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Abstract. Wepresent aGPU-accelerated, arbitrary-order, nearly quadrature-free, Runge-Kua
(RK) discontinuous Galerkin (DG) approach to interface capturing for atomizing multiphase
flows via the conservative level set (CLS) method [16, 17]. An arbitrary-order DG numeri-
cal method is utilized for both advection and reinitialization, further developing the ideas of
Czajkowski and Desjardins [3] by implementing a quadrature-free approach, allowing for ar-
bitrary polynomial degree, and treating the normal function in a DG sense. For effective use of
processing power, the method is executed with the dual narrow band overset mesh approach
of the refined level set grid method [11]. Computation is performed in parallel on either CPU
or GPU architectures to make the method feasible at high order. Finally, by using normal-
ized Legendre polynomial basis functions, we are able to pre-compute volume and surface
integrals analytically. e resulting sparse integral arrays are stored in the compressed row
storage format to take full advantage of parallelism on the GPU, where performance relies
heavily on well-managed memory operations.

e accuracy, consistency, and convergence of the resulting method is demonstrated using
the method of manufactured solutions (MMS). Using MMS, we demonstrate 𝑘+1 order spatial
convergence for 𝑘th order normalized Legendre polynomial basis functions on both advection
and reinitialization. MMS is also used to demonstrate the benefits of GPU hardware, where
advection is found to provide a speedup factor >45x comparing a 2.0GHz Intel Xeon E5-2620
in serial against a NVIDIA Tesla K20c, with speedup increasing with polynomial degree. Arbi-
trarily high convergence rates combined with speedup factors that increase with polynomial
degree motivate the development and use of a GPU accelerated, arbitrary-order DG method.

1 I

e level set method is a popular approach to follow the motion of interfaces in numeri-
cal simulations [22] and has been widely used in simulations of multiphase flows involving
phase interfaces. While exhibiting some advantages over alternative numerical approaches
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to capture the interface, level set methods have the distinct disadvantage that they are not
locally volume conserving for divergence free velocity fields. at is, there is no built in dis-
crete constraint that conserves the volume enclosed by the iso-surface of the level set scalar
that defines the position of the interface. Numerous numerical methods have been devised
to overcome this issue by coupling the level set method to other, beer volume conserving
interface capturing or tracking methods, see for example [9, 23].

e approach proposed by Olsson and Kreiss [16] and Olsson et al. [17], on the other hand,
reformulates the level set scalar as a conserved quantity itself by using the divergence free
velocity constraint of low Mach number flows. As such, the level set scalar, in essence, be-
comes a smeared out Heaviside function. While this Conservative Level Set (CLS) method
strictly speaking still does not guarantee discrete conservation of the level set iso-scalar en-
closed volume if the thickness of the smeared out Heaviside function is non-zero, the method
exhibits drastically improved volume conservation properties compared to other popular level
set methods that are based, for example, on a distance function formulation. e CLS method
has, for example, been successfully applied to atomizing flows by Desjardins and Pitsch [5,
6] and Desjardins et al. [7]. e discrete volume conservation quality of the CLS method
is directly linked to the imposed thickness of the smeared out Heaviside function. Numerical
methods that are able to solve the linear level set advection equation with minimum numerical
dissipation and dispersion for a nearly discontinuous solution variable are thus ideal candi-
dates for the CLS method. Discontinuous Galerkin methods potentially fall into this category.
ey have the added benefit that they are easy to parallelize and thus applicable to many
modern massively parallel supercomputer platforms.

In this paper, we present a Runge-Kua Discontinous Galerkin method in quadrature-free
form for solving the advection and reinitialization equations of the CLS method. We follow to
a significant extent the work done by Czajkowski and Desjardins [3], however, we introduce
some key modifications and developments that allow the method to be formally of order 𝑘 + 1
for 𝑘-th order Legendre polynomial basis functions. Furthermore, the computational expense
which is especially apparent at high 𝑘 is mitigated by the use of GPU architectures.

2 T C L S M

e conservative level set method is constructed under the assumption of divergence-free
velocity fields, allowing the advection equation to treat the level set scalar 𝐺 as a conserved
variable

𝜕𝐺
𝜕𝑡 + ∇ · (𝐺𝒖) = 0 (1)

en, the interface is defined as the 𝐺 = 0.5 isosurface, where 𝐺 has a hyperbolic tangent
profile in the vicinity of the interface.

