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Abstract. A new Mixed Cubic Zigzag Theory (CZT(m)) has been developed via the Reissner 
Mixed Variational Theorem. The assumed kinematic field postulates an in-plane displacement 
components piecewise cubic along the thickness and a smeared parabolic through-the-
thickness distribution for the transverse displacement. The assumed transverse shear stresses 
profile derives from integration of the three-dimensional equilibrium equations whereas the 
normal stress pattern is assumed smeared cubic along the laminate thickness. The entire 
formulation is here developed and the governing equations derived are used to solve the 
bending problem of a rectangular simply-supported cross-ply plate subjected to a bi-
sinusoidal transverse load. In order to assess the predictive capabilities of the CZT(m) model, 
results are compared with the exact three-dimensional Elasticity solution.   

 
 
1 INTRODUCTION 

The increasing use of laminated composite and sandwich materials as primary 
geometrically complex load-bearing components in the structures of modern civilian and 
military aircraft, requires tools able to accurately predict the global and, above all, local 
response of these components. In presence of geometrical singularity, like as an hole or only a 
free edge, the state of stress becomes three-dimensional. The onset of transverse shear and 
normal stresses represents a severe working condition for a laminates, since they are 
responsible for the delamination and debonding. Thus, a reliable design of these components 
demands accurate evaluation of the six stress tensor components. 

During the years, several Equivalent Single Layer (ESL) models, wherein the multilayer 
laminate is replaced with an equivalent single layer, have been developed [1,2]. These models 
result not accurate in predicting the global and, above all, local response of laminates and 
sandwiches. High level of accuracy is ensured by Layer-Wise (LW) models [1,2] at the 
expense of the computational cost. On the contrary, the zigzag class of structural theories, 
pioneered by Di Sciuva [3], are characterized by an accuracy comparable to that of the LW 
approaches and a computational cost similar to the ESL models.   
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Recently, Tessler et al. [4] formulated the Refined Zigzag Theory (RZT), wherein the 
First-Order Shear Deformation Theory kinematic is enriched by adding a novel set of piece-
wise linear functions, thus resulting in a seven-kinematic variables model. The RZT accuracy 
has been already assessed on several problems concerning the bending, free vibration and 
buckling of moderately thick multilayered composite and sandwich plates [4,5] In order to 
improve the transverse shear stresses description, lately Iurlaro et al. [6] have developed a 
mixed RZT model (RZT(m)), via the Reissner Mixed Variational Theorem [7], wherein the 
assumed transverse shear stresses are derived with the aid of the three-dimensional 
equilibrium equations, as proposed by Tessler [8].  

For thick plates, the in-plane displacements tend to exhibit non-linear behavior across the 
thickness. For this reason, a linear piece-wise model for the analysis of thick laminates is not 
sufficient and a higher-order kinematics assumption has to be adopted. In the framework of 
the zigzag theories, Di Sciuva [9] was the first to formulate a third-order zigzag plate model 
able to satisfy a priori the stress continuity conditions at layers interfaces. Later, by using 
some theoretical results proper of the RZT, Nemeth [10] developed a cubic zigzag model 
wherein the continuity conditions on transverse shear stresses are not enforced, thus providing 
a piecewise quadratic distribution of these stresses. 

In order to include the thickness deformation in relatively thick laminates, Barut et al. [11] 
enriched the RZT in-plane displacements with a piecewise quadratic through-the-thickness 
contribution and a quadratic distribution of the transverse displacement along the laminate 
thickness. Moreover, a cubic polynomial pattern for the transverse normal stress is assumed 
independently without enforcing the traction conditions on external plate surfaces, thus 
providing not accurate constitutive transverse normal stress. 

