pareto front for NSGA-II optimization with polynomial fit

The air volume flow rate Q;,=50 1/min for the two cyclones, air density is 1.0 kg/m?> and
dynamic viscosity 2.11 x 1075Pa.s. The turbulent intensity equals 5% and characteristic
length equals 0.07 times the inlet width [43]. A velocity inlet boundary condition is applied
at inlet, outflow at gas outlet and wall boundary conditions at all other boundaries [26].

The finite volume method has been used to discretize the partial differential equations
of the model using the SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations-
Consistent) method for pressure velocity coupling and QUICK scheme to interpolate the
variables on the surface of the control volume. The implicit coupled solution algorithm
was selected. The unsteady Reynolds stress turbulence model (RSM) was used in this
study with a time step of 0.0001s.

The grid independence study has been performed for the tested cyclones. Three levels
of grid for each cyclone have been tested, to be sure that the obtained results are grid
independent. The hexahedral computational grids were generated using Gambit grid
generator and the simulations were performed using Ansys Fluent 15 commercial finite

Table 8: The values of geometrical parameters for the two designs (D=31 x 107 m)

Cyclone a/D b/D D,/D H/D h/D S/D B./D|L;j/D L¢/D
Stairmand design 0.5 0.2 0.5 4 1.5 0.5 0.375 1.0 0.5
New design 0.302 0.238 0.643 4.103 15 0.5 0.375 1.0 0.5
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(a) The cyclone geometry

0 0.025 0.050 (m)
]

0.0125 0.0375

(b) The surface mesh for the new design.

Figure 8: The cyclone geometry and the surface mesh for the new design.

volume solver on a four nodes CPU Opteron 64 Linux cluster.

In this study, we applied the approach proposed by Elsayed et al. [32, 33] for mesh
independence study. Where the adjoint solver is used to locally refine the mesh at the
region of high gradient. The fine mesh for the optimum design is shown in Fig. 8. The
mesh is locally refined twice at the region of high pressure drop using the adjoint solver.
The details of the grid independence study using grid convergence index (GCI) is shown
in Table 9. For more details about GCI approach and the grid independence study for
the Stairmand cyclone we refer to Elsayed and Lacor [26]. In the current study, the
CFED results on the fine mesh are presented. The value of a = 1.0976 is close to unity
indicates that the change is in the asymptotic range. A qualitative representation of the
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Table 9: Grid convergence calculations using GCI method and three grid levels for the
Euler number

- fine a
{ N; Eu; Fiiv1  €iiv1 €1 | GCLRS, R a

0° 0.1634
1 1002171 0.2050

1.0413 0.0200 0.0976 | 25.3674
2 887480 0.2250 0.0822 1.0976
1.1886 0.2670 1.1867 | 34.2236

3 528499  0.4920

“ R:€12/ €23.

b Oé:(T’;fz GC[lg) /GC]23

¢ The value at zero grid space (h — 0). i=1, 2 and 3 denote the calculations at the fine,
medium and coarse mesh respectively.

grid independence study for the new design is shown in Fig. 9.

In order to validate the obtained results, it is necessary to compare the prediction
with experimental data. Such comparison has been published before in previous arti-
cles [21, 24, 26]. That comparison was performed with the measurements of Hoekstra
[42, 65] using the Laser Doppler anemometry (LDA) technique for both the axial and
tangential velocity profiles. Moreover, the numerical results for the pressure drop have
been compared with the corresponding experimental values [21]. The validation showed
an acceptable matching between the simulation results and the experimental values.

3.4.1 Flow field pattern and performance

All the subsequent figures present the flow variables in a dimensionless form. This
approach results in a better study how the velocity varies inside the cyclone in terms
of the average inlet velocity. Moreover, This allows to compare the velocity profiles for
different cyclones working at different inlet velocities (at a fixed volume flow rate). The
dimensional value of the velocity can be calculated using the given volume flow rate
and the inlet section dimensions. In case of static pressure, the pressure value can be
estimated using the dynamic pressure at the inlet (%p‘/;i), where p is the gas density,
Vin is the average inlet velocity. The approach of representing the velocity and pressure
profiles in dimensionless forms is widely used in the cyclone separator studies e.g., Derksen
et al. [17, 18], Gronald and Derksen [41].

Figures 10 and 11 show the contour plot at the mid plane Y=0 and throughout the
mid of the inlet section respectively. In the two cyclones, the time-averaged dimensionless
static pressure decreases radially from the wall to center. A negative pressure zone appears
in the forced vortex region (central region) due to high swirling velocity. The pressure
gradient is large along the radial direction, whereas the gradient in the axial direction
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Figure 9: Qualitative representation of the grid independence study. The Euler number
for the optimum design using the three grid levels. N~! is the reciprocal of the number
of cells, h — 0 means the value at zero grid size (cf. Table 9).