𝐺(𝒙, 𝑡) = 1
2 (tanh(

𝜙(𝒙, 𝑡)
2𝜀 ) + 1) (2)

Here, 𝜙 is the signed distance function and the thickness of the profile is proportional to 𝜀,
which is set to half the cell width 𝛥𝑥. is profile is chosen since it is the exact solution of a
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conservative reinitialization equation,
𝜕𝐺
𝜕𝜏 + ∇ · (𝐺 (1 − 𝐺) 𝒏̂) = ∇ · (𝜀 (∇𝐺 · 𝒏̂) 𝒏̂) , (3)

where 𝒏̂ is the normal to the interface. Reinitialization is necessary since advection does not
maintain the initial level set scalar profile; rather, advecting the interface deforms the scalar by
introducing dissipative errors. erefore, between advection steps it is necessary to reinitialize
𝐺 in pseudo-time.

3 T RK D G M

e discontinuous Galerkin (DG) method, originally developed by Reed and Hill [18], is
motivated by arbitrarily high convergence rates that can be achieved with a small stencil,
containing only immediate neighbors. DG accomplishes this by allowing sub-cell variation
and storing information about derivatives locally in the form of basis function coefficients.
LeSaint and Raviart [12] proved that this method can formally achieve a 𝑘 + 1 order conver-
gence rate with 𝑘th degree polynomials on linear problems, while Cockburn and Shu [1] found
this to also be achievable for nonlinear problems in practice. is section describes the scheme
construction.

DG involves first spectrally discretizing the solution variables in each cell by projecting
them into a local basis {𝑏𝑖} which is dependent on sub-cell coordinates 𝝃 ∈ 𝒦 = [−1, 1]3

bounded by a cube domain.
𝒇(𝒙, 𝑡) =

𝑁𝑓

∑
𝑖=1

𝒇 𝜅
𝑖 (𝑡) 𝑏𝑖(𝝃) , (4)

e series is truncated at 𝑁𝑓 (for the purposes of this paper, 𝑁𝑔 = 𝑁𝑢 = 𝑁𝑛 and 𝛥𝑥 = 𝛥𝑦 =
𝛥𝑧). In this sense, a finite volumemethod is equivalent to a DGmethod with 𝑁𝑔 = 𝑁𝑢 = 𝑁𝑛 =
1. e normalized Legendre polynomial basis is selected for their orthonormality, and are
constructed using Gram-Schmidt orthonormalization on the space of 3D monomials 𝜉𝛼𝜂𝛽𝜁 𝛾 .
en, for a maximum monomial degree 𝑘, the number of terms in the spectral expansion is
𝑁𝑔 = (𝑘 + 1)3.

ese expansions are then substituted into Eq. (1) and Eq. (3), with spatial derivative vari-
ables changed to sub-cell coordinates. By performing an inner product with 𝑏𝑛 (integrate over
the cell domain 𝒦 ), taking advantage of orthonormality, and using the divergence theorem,
we arrive at a system of coupled ordinary differential equations describing the time evolution
the DG coefficients 𝑔𝜅

𝑛 . e RKDG method has been implemented in the context of the CLS
method previously by Czajkowski and Desjardins [3]. However, their method held the veloc-
ity and normal vectors constant within a cell, only expanding the level set scalar to full order
in the discontinuous basis. e result was a scheme limited to second order. Here, all variables
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are projected into the DG basis at full order, allowing for higher convergence rates.

d𝑔𝜅
𝑛

d𝑡 = 𝑢𝜅,𝑗
𝑘 𝑔𝜅

𝑖
2

𝛥𝑥 ∫𝒦
𝑏𝑘𝑏𝑖

𝜕𝑏𝑛
𝜕𝜉𝑗

d𝑉 + 𝑢up,𝑗
𝑘 𝑔up

𝑖
2

𝛥𝑥 ∫𝜕𝒦
𝑁𝑗𝑏up

𝑘 𝑏up
𝑖 𝑏𝑛 d𝑆 (5)