In this paper, a novel Mixed Cubic Zigzag Theory (CZT(m)) is developed via the Reissner 
Mixed Variational Theorem. The kinematic assumption results in a piece-wise cubic through-
the-thickness distribution of the in-plane displacements and the transverse displacement 
varying quadratically along the entire laminate thickness. The assumed transverse shear 
stresses profile is derived from integration of the three-dimensional equilibrium equations as 
performed in [6] whereas the transverse normal stress is assumed smeared cubically 
distributed along the laminate thickness. The model results in a nine-kinematic variables 
independent of the number of layers and no shear correction factors are required. 

2 CZT(m) ASSUMPTIONS 

The development of a zigzag model that does not enforce a priori the continuity condition 
on transverse shear stresses leads to a piece-wise continuous through-the-thickness 
distribution of the constitutive transverse shear stresses, thus violating the elasticity continuity 
requirements. A way to avoid the integration of the three-dimensional equilibrium equations 
to derive continuous transverse stresses is to develop a mixed model, via the Reissner Mixed 
Variational Theorem, wherein the transverse stresses are assumed independently of the 
displacements. The assumed stresses profile is continuous along the thickness and able to 
satisfy the traction conditions on the external plate surfaces.  

According to [7], the stationary condition of Reissner’ functional read as: 
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( )
h

T T
e

h

dzdS Wδ δ δ
Ω −

 + − = ∫ ∫ a t aε σ σ ε ε  (1) 

where δ  is the variational operator and eW  represent the work of the external loads, 

respectively. The strain vector { }11 22 12 1 2, , , , ,T
zz z zε ε ε γ γ γ=ε collects strains computed by 

means of the linear strain-displacement relations, the stress vector 

{ }11 22 12 1 2, , , , ,T a a a
zz z zσ σ σ τ τ τ=σ contains in-plane stresses obtained by means of the Hooke’s 

law  and the assumed transverse stresses (superscript a). Similarly, the vector 

{ }1 2, ,T a a a
z z zzτ τ σ=aσ collects the assumed transverse stresses, { }1 2, ,T

z z zzγ γ ε=tε  and 

{ }1 2, ,T a a a
z z zzγ γ ε=aε  contains the transverse strains coming from the strain-displacement 

relations using CZT(m) kinematic and those coming from the Hooke’s law by using the 
assumed stresses, respectively. 

In the following sections, the assumed displacement field and the assumed transverse stress 
one are described.       

2.1 Displacement field 

Consider a laminated plate of uniform thickness 2h with N perfectly bonded orthotropic 
layers (see Figure 1). As reference frame, a orthogonal Cartesian coordinate system (,zx ) is 
assumed, wherein x  denotes the order pair (1 2,x x ). The midplane of the plate, denoted with 

Ω , is locate on the x -plane and the z coordinate ranges from –h to h. The cylindrical surface 
that bounds the plate, S, is composed by uS and Sσ , wherein the kinematics and forces 

boundary conditions are applied, respectively.  
The orthogonal components of the displacement vector in the kth layer (superscript (k)) are 

expressed as  
( ) 2 3 ( )( , ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

k k

w w w
z b b t t a

U z u z z z z

U z H z w H z w H z w
α α α α α α αθ χ ω φ ψ= + + + +

= + +
x x x x x x

x x x x
 (2) 

 
Figure 1. General plate notation. 
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The kinematic assumptions in Eq. (2) are an enrichment of the RZT displacement field [4]: 
the in-plane displacement components, ( )kUα ( 1,2α = ), are given by the superposition of RZT 

in plane-displacements and a quadratic and a cubic smeared contribution [12].  Thus, the uα , 

αθ , αψ  and ( )k
αφ  ( 1,2α = ) represent, respectively, the uniform in-plane displacement, the 

rotation along the β -axis, the zigzag amplitude and the RZT zigzag function [4]. The αχ  and 

αω  are regarded as higher-order rotations, accounting for the actual deformation of the 

normal in a thick plate. Instead, the transverse displacement, ( , )zU zx , is assumed to vary in a 

ESL-view quadratically along the thickness direction. Thus, bw , tw  and w are the bottom, 

top and average transverse displacements respectively, and the ( )w
bH z , ( )w

tH z  and ( )w
aH z  

are  

2 2 2
2 2 2

1 1 3 1 1 3 3 3
( )  ; ( )  ; ( )  

