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Abstract. A new Mixed Cubic Zigzag Theory (CZ7) has been developed via the Reissner
Mixed Variational Theorem. The assumed kinemagtdfpostulates an in-plane displacement
components piecewise cubic along the thickness angimeared parabolic through-the-
thickness distribution for the transverse displaeeinThe assumed transverse shear stresses
profile derives from integration of the three-dimemal equilibrium equations whereas the
normal stress pattern is assumed smeared cubig aken laminate thickness. The entire
formulation is here developed and the governingaggos derived are used to solve the
bending problem of a rectangular simply-supporteds&ply plate subjected to a bi-
sinusoidal transverse load. In order to assesgrgictive capabilities of the C¥? model,
results are compared with the exact three-dimeasBlasticity solution.

1 INTRODUCTION

The increasing use of laminated composite and sahdwnaterials as primary
geometrically complex load-bearing components i@ $itructures of modern civilian and
military aircraft, requires tools able to accurgt@redict the global and, above all, local
response of these components. In presence of gecahstngularity, like as an hole or only a
free edge, the state of stress becomes three-dona@hsThe onset of transverse shear and
normal stresses represents a severe working comdfor a laminates, since they are
responsible for the delamination and debonding.sThureliable design of these components
demands accurate evaluation of the six stressitensgponents.

During the years, several Equivalent Single LayBl() models, wherein the multilayer
laminate is replaced with an equivalent single laliave been developed [1,2]. These models
result not accurate in predicting the global arahve all, local response of laminates and
sandwiches. High level of accuracy is ensured byet&Vise (LW) models [1,2] at the
expense of the computational cost. On the contithey,zigzag class of structural theories,
pioneered by Di Sciuva [3], are characterized byaecuracy comparable to that of the LW
approaches and a computational cost similar t&&le models.
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Recently, Tessler et al. [4] formulated the Refirddzag Theory (RZT), wherein the
First-Order Shear Deformation Theory kinematicnsieghed by adding a novel set of piece-
wise linear functions, thus resulting in a sevemeknatic variables model. The RZT accuracy
has been already assessed on several problemsrogcthe bending, free vibration and
buckling of moderately thick multilayered composaed sandwich plates [4,5] In order to
improve the transverse shear stresses descripataty Iurlaro et al. [6] have developed a
mixed RZT model (RZ"), via the Reissner Mixed Variational Theorem [#herein the
assumed transverse shear stresses are derived tivethaid of the three-dimensional
equilibrium equations, as proposed by Tessler [8].

For thick plates, the in-plane displacements tendxhibit non-linear behavior across the
thickness. For this reason, a linear piece-wiseahfmt the analysis of thick laminates is not
sufficient and a higher-order kinematics assumpliaa to be adopted. In the framework of
the zigzag theories, Di Sciuva [9] was the firstdomulate a third-order zigzag plate model
able to satisfya priori the stress continuity conditions at layers integfa Later, by using
some theoretical results proper of the RZT, Nenj&€j developed a cubic zigzag model
wherein the continuity conditions on transverseasiséresses are not enforced, thus providing
a piecewise quadratic distribution of these stiesse

In order to include the thickness deformation ilatieely thick laminates, Barut et al. [11]
enriched the RZT in-plane displacements with a @iwése quadratic through-the-thickness
contribution and a quadratic distribution of thansverse displacement along the laminate
thickness. Moreover, a cubic polynomial patterntfoe transverse normal stress is assumed
independently without enforcing the traction coiwtis on external plate surfaces, thus
providing not accurate constitutive transverse rabrsiress.

In this paper, a novel Mixed Cubic Zigzag TheorZ{¢") is developed via the Reissner
Mixed Variational Theorem. The kinematic assumptiesults in a piece-wise cubic through-
the-thickness distribution of the in-plane displaeats and the transverse displacement
varying quadratically along the entire laminateckiniess. The assumed transverse shear
stresses profile is derived from integration of theee-dimensional equilibrium equations as
performed in [6] whereas the transverse normalsstrs assumed smeared cubically
distributed along the laminate thickness. The madsllts in a nine-kinematic variables
independent of the number of layers and no sheaeamn factors are required.

2 CzT™ ASSUMPTIONS

The development of a zigzag model that does naire@é priori the continuity condition
on transverse shear stresses leads to a piece-@asgnuous through-the-thickness
distribution of the constitutive transverse shegsses, thus violating the elasticity continuity
requirements. A way to avoid the integration of theee-dimensional equilibrium equations
to derive continuous transverse stresses is tolag@emixed model, via the Reissner Mixed
Variational Theorem, wherein the transverse steesge assumed independently of the
displacements. The assumed stresses profile isnaons along the thickness and able to
satisfy the traction conditions on the externatekurfaces.