d𝑔𝜅
𝑛

d𝜏 = 𝑛𝜅,𝑗
𝑘 𝑔𝜅

𝑖
2

𝛥𝑥 ∫𝒦
𝑏𝑘𝑏𝑖

𝜕𝑏𝑛
𝜕𝜉𝑗

d𝑉 − 𝑛𝜅,𝑗
𝑘 𝑔𝜅

𝑖 𝑔𝜅
𝑙

2
𝛥𝑥 ∫𝒦

𝑏𝑘𝑏𝑖𝑏𝑙
𝜕𝑏𝑛
𝜕𝜉𝑗

d𝑉

− 𝜀𝑔𝜅
𝑖 𝑛𝜅,𝑎

𝑘 𝑛𝜅,𝑑
𝑙 ( 2

𝛥𝑥)2
∫𝒦

d𝑏𝑖
d𝜉𝑎

𝑏𝑘𝑏𝑙
d𝑏𝑛
d𝜉𝑑

d𝑉

− 1
𝛥𝑥(𝑔𝑓+

𝑖 𝒏̂𝑓+
𝑘 + 𝑔𝑓−

𝑖 𝒏̂𝑓−
𝑘 ) · 𝑵̂𝑓

∫𝜕𝑓 𝒦
𝑏𝑓−

𝑖 𝑏𝑓−
𝑘 𝑏𝑛 d𝑆

+ 1
𝛥𝑥(𝑔𝑓+

𝑖 𝑔𝑓+
𝑗 𝒏̂𝑓+

𝑘 + 𝑔𝑓−
𝑖 𝑔𝑓−

𝑗 𝒏̂𝑓−
𝑘 ) · 𝑵̂𝑓

∫𝜕𝑓 𝒦
𝑏𝑓−

𝑖 𝑏𝑓−
𝑗 𝑏𝑓−

𝑘 𝑏𝑛 d𝑆

+ 𝐶𝑓

𝛥𝑥 (𝑔𝑓+
𝑖 ∫𝜕𝑓 𝒦

𝑏𝑓+
𝑖 𝑏𝑛 d𝑆 − 𝑔𝑓−

𝑖 ∫𝜕𝑓 𝒦
𝑏𝑓−

𝑖 𝑏𝑛 d𝑆)

+ 𝜀( 2
𝛥𝑥)2 ̃𝑔𝑓

𝑖 ̃𝑛𝑓,𝑘
𝑗

̃𝒏̂𝑓
𝑙 · 𝑵̂𝑓 (1 − 𝛿𝑘𝑓 /2) ∫̃𝜉𝑓 =0

𝜕 ̃𝑏𝑓
𝑖

𝜕𝜉𝑘
𝑏𝑗

𝑓 𝑏𝑙
𝑓 𝑏𝑛 d𝑆𝑓

(6)

e advection equation flux is chosen by upwinding, while local Lax-Friedrichs is used for the
nonlinear term in the reinitialization equation. e 𝑓± cells refer to the cell on the ± side of
face 𝑓 . e diffusive flux is handled via a reconstruction method described by Luo et al. [14].
Here, a tilde refers to coefficients associated with a shared basis (also designated by a tilde)
across two neighboring cells. ese coefficients are calculated by

𝑓 𝛼
𝑛,𝜅 = 𝑓 𝛼−

𝑖,𝜅 ∫̃𝒦 𝛼−
𝑏𝑖 ̃𝑏𝛼

𝑛 d𝑉 𝛼 + 𝑓 𝛼+
𝑖,𝜅 ∫̃𝒦 𝛼+

𝑏𝑖 ̃𝑏𝛼
𝑛 d𝑉 𝛼 (7)

where𝒦 𝛼± refers to the ± half of the domain𝒦 shared between two neighboring cells. Finally,
time stepping is performed by an explicit 𝑘 + 1 order Runge-Kua total variation diminishing
(TVD) approach, as used in [1] and described by Golieb [10].

e time step size is limited by CFL conditions, found through von Neumann stability anal-
ysis. e CFL condition for convective terms is provided by [1]:

max |𝒇 ′(𝐺)| 𝛥𝑡
𝛥𝑥 ≤ 1

2𝑘 + 1 (8)

e flux function derivatives, knowing that |𝒏̂| = 1 and the CLS method restricts 0 ≤ 𝐺 ≤ 1,
are

advection: max |𝒇 ′(𝐺)| = max |𝒖|
reinitialization convective term: max |𝒇 ′(𝐺)| = 1 (9)

e diffusive term in the reinitialization equation restricts time step size by [13]:

𝜀 𝛥𝑡
𝛥𝑥2 ≤ 𝛽(𝑘)

(2𝑘 + 1)2 √𝑑
(10)
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Table 1: Stable values for 𝛽 presented by Lörcher et al. [13]

𝑘 1 2 3 4 5 6 7
𝛽 1.46 0.80 0.40 0.24 0.16 0.12 0.09

where 𝛽(𝑘) is a function of polynomial order (several values are given in Table 1) and 𝑑 is the
number of dimensions. In practice, 𝜀 ∼ 𝛥𝑥 so that 𝛥𝑡 scales with 𝛥𝑥 rather than its square.

Lastly, notice that all of the above integrals are wrien only in terms of Legendre polyno-
mials and their derivatives. We take advantage of this by precomputing them symbolically
using soware such as SymPy or Mathematica, and read the data into arrays at the beginning
of the simulation. is can save significant compute time in avoiding quadrature, largely be-
cause the resulting arrays of integral values are sparse, and especially so in 3D at high order
(see Table 2).

Table 2: Matrix Fill Fraction for Advection Integral Arrays

Polynomial 2D Simulation Integrals 3D Simulation Integrals
Degree # of elements Volume Surface # of elements Volume Surface

1 64 12.5% 50.0% 512 6.25% 25.0%
2 729 10.6% 40.7% 19683 4.30% 16.6%
3 4096 10.1% 35.9% 262144 3.63% 12.9%
4 15625 9.68% 33.6% 1953125 3.25% 11.3%

4 C

4.1 Compressed Row Storage

To avoid unnecessary data transfer, floating point operations, and to ensure maximum oc-
cupancy of GPU hardware, a compressed row storage technique is essential. ere are several
storage techniques, including ELLPACK, compressed diagonal storage, compressed row stor-
age (CRS) , and many others. For our purposes, CRS has shown to be the most effective since
multiple dimensions within a row can be most easily accessed in parallel.

Our CRS format, based on the work of Duff et al. [8], involves a series of several 1D arrays to
represent a data structure, for example the 3D data structure 𝑍𝑛,𝑘,𝑖. e first array, Z, contains
the values of all nonzero array elements. Two arrays start and end contain the 1D array
locations bounding a given row 𝑛. en, two arrays i2 and i3 contain the full 2D array
coordinates 𝑘 and 𝑖 associated with element 𝑙 in row 𝑛 of the array Z.

4.2 GPU Programming Model

Using CUDA terminology, a GPU operates by executing a function called a kernel in parallel
on a cluster of threads, which are organized into blocks with resources allocated to groups of
32 threads called warps. reads and blocks then have associated integers for identification.
Eq. (5) is solved by assigning a single cell to each block, updating all level set scalar coefficients
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for that cell. en, threads within a block share the workload of tensor-vector multiplication.

Block/Work-Group

read/Work-Item

Figure 1: CUDA/OpenCL Execution Model

A second aspect of GPU programming is the use of different memory spaces for array stor-
age: i) global memory, which is available to all threads but invokes an additional 400-600 clock
cycles of latency when accessed [15] (for comparison, memory read/write time itself is 8 op-
erations per clock cycle), ii) shared memory, which is accessible to members within the same
block and may be accessed ∼100x faster than global memory [21] since the latency is signif-
icantly reduced, and iii) small private registers, which is not shared between threads but is
slightly faster than shared memory. An excellent description of this is given by Scarpino [21].
Currently, integral arrays are stored in global memory. Since all 𝑔 and 𝑢 coefficients associated
with a cell are accessed frequently by a block, storing solution variable coefficients in shared
memory before calculating a given tensor multiplication term provides a 10-15% speedup. Un-
fortunately, shared memory cannot be dynamically allocated. Rather, the CPU must send a
request to reserve variable sized blocks of memory before queuing kernel execution.