4 2 4 2 24 4 2
w w w
b t aH z z z H z z z H z z

h hh h h
= − − + = − + + = −  (3) 

 
2.1.1 Derivation of the zigzag function 
 
The CZT(m) kinematic assumptions involve thirteen kinematic variables, independent from 

the number of layers. In order to reduce the number of degrees of freedom, reducing further 
the computational cost, a novel higher-order zigzag function is introduced wherein to the 
piece-wise linear contribution a smeared quadratic and cubic one is added, thus resulting in a 
piece-wise cubic function.  

Consistent with the displacement field in Eq.(2) and according to the linear strain-
displacement relations, the transverse shear strain read as 

( )( ) ( ) ( ) 2
, , ,1 ( ) 2 3k k k

z z z zU U z z zα α α α α α α αγ φ ψ χ ω η= + = + + + +  (4) 

where the strain measure ,zUα α α αη θ ψ= + −  is introduced. According to the Hooke’s law 

for the kth lamina whose principal material directions are arbitrary with respect to the 
midplane reference coordinates ∈Ωx , the transverse shear stresses are related to the 
transverse shear strains as 

( )( ) ( ) ( ) ( ) ( ) 2 ( )
,1 ( ) 2 3k k k k k k

z z zQ Q z z z Qα αβ β αβ β β β β αβ βτ γ φ ψ χ ω η = = + + + +   (5) 

where ( )kQαβ  are the shear elastic stiffness coefficients. To completely define the zigzag 

function, three conditions are enforced on the transverse shear stresses component (Eq.(5)) 
obtained vanishing αη [12]:  

1. The zero condition on the top and bottom plate surface, that is 

( )
( )

( ) ( ) 2
,

( ) ( ) 2
,

1 ( ) 2 3 0

1 ( ) 2 3 0

k k
z

k k
z

Q h h h

Q h h h

αα α α α α

αα α α α α

φ ψ χ ω

φ ψ χ ω

  + − − + =  


 + + + =  

 (6) 

Solving Eq.(6), the kinematic variables αχ  and αω are expressed in terms of the zigzag 
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amplitude αψ , that is   

(0) (0);α α α α α αχ χ ψ ω ω ψ= − = −  (7) 

wherein (0)
αχ and (0)

αω are scalar easily deducible. 

2. Substituting Eqs. (7) in Eq.(5), transverse shear stress becomes 

( )( ) ( ) ( ) (0) 2 (0) ( )
,1 ( ) 2 3k k k k

z zQ z z z Qα αβ β α α β αβ βτ φ χ ω ψ η = + − − +   (8) 

Similar to the RZT [4], the partial continuity condition at layers interface is enforced. This 
constrain read as 

( ) ( ) ( )
( )

2( ) ( ) ( ) ( ) (0) ( ) (0)
,

( 1) ( 1) ( 1) ( 1) (0) ( 1) 2 (0)
,

1 ( ) 2 3

1 ( ) 2( ) 3( )

k k k k k
z

k k k k k
z

Q z z z

Q z z z

αα α α α

αα α α α

φ χ ω

φ χ ω

+ + +

+ + − + − + − +

 + − − =  

 + − − 

 (9) 

where ( )kz+ and ( 1)kz− +  are the top and bottom interface of kth and kth+1 layers, 
respectively.  

By introducing the constraint of Eq.(7) in the displacement field, the in-plane displacement 
components become 

( )( ) 2 (0) 3 (0) ( )( , ) ( ) ( ) ( ) ( )k kU z u z z z zα α α α α α αθ χ ω φ ψ= + + − − +x x x x  (10) 

Then, the definition of the cubic zigzag function follows      

( )( ) 2 (0) 3 (0) ( )( )k kz z zα α α αµ χ ω φ= − − +  (11) 

wherein a quadratic and a cubic smeared contributions are added to the RZT zigzag 
function, ( )( )k zαφ .  