According to [7], the stationary condition of Reiss functional read as:
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j} Je'6+J6, (¢, ~¢,) [dzdS= 5 \y 1)
Q-h

where J is the variational operator an®/, represent the work of the external loads,

respectively. The strain vectos' :{sll,ezz,gzz,ylz,ylz,yzz} collects strains computed by
means of the linear strain-displacement relationghe  stress  vector
:{011,022,0 rlz,r;,rzz} contains in-plane stresses obtained by means oHtuke's

zz)
law and the assumed transverse stresses (supers)ri Similarly, the vector
T — —
a —{rﬁ,rjz,ajz}collects the assumed transverse stresseg,—{nz,yzz,szz} and

o :{yf;,yj‘z,gj‘z} contains the transverse strains coming from thainstlisplacement

relations using CZ kinematic and those coming from the Hooke’s law usjing the
assumed stresses, respectively.

In the following sections, the assumed displacerfieltt and the assumed transverse stress
one are described.

2.1 Displacement field

Consider a laminated plate of uniform thickn@sswith N perfectly bonded orthotropic
layers (see Figure 1). As reference frame, a oghalgCartesian coordinate system %) is
assumed, whereir denotes the order paii{, X,). The midplane of the plate, denoted with
Q, is locate on the -plane and the coordinate ranges frorh to h. The cylindrical surface
that bounds the plates, is composed byS,and S,, wherein the kinematics and forces

boundary conditions are applied, respectively.
The orthogonal components of the displacement véctihekth layer (superscrigk)) are
expressed as

U (%,2) = 4, () + B, 0+ 2x, () + 20,0+ ( W, (x)

U,(x2) = Hi (2 w()+ H'(2 we)+ H( &) @

](Wb,w.W)

Figure 1. General plate notation.
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The kinematic assumptions in Eq. (2) are an enresttrof the RZT displacement field [4]:
the in-plane displacement componet§) (a =1,2), are given by the superposition of RZT

in plane-displacements and a quadratic and a cubeared contribution [12]. Thus, the,
6,, ¢, and ¢° (a=1,2) represent, respectively, the uniform in-planepidisement, the
rotation along theB -axis, the zigzag amplitude and the RZT zigzag tiond4]. The x, and
w, are regarded as higher-order rotations, accourfonghe actual deformation of the
normal in a thick plate. Instead, the transverseldcementl,(x, z), is assumed to vary in a
ESL-view quadratically along the thickness directidhus, w,, w, and w are the bottom,

top and average transverse displacements resdgctel theH,' (), H,"(2) and H. (2)
are

1 3
2ap s HO= vy 2 21

1 1
"2 4 2h 4h22 B()T

g ®3)

2.1.1 Derivation of the zigzag function

The CzT™ kinematic assumptions involve thirteen kinematciables, independent from
the number of layers. In order to reduce the nunalbelegrees of freedom, reducing further
the computational cost, a novel higher-order zigaagtion is introduced wherein to the
piece-wise linear contribution a smeared quadeaiit cubic one is added, thus resulting in a
piece-wise cubic function.

Consistent with the displacement field in Eq.(2)d amccording to the linear strain-
displacement relations, the transverse shear sgathas

Y =0 +U, =(1+ 492y, + 221, + 32w, +1, 4)

where the strain measurg =6, +U,, —¢, is introduced. According to the Hooke’s law

for the kth lamina whose principal material directions arbiteary with respect to the
midplane reference coordinates[1Q, the transverse shear stresses are related to the
transverse shear strains as

8 =Qlys) = Q) [(1+ (pg’k)z(z))z//ﬂ +2271,+3 iwﬁ] + @, (5)

where Q{ are the shear elastic stiffness coefficients. dmpuletely define the zigzag

function, three conditions are enforced on thesvarse shear stresses component (Eq.(5))
obtained vanishing, [12]:

1. The zero condition on the top and bottom plateaserfthat is
QY[ (1+¢2 -h)e, - 2hx, + e, | =

6

Q[ (L g2 M)y, + 2, + 3, ] = ©

Solving EQq.(6), the kinematic variableg, and w, are expressed in terms of the zigzag
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amplitudey, , that is
Xo =X Wa @ ==, ¥

wherein x'” and «f” are scalar easily deducible.
2. Substituting Egs. (7) in Eq.(5), transverse sheass becomes

19 = Q[ (1+ (D) - 2210 - 3201°]y, + G, ®)

Similar to the RZT [4], the partial continuity cdtidn at layers interface is enforced. This
constrain read as

Q| (et 2) -2 2) 0 o ) of? | =
Qg;l) [(l+ <¢E<Z+1) (— Z(k+l))) _ 2(— Ak D) )X(;O) _ 3(— A 1))2%(0):|

where “z¥and ~zZ* are the top and bottom interface kih and kth+1 layers,
respectively.