In Alg. 1, Eq. (5) is considered a series of equations of the form
𝛥𝑔𝜅

𝑛 + = ∑𝑁𝑢
𝑘=1 𝑢𝜅

𝑘 ∑𝑁𝑔
𝑖=1 𝑔𝜅

𝑖 𝑍𝑛,𝑘,𝑖 with coefficients for velocity u, level set scalar g, and
an integral array Z. Each thread has its own instance of the variable my_dg, in which it sums
together a subset of the above equation. Following the CRS format, we loop over a single
integer 𝑙 that corresponds to nonzero elements of the compressed array Z[l]. Each call of
the multiplication routine evaluates a term for one row 𝑛, so we loop through a subset of Z
bounded by two integers start[n] and end[n].

In order to take advantage of memory coalescence and evenly distribute the workload, and
hence reduce runtime, the local group of threads must align their access to the global array
Z by their local id number [15]. For example, thread 7 will access the array element located
immediately aer the memory accessed by thread 6 and immediately before the memory ac-
cessed thread 8. To accomplish this, threads begin the loop offset by their local id and step
through the loop by the local block size. Furthermore, the zeroth thread should access ar-
ray elements that are multiples of 32, the warp size [2]. is optimization alone provides an
additional 10-15% speedup.
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Algorithm 1 GPU 3D Array Multiplication
tiX ← local ID of thread
ntX← block size
term← 0.0
for l ← start[n]+tiX, end[n] with step size ntX do

term += u[i2[l]] * g[i3[l]] * Z[l] ▷ multiply u and g coeff associated with l
end for
declare shared array partialsum of length ntX
partialsum[tiX] ← term ▷ save private result to local array
return reduction_sum_within_tile(partialsum)

5 R

5.1 Accuracy and Convergence

Here we demonstrate the accuracy and convergence of the method via several test cases.
e first is the method of manufactured solutions (MMS), originally developed by Salari and
Knupp [20] at Sandia National Laboratory. An excellent overview of the method is given by
Roache [19]. In short, it allows arbitrary selection of an exact solution to a PDE by modifying
it with an additional source term, thereby testing convergence rates and accuracy of the nu-
merical method while neglecting the physics. A final test involves reinitialization of a circle
with exact normal vectors. is test requires a much smaller thickness 𝜀 than the MMS test,
increasing the possible time-step size allowed by Eq. (10) and the feasibility of testing high
polynomial degree 𝑘.

5.1.1 Advection MMS

To test the advection equation, Eq. (1), with MMS, it is modified with a source term.
𝜕𝐺
𝜕𝑡 + ∇ · (𝐺𝒖) = 𝑄(𝒙, 𝑡) . (11)

e source term is evaluated from an arbitrarily chosen exact solution and velocity field:

𝑄(𝒙, 𝑡) = 𝜕𝐺ex(𝒙, 𝑡)
𝜕𝑡 + ∇ · (𝐺ex(𝒙, 𝑡) 𝒖ex(𝒙, 𝑡)) . (12)

Finally, the RKDG scheme and code are tested on the unit-sized domain [0, 1]2 with the fol-
lowing exact solution, prescribed velocity, and resulting source term:

𝐺ex(𝑥, 𝑦) = 1
2 + sin(2𝜋𝑥) cos(2𝜋𝑦)

𝒖ex(𝑥, 𝑦) = (1
2 − sin(𝑥2 + 𝑦2))𝒙̂ + (cos(𝑥2 + 𝑦2) − 2

5) ̂𝒚

⟹ 𝑄(𝑥, 𝑦) = − 2 cos(𝑥2 + 𝑦2)𝑥(1/2 + sin(2𝜋𝑥) cos(2𝜋𝑦))
+ 2(0.5 − sin(𝑥2 + 𝑦2)) cos(2𝜋𝑥)𝜋 cos(2𝜋𝑦)
− 2 sin(𝑥2 + 𝑦2)𝑦(1/2 + sin(2𝜋𝑥) cos(2𝜋𝑦))
− 2(cos(𝑥2 + 𝑦2) − 0.4) sin(2𝜋𝑥) sin(2𝜋𝑦)𝜋

(13)
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(a) velocity field 𝒖 (b) source term 𝑄 (c) final error

Figure 2: MMS Advection Test

e velocity field, source term, and error at the final converged state at 𝑡 = 4.3 are shown in
Fig. 2. Comparing the final error to the velocity field, it is shown that the error predominantly
lies in compressive regions where velocity vectors converge.