3. Finally, the last constraint is the zero-condition on the external plate surfaces for the 
zigzag function ( )k

αµ , that is 

(1) ( )( ) ( ) 0Nh hα αµ µ− = =  (12) 

Consistent with the displacement field in Eq. (2), constrain in Eq. (7) and the definition of 
the zigzag function, the CZT(m) kinematic assumptions are rewritten in a final form that 
resembles the RZT formalism only for the in-plane displacements assumption 

( ) ( )( , ) ( ) ( ) ( ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( )

k k

w w w
z b b t t a

U z u z z

U z H z w H z w H z w
α α α α αθ µ ψ= + +

= + +
x x x x

x x x x
 (13) 

 The strains are computed by using the linear strain-displacement relations 
( ) ( ) ( ) ( ) ( )

, , ,2 ; ; ( )k k k k k
zz z z zU U U zαβ α β β α α α α αε ε γ γ λ ψ= + = = +  (14) 

with ,( ) zz Uα α αγ θ≡ +  and ( ) ( )
,

k k
zα αλ µ≡ . A mixed form of the Hooke’s law [13] is used, according 

to which, the stresses are related with the strains as  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

33 ;    k k k k k a k k k
zz z zQ S R Qαβ αβγδ γδ αβ α αβ βσ ε σ τ γ= + =ɶ  (15) 
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where ( )kQαβγδ
ɶ  and ( )kQαβ  are the transformed elastic stiffness coefficients referred to the ( ),zx  

coordinate system and relative to the plane-stress condition that assumes that transverse 
normal stress is negligibly small in relation to the in-plane stresses. The transverse normal 
compliance ( )

33
kS  and the elastic stiffness coefficients matrix regarding the transverse normal 

contribution, are defined as  
( )

13 36( ) ( )
33 ( )

36 2333

1
;

k

k k

k

C C
S R

C CC αβ
 

= =  
 

 (16) 

wherein ( )
33
kC , ( )

13
kC , ( )

23
kC , ( )

36
kC  are the elastic stiffness coefficients. Finally, the transverse 

normal deformation, a
zzε  , computed by means of the mixed form of the Hooke’s law read as 

( ) ( ) ( ) ( )
33 33

a k k k k a
zz zzS R Sαβ γδε ε σ= − +  (17) 

2.2 Transverse stresses 

The assumed transverse stresses are continuous along the thickness and able to satisfy the 
traction conditions on the external plate surfaces. Two different strategies are involved in the 
approximation of the transverse normal stress and the transverse shear ones. 

2.2.1 Transverse normal stress 

The CZT(m) model assumes a smeared cubic through-the-thickness distribution of the 
transverse normal stress that resembles the distribution provided by the exact Elasticity 
solution. In this model, the assumed transverse normal stress is 

( ) ( )a
zz z zσ = +V zP q L q  (18) 

   Wherein the vector { }( ) ( ),T b t
z zq q=zq collects the external transverse normal pressure 

applied at the bottom and top plate surface, the stress vector Vq collects two kinematic 

variables-independent coefficients, the vector ( )zP  and ( )zL  rule the shape of the assumed 
stress and are defined as follows 

2 2
2 2 1 1

( ) 1 1 ; ( ) 1 1
2 2

z z z z
z h zh z

h h h h

              = − − = − +             
                

P L  (19) 

2.2.2 Transverse shear stresses 

The assumed transverse shear stresses profile is derived by integration of the three-
dimensional equilibrium equations under the cylindrical bending assumption, following the 
approach proposed by Tessler [8] and adopted in the development of the RZT(m) plate model 
[6]. According to this procedure, the assumed transverse shear stresses are expressed as 

( ) ( ) ( ) ( ) ( ) ( )z z z= + +a f v n v q qτ Z f x Z n x Z n x  (20) 
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where { }1 2,T a a
z zτ τ=aτ  is the vector of the assumed stresses, the matrices fZ , nZ and qZ  are 

dependent on the thickness coordinate, vf  is a stress vector function of the in-plane 

coordinates and kinematic variable-independent; { }( ) ( ) ( ) ( )
1 2 1 2, , ,T b b t tp p p p=vn is a vector 

containing prescribed surface tractions applied on the top (t) and bottom (b) plate surface and 

acting along the xα -direction; { }( ) ( ) ( ) ( )
,1 ,2 ,1 ,2, , ,T b b t t

z z z zq q q q=qn  is a vector containing the derivatives 

with respect to the xα -direction of the transverse pressures applied on the external plate 

surfaces.  