is very limited (cf. Fig. 12). The cyclonic flow is not symmetrical as is clear from the
shape of the low-pressure zone at the cyclone center (twisted cylinder). However, the
two cyclones have almost the same flow pattern, but the static pressure of the Stairmand
design is nearly eight folds that of the new design. If we used the same color ranges for the
two cyclones, the radial variations in the new design will be difficult to be distinguished.
The contour plots at the inlet section (Fig. 11) show that the pressure distribution in the
vortex finder is almost uniform in the new design. Whereas, the Stairmand design keep
the same radial variation throughout the cyclone. The pressure distribution around the
vortex finder in the new design is more uniform with respect to that for the Stairmand
design. Due to flow acceleration (with reduced area) at the inlet, a negative pressure zone
is established in the new design. The dimensionless static pressure distribution presented
in Fig. 13 for the two cyclones indicates that the highest dimensionless static pressure for
the Stairmand design is more than eight times that of the new design at all sections (due
to limited axial variations). This indicates that, the new design has a lower pressure drop
than the Stairmand design. However, these results are obtained at different inlet velocity
for the two cyclones (to have the same air flow rate). The same Euler number values
would be obtained if the two cyclones work at the same inlet velocity because the Euler
number is not a function of flow velocity if the Reynolds number is higher than 2x10*
20].

The tangential velocity profile is composed of two regions. In the inner region, the
flow rotates approximately like a solid body (forced vortex), where the tangential velocity
increases with radius. After reaching its peak the velocity decreases with radius in the
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Table 10: The predicted Euler number for the two designs

Design CFD simulation Support vector regression
Stairmand 5.606 5.783 (Stksy x 10° = 1.913)
New design 0.205 0.193 (Stkso x 10° = 2.590)

outer part of the profile (free vortex). The tangential velocity distributions for the two
cyclones are nearly identical in pattern (Rankine profile). The inner part of the tangential
velocity distribution of the two cyclones exhibit the weak vortex (new design) versus
the strong vortex (Stairmand design). The outer part for the new design is shorter in
comparison with the Stairmand cyclone. This implies that the particles in the Stairmand
cyclone will be subjected to higher centrifugal force with respect to that in the new design.
The maximum dimensionless tangential velocity for Stairmand cyclone is higher than twice
that for the new design. The cyclone collection efficiency is affected by the maximum
tangential velocity and the separation space. Since, the two cyclones have close values
for the cyclone volume, the expected collection efficiency from the Stairmand cyclone
(designed for high-efficiency) is much higher than that for the new design (optimized
for low-pressure loss). From the inspection of the contour plots at the inlet section, the
vortex strength highly reduced upon entering the separation space in case of the new
design. This is also clear when the tangential velocity contours for the two cyclones are
colored using the same color ranges (Fig. 10).

The axial velocity in the inner vortex is either reported as an inverted V or inverted W-
shaped profile, i.e., with a maximum (V-shaped) or a dip (W-shaped) at the symmetry
axis [13, 47]. The axial velocity profiles for the Stairmand design is the inverted W
profile. Whereas the new design exhibit the inverted V profile (Fig. 10). However, the
axial variation of the axial velocity is limited in the two cyclones as is clear from Fig. 12,
the maximum axial velocity increases as we move to the gas exit. The relatively small axial
velocity (in addition to the relatively small tangential velocity) in the new design, will
reduce the possibility of the re-entrainment of the collected particle. The radial variation
of the axial velocity in the Stairmand design is larger than that in the new design.

Table 10 compares the Euler number values fro the two designs. The CFD simulation
results estimated the pressure drop of the Stairmand cyclone as 27 times that for the new
design, whereas the support vector regression model gives 30 (EU Stairmand design/ EU new design )-
On the other hand, the ratio of the predicted stokes number for the new design is 1.35
times that for the Stairmand design. This implies that the new design will be preferable
for relatively larger particle than that for the Stairmand cyclone.
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4 Conclusions

In order to accurately predict the complex non-linear relationships between the cyclone
performance parameters and its geometrical dimensions, the support vector machines ap-
proach has been used and compared with the Kriging surrogate. Two support vector
regression (SVR) surrogate models have been trained and tested by 33 CFD data sets.
The result demonstrates that SVR can offer an alternative and powerful approach to
model the performance parameters. The SVR model parameters have been optimized
to obtain the most accurate results from the cross validation steps. The parameters
optimization has been optimized using the Simulated annealing technique. SVR (with
optimized parameters) can offer an alternative and powerful approach to model the per-
formance parameters better than Kriging. The SVR surrogates used to study the effect of
the four geometrical parameters on the cyclone performance. The genetic algorithms op-
timization technique has been used to obtain a new geometrical ratio for minimum Euler
number and for minimum Euler and Stokes numbers. The new cyclones over-perform the
standard Stairmand design performance. A table for Pareto front is provided where the
decision-maker can select from. A new correlation between the Stokes number and Euler
number is provided which is more accurate than the existing correlations in the literature.

CFD simulations for the Stairmand design and the new design for minimum Fuler
numbers are performed using the Reynolds stress turbulence model. The analysis of the
CFD results reveal the changes in the flow field pattern which cause the better performance
(less pressure drop) presented by the new design.
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Figure 10: Contour plots for the time averaged dimensionless flow variables throughout
the mid plane (Y=0)
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Figure 11: Contour plots of the time averaged dimensionless flow variables through the
inlet section
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Figure 12: Axial variations of the time averaged dimensionless flow variables
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