Table 3: Advection MMS test case error norms and order of convergence under grid refinement for RKDG-4.

𝛥𝑥 𝐿∞ order 𝐿1 order
1/10 2.65e-5 - 3.37e-6 -
1/20 2.13e-6 3.6 1.03e-7 5.0
1/40 1.16e-7 4.2 3.32e-9 5.0
1/80 6.32e-9 4.2 1.07e-10 5.0
1/160 3.95e-10 4.0 3.43e-12 5.0

e errors produced for 𝑘 = 4 are listed in Table 3. e results show a 𝑘 + 1 order con-
vergence rate in the 𝐿1 norm with only a 𝑘th order convergence rate in the 𝐿∞ norm. e
reduced convergence for 𝐿∞ requires further study, but can possibly be aributed to the up-
wind scheme or convergent velocity field.

5.1.2 Reinitialization MMS

e reinitialization equation, Eq. (3), is modified with a source term as below:
𝜕𝐺
𝜕𝜏 + ∇ · (𝐺 (1 − 𝐺) 𝒏̂) = ∇ · (𝜀 (∇𝐺 · 𝒏̂) 𝒏̂) + 𝑄(𝒙, 𝑡) . (14)

It should be noted that MMS does not require the normal vector to conform in any sense to
the normal of any surface in this system, since it does not verify CLS. As such, there is also
no need for it to be normalized. e source term is evaluated from the exact solution and
prescribed normal vector field:

𝑄(𝒙, 𝑡) = 𝜕𝐺ex(𝒙, 𝜏)
𝜕𝜏 + ∇ · (𝐺ex(𝒙, 𝜏)(1 − 𝐺ex(𝒙, 𝜏))𝒏̂ex(𝒙, 𝜏))

− ∇ · (𝜀(∇𝐺ex(𝒙, 𝜏) · 𝒏̂ex(𝒙, 𝜏))𝒏̂ex(𝒙, 𝜏)).
(15)

e RKDG scheme for reinitialization was tested on the unit sized domain [−0.5, 0.5]2 with
the following exact solution and velocity:
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𝐺ex(𝑥, 𝑦) = 1
2(1 + cos(2𝜋𝑥) cos(2𝜋𝑦))

𝒏̂ex(𝑥, 𝑦) = sin(2𝜋(𝑥 + 𝑦))𝒙̂ + cos(2𝜋(𝑥 + 𝑦)) ̂𝒚 .
(16)

Here the source term is much longer and therefore omied, although it is easily derived from
Eq. (15). e diffusivity constant 𝜀 is chosen to be 0.08 so that the amplitudes of convective
and diffusive terms are equal.

e normal vectors, source term, and error at the final converged state at 𝑡 = 2.8 are shown
in Fig. 3. Comparing the final error to the normal field, it is found that, similar to advection,
the error predominantly lies in compressive regions where normal vectors converge.

(a) normal field 𝒏̂ (b) source term 𝑄 (c) final error

Figure 3: MMS Reinitialization Test

Table 4: Reinitialization MMS test case error norms and order of convergence under grid refinement for RKDG-1.

𝛥𝑥 𝐿∞ order 𝐿1 order
1/10 1.24e-1 - 2.75e-2 -
1/20 7.73e-2 0.68 1.11e-2 1.32
1/40 3.15e-2 1.30 3.57e-3 1.63
1/80 1.02e-2 1.63 1.02e-3 1.80

e results for 𝑘 = 1 are listed in Table 4 and show a convergence rate that approaches 𝑘+1
in both the 𝐿1 and 𝐿∞ norms. Tests for higher 𝑘 and finer grids are expensive to perform
because the diffusive CFL restriction, Eq. (10), and the requirement that 𝜀 remain constant
for grid refinement studies causes the scheme to become prohibitively expensive. Modifying
the scheme to an explicit-implicit time stepping method similar to the fractional-step method
may be used to prevent this, however, and is le to future work. Furthermore, performing
reinitialization on GPU hardware will lessen the computational cost.