3 CZT(m) GOVERNING EQUATIONS 

The plate is subjected to a transversely distributed pressure and to tangential distributed 
loads acting along the in-plane coordinate axes, applied on the external surface (see Figure 1). 
The body forces are neglected. 

In order to allow independent assumption on displacements and transverse stresses, the 
Reissner’ functional enforces a compatibility constrain (second contribution on the left-hand 
side of Eq. (1)) between the transverse strains coming from the displacement field and those 
coming from the assumed stresses by means of the Hooke’s law. Since the assumed stresses 
are kinematic variables-independent, the Reissner Mixed Variational Theorem can be splitted 
in two contributions that are solved separately, that is 

 
h

T
e

h

dzdS Wδ δ
Ω −

=∫ ∫ ε σ  (21.1) 

( )  0
h

T

h

dzdSδ
Ω −

− =∫ ∫ a t aσ ε ε  (21.2) 

  Solution of Eq. (21.1) leads to the governing equations and variationally consistent 
boundary conditions whereas the compatibility constrain (Eq. (21.2)) is used to derive an 
expression of vectors Vq  (Eq.(18)) and Vf  (Eq.(20)) in terms of the kinematic variables that 

ensure the fulfillment of the compatibility constrain. 

3.1 Governing equations and variationally consistent boundary conditions 

Consistent with the CZT(m) displacement field, the strain components are computed and 
their expression introduced in Eq. (21.1). Performing the integration by parts, the governing 
equations are obtained (all details are omitted for sake of brevity) 

, , ,
( ) ( )

, , ,

: 0; : 0; : 0;

: 0; : 0; : 0
z z

b b b t t t m m
b z z z t z z z z z

u N p M V m M V

w V N q w V N q w V N

µ µ
α αβ β α α αβ β α α α αβ β α

α α α α α α

δ δθ δψ
δ δ δ

+ = − + = − =
− + = − + = − =

 (22) 

where the resultants of the applied loads ( ) ( )b tp p pα α α= + , ( )( ) ( )t tm h p pα α α= − are introduced. 

Moreover, the following forces and moments stress resultants are defined  
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( ) ( )
( ) ( )

( ) ( ) ( )

, , ,

, , (1, , ) ; , (1, )

, , ( ( ), ( ), ( )) ; , , ( ( ), ( ), ( ))

h hk k a k
z z zh h

h hb t m a w w w b t m a w w w
z z z z b t a z z z zz b z t z a zh h

N M M z dz V V dz

V V V H z H z H z dz N N N H z H z H z dz

µ µ
αβ αβ αβ αβ α α α α α

α α α α

σ µ τ µ

τ σ
− −

− −

= =

= =

∫ ∫

∫ ∫
(23) 

Solving Eq. (21.1) leads also to the variationally consistent boundary conditions 

     ;      ;    

   ;     

n n n

b b t t
b b z zn t t z zn

u u N n N M n M M n M

w w V n V w w V n V

µ µ
α α αβ β α α α αβ β α α α αβ β α

α α α α

θ θ ψ ψ= ∧ = = ∧ = = ∧ =

= ∧ = = ∧ =
 (24) 

wherein the kinematic conditions are applied on uS  and the force conditions on Sσ . 