5.1.3 Circle Test

To assess reinitialization, a test case was developed which involves a circle of radius 𝑅0
placed at the origin of a unit-sized [−0.5, 0.5]2 domain. e level set scalar is initialized to

𝐺(𝒙) = 1
2 (

tanh
(

𝑅0 − √𝑥2 + 𝑦2

2𝜀0 )
+ 1

)
. (17)

9
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Reinitialization then sharpens the interface from thickness 𝜀0 → 𝜀, the laer of which is used
in Eq. (3). As the circle is refined, the 0.5-isosurface is transported outward in order to conserve
𝐺. e new radius𝑅 can be computed by assuming that𝐺 is transported only in the set normal
direction and not tangent to the interface. en, the integral over 𝐺 from 𝑟 = 0, ∞ remains
unchanged under reinitialization and 𝑅 can be computed in terms of 𝑅0 , 𝜀0 , and 𝜀.

∫
∞

0
𝐺(𝑟, 𝑅, 𝜀) d𝑟 = ∫

∞

0
𝐺(𝑟, 𝑅0, 𝜀0) d𝑟

e results of a refinement study for 𝑘 = 3 polynomials are shown in Table 5, which shows
the 𝐿∞ and 𝐿1 norms of the error at steady state together with the associated orders of con-
vergence. Reinitialization is evaluated for a circle of initial radius 𝑅0 = 0.25 and thickness
𝜀0 = 0.025 refined to 𝜀 = 0.0125. e final radius 𝑅 is found to be 0.253063 from Eq. (5.1.3).
As expected, the 𝐿1 and 𝐿∞ norms of the error converge with 𝑘 + 1 order.

Table 5: Error norms of circle test and their order of convergence under grid refinement for RKDG-CLS-3.

𝛥𝑥 𝐿∞ order 𝐿1 order
1/20 5.47e-2 - 3.24e-3 -
1/40 3.32e-3 4.04 1.68e-4 4.27
1/80 1.84e-4 4.17 9.40e-6 4.16

5.2 Speed

e previously described DG advection MMS test case was executed in 3D on a NVIDIA
Tesla K20 GPU (with 128 threads/block) and an Intel Xeon E5-2620. Both algorithms take
advantage of sparsity and are implemented on equidistant Cartesian meshes in unit sized do-
mains. Since the RKDG-CLS method verification has been described through the previous
test cases, this test is limited to compute times and assurance that the CPU and GPU give
equivalent results (within 105 times machine epsilon at double precision). is is done by ran-
domizing the level set scalar and velocity coefficients, then performing a single RK advection
step and comparing the CPU and GPU runtime and output.

ese tests produce several interesting trends, shown in Fig. 4. First, low-degree polynomi-
als show lile benefit from the GPU, simply because the integral arrays are not large enough
for all threads to be operating simultaneously. A similar drawback arises if sparsity is not
exploited, where the GPU instead slows down computation since many threads end up multi-
plying by zero, wasting significant FLOPs. One way to remedy this in practice is to use smaller
work-group sizes when dealing with low-degree polynomials. However, this solution has lim-
itations since GPUs are most efficient when the block size is a multiple of 32 (the warp size),
as previously mentioned.

Second, the data indicates the GPU is increasingly advantageous as it is given more work.
With more degrees of freedom and operations, whether from refining the grid or increasing
the number of polynomials, the total speedup increases. is compliments the effectiveness
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Figure 4: Compute Time and Speedup of One 3D Advection RK Step

of high-order DG and reflects the streaming memory model on the GPU, where one warp’s
memory latencies are masked by another’s floating-point operations.

6 S

We have presented an arbitrary-order Runge-Kua discontinuous Galerkin conservative
level set method, expanding on the approach proposed by [3] by using high order velocity
field and normal vector expansions, as well as accelerating the method on GPU hardware. As
a result, we obtain the full formal order of themethod as 𝑘+1 for 𝑘th order Legendre polynomial
basis functions, as shown by MMS test cases. Furthermore, the use of GPU hardware has
improved computation speed for advection by over 45x for 4th order polynomials.

In future work, we intend to also accelerate the reinitialization algorithm via GPU hard-
ware, integrate improvements from the accurate conservative level set method proposed by
[4] calculating the normal vectors from 𝐺 in the vicinity of the interface alone, and finally
calculate curvature in a DG sense. is will allow the complete GPU-RKDG-ACLS method to
be coupled to a flow solver for engineering applications.
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