Moreover, the force and moment resultants of the prescribed tractions, denoted with a bar in 
Eqs. (24), are defined as 

( ) ( )( ), , , , , , , ( ) , ( )
hb t k w w

n n n zn zn b z t zh
N M M V V T zT T H z T H z Tµ

α α α α α α αµ
−

= ∫  (25) 

3.2 Compatibility constraint 

The assumed transverse stresses, Eqs.(18,20), depend on vectors stress, Vq  and Vf , that 

are independent on each other. This allows for the possibility to satisfy the Reissner’ 
constraint on the transverse normal stress separately from that regarding the transverse shear 
stresses, that is 

( ) 0
h

a T a
zz zz zz

h

dzdSδσ ε ε
Ω −

− =∫ ∫  (26.1) 

( )  0
h

T

h

dzdSδ
Ω −

− =∫ ∫ a t aτ γ γ  (26.2) 

wherein { }1 2,T
z zγ γ=tγ , { }1 2,T a a

z zγ γ=aγ . By using Eqs. (14),(17),(18) and (20), the 

constraints are expressed in the following form 

( )( ) ( ) ( ) ( )
, 33 33( ) ( ) ( ) 0

h
T T k k k k

z z

h

z U S R S z z dzdSαβ γδδ ε
Ω −

 + − + = ∫ ∫ V V zq P P q L q  (27.1) 

( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  0
h

T T k

h

z z z z z dzdSδ
Ω −

 + − + + = ∫ ∫ v f t f v n v q qf x Z γ λ Ψ D Z f x Z n x Z n x  (27.2) 

where { }1 2( ) ( ), ( )Tz z zγ γ=γ , { }1 2,T ψ ψ=Ψ  and ( ) ( ) ( )
1,1 2,2( , )k k kdiag µ µ=λ  is a diagonal matrix 

containing the derivatives of the zigzag functions ( )k
αµ with respect to the in-plane coordinate 

axes. Solving Eqs.(27) with respect to the stress vectors, Vq  and Vf , and substituting the 

results in Eq. (18) and Eq. (20), the form of the assumed stresses satisfying the compatibility 
constrain is obtained 

( ) ( ) ( ) ( ) ( )a
zz z z z z zσ = 0 (0) 1 µ w qz

p zS ε + S k + S ψ + S w + S q  (28.1) 
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( ) ( ) ( ) ( ) ( )a z z z z z= θ ψ eq q ep v w dτ Z θ+ Z Ψ+ Z n + Z n + Z w  (28.2) 

  
where ( )z0S , ( )z1S , ( )zµS , ( )zwS , ( )zqzS  and ( )z

θ
Z , ( )z

ψ
Z , ( )zeqZ , ( )zepZ , ( )zwZ  are the 

assumed transverse stresses shape functions, continuous along the thickness direction and able 
to satisfy the traction conditions on the top and bottom plate surface. Moreover, 

{ }1,1 1,2 2,1 2,2
T u u u u=(0)

pε , { }1,1 1,2 2,1 2,2
T θ θ θ θ=k , { }1,1 1,2 2,1 2,2

T ψ ψ ψ ψ=ψ ,

{ }T
b tw w w=w , { }1 2

T θ θ=θ and { },1 t,1 ,1 ,2 t,2 ,2
T

b bw w w w w w=dw . 

It is worth to note that, the CZT(m) model, even be a mixed one, retains as variables the only 
kinematic ones.   

3.3 CZT(m) constitutive equations 

Introducing Eqs. (15) in the definition of the forces and moments stress resultants, Eqs. 
(23), and making use of the linear strain-displacement relations, Eqs. (14), the CZT(m) plate 
constitutive equations are derived. In matrix form, they appear as 

;   

   
      

      = =                    

n n w qz
T T T T T

m m w qz µ

b T T T T T sµ

mn mn mn w qz
z T T T T T

z z z z z z

N A B C A A
V A B C D E

M B D E B B
e V F G H L N e

M C F G C C
V M U P W J

N A B C D E

 (28) 

where { }T
= (0)

b p ze ε k ψ w q , { }T=s d z ve θ Ψ w n n , the forces and moments 

stress resultants are organized as { }11 12 21 22
T N N N N=N , { }11 12 21 22

T M M M M=M

, { }11 12 21 22
T M M M Mµ µ µ µ=µM , { }T b t m

z z zN N N=zN , { }1 2
T

z zV V=V , { }1 2
T

z zV Vµ µ=µV

and { }1 1 1 2 2 2
T b t m b t m

z z z z z zV V V V V V=zV . The definitions of the stiffness matrices come 

directly from the substitution of Eqs. (15), (18) and (20) in Eqs. (23). 

4 NUMERICAL RESULT 

In order to assess the accuracy of the CZT(m) model, a simply supported on all edges 
rectangular plate, subjected to bi-sinusoidal transverse pressure load applied on the top plate 
surface, is considered. Results provided by CZT(m) are compared with the exact 3D-Elasticity 
solution as derived by Pagano [14]. 

The rectangular plate (b/a=2, a/2h=5) is composed by equal four layers, with orientation 
(0°/90°/90°/0°), while the material mechanical properties are E1=5.9 GPa, E2=E3= 10 GPa; 
G12= 5.9 GPa, G13=0.2 GPa, G23=0.7 GPa; 12ν = 13ν = 23ν =0.25. For this type of load and 

boundary conditions, the exact CZT(m) solution exists and is derived by approximating the 
kinematic variables with trigonometric functions in the 1x  and 2x direction in order to satisfy 

the boundary conditions. 
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Figure 2. Through-the-thickness distribution of normalized in plane displacements, ( )4 4

11 010U D q a Uα α= .   

  

Figure 3. Through-the-thickness distribution of normalized transverse shear stresses, ( )2
02z zh q aα ατ τ= . 

Figure 2 demonstrates great accuracy of the CZT(m) model in predicting the through-the-
thickness distribution of in-plane displacements; as a consequence, the distributions of in-
plane normal stresses (here omitted for brevity) provided by the proposed model fit very well 
with the reference solution. 

Moreover, the constitutive normalized transverse shear stresses result accurate if compared 
with the Elasticity solution with a slight overestimation of the maximum value for the 
transverse shear stress 1zτ  (see Figure 3). 
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The prediction of the transverse normal behavior, in terms of displacement (Figure 4a) and 
stress (Figure 4b) is higly accurate if compared with the reference solution, since the model 
captures the actual through-the-thickness distribution of transverse displacement (with an 
error less than 1%) and provides a distribution of normal stress that matches the Elasticity 
solution for every z location.      
 

 
Figure 4. (a) Through-the-thickness distribution of normalized transverse displacement ( )2 4

11 010z zU D q a U=  

(b)  Through-the-thickness distribution of normalized transverse normal stress ( )2
02zz zzh q aσ σ= . 

5 CONCLUSIONS 

In this paper, a novel Mixed Cubic Zigzag model, CZT(m), is presented. The development 
of the model is based on the Reissner Mixed Variational Theorem, which allows independent 
assumption for displacements and transverse stresses. The assumed displacement field results 
in a enrichment of the First-Order Shear Deformation Theory: to the in-plane displacements a 
piece-wise cubic contribution is added, whereas the transverse displacement is assumed 
smeared quadratic along the thickness direction. The assumed transverse shear stresses profile 
is derived with the aid of the three-dimensional equilibrium equations and the transverse 
normal stress is postulated smeared cubic. Each transverse stress profile is continuous along 
the thickness direction and able to satisfy the traction conditions on the top and bottom plate 
surface. Finally, the CZT(m) model results in a constant number of kinematic variables, nine, 
irrespective of the number of layers. 

Numerical result provided in this paper shows high level of accuracy of the proposed 
model in the analysis of thick laminates and sandwiches if compared with the exact Elasticity 
solution. Due to the low computational cost and its formulation, the proposed model is 
suitable for an efficient finite element implementation allowing accurate large scale analysis 
of geometrically complex and thick multilayered composite and sandwich structures.         
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