By introducing the constraint of Eq.(7) in the d&sment field, the in-plane displacement
components become

)

UL (x,2)= u, )+ B, () +(- 2x0 - 2+ ¥ Yy, (x) (10)
Then, the definition of the cubic zigzag functiaidws
U =(~2x0 - e+ g 2) (1)

wherein a quadratic and a cubic smeared contribsitiare added to the RZT zigzag
function, ¢ (2).
3. Finally, the last constraint is the zero-conditmmthe external plate surfaces for the
zigzag functiong® | that is

Ky (h) =g (=0 (12)

Consistent with the displacement field in Eq. @nstrain in Eq. (7) and the definition of
the zigzag function, the CZP kinematic assumptions are rewritten in a final fotinat
resembles the RZT formalism only for the in-plampthcements assumption

U (%, 2) = 4, () + B, () + 14 ( 3, (x)

13
U.(x2)= HY (2 w60+ H(2 w0+ H 160 &

The strains are computed by using the linearrstteplacement relations
2£(k) _U (k) +U/(3k21’ gZZ =U Z Z; OK)Z = ya (Z) +/]¢§k)l//a (14)

with ya(z)=U +4, and A =49, A mixed form of the Hooke’s law [13] is used, aading

k) — (k) e 4 K ra. (B = HB Lk
0'1(7/[? /3’;.6;6 % Fg/i’a-z; Taz [?y(/?z (15)



L. lurlaro, M. Gherlone and M. Di Sciuva.

where Q%); and Q) are the transformed elastic stiffness coefficieaterred to the(x, z)

ay
coordinate system and relative to the plane-stoesalition that assumes that transverse
normal stress is negligibly small in relation te tim-plane stresses. The transverse normal

complianceS{{ and the elastic stiffness coefficients matrix relgeg the transverse normal
contribution, are defined as

Q§3 CSG CZ3
wherein C{,C%,C%¥,Cl¥) are the elastic stiffness coefficients. Finallze ttransverse
normal deformationg? , computed by means of the mixed form of the H&okev read as

zz

1 c, ¥
Ve e o) as)

— k) 34 (K K
£,=-SY RS+ §o}, (17)

2.2 Transverse stresses

The assumed transverse stresses are continuousth®ithickness and able to satisfy the
traction conditions on the external plate surfadego different strategies are involved in the
approximation of the transverse normal stress hadransverse shear ones.

2.2.1 Transverse normal stress

The CZT™ model assumes a smeared cubic through-the-thiskdissribution of the
transverse normal stress that resembles the distib provided by the exact Elasticity
solution. In this model, the assumed transversmabstress is

o5, =P(2)q, +L(2q, (18)

Wherein the vectorg,’ :{ ", Zt)} collects the external transverse normal pressure

applied at the bottom and top plate surface, thesstvectorq, collects two kinematic

variables-independent coefficients, the ved®dz) and L (z) rule the shape of the assumed
stress and are defined as follows

sl o) ol e e

2.2.2 Transverse shear stresses

The assumed transverse shear stresses profilerigedleby integration of the three-
dimensional equilibrium equations under the cylicalr bending assumption, following the
approach proposed by Tessler [8] and adopted inl¢kelopment of the RZP plate model
[6]. According to this procedure, the assumed trarse shear stresses are expressed as

T, =Z (2, () +Z,(9n, (X) +Z,(9n, (x) (20)
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where 1.’ :{rfz,rjz} is the vector of the assumed stresses, the matdceZ and Z, are
dependent on the thickness coordinatg, is a stress vector function of the in-plane
coordinates and kinematic ~variable-independenf; ={ p®, pi”, g°, B’}is a vector

containing prescribed surface tractions appliedhentop(t) and bottom(b) plate surface and
acting along thex,, -direction; ng :{q;bl), o, o), c{t)z} is a vector containing the derivatives

Z,
with respect to thex, -direction of the transverse pressures applied heneixternal plate
surfaces.

3 CzT™ GOVERNING EQUATIONS

The plate is subjected to a transversely distribyteessure and to tangential distributed
loads acting along the in-plane coordinate axgsliegpon the external surface (see Figure 1).
The body forces are neglected.

In order to allow independent assumption on disgtents and transverse stresses, the
Reissner’ functional enforces a compatibility coaist (second contribution on the left-hand
side of Eg. (1)) between the transverse strainsrggpfnom the displacement field and those
coming from the assumed stresses by means of tbketolaw. Since the assumed stresses
are kinematic variables-independent, the Reissnred/Variational Theorem can be splitted
in two contributions that are solved separatelgt th

h
j j d€"6 dzdS=J Wy (21.1)
Q-h
h
[ [ . (5 ~¢,) dzds=0 (21.2)
Q-h

Solution of Eq. (21.1) leads to the governing amuns and variationally consistent
boundary conditions whereas the compatibility caast(Eqg. (21.2)) is used to derive an
expression of vectorg, (Eq.(18)) andf,, (Eq.(20)) in terms of the kinematic variables that

ensure the fulfillment of the compatibility consira

3.1 Governing equations and variationally consistent boundary conditions

Consistent with the CZT displacement field, the strain components are ctetpand
their expression introduced in Eq. (21.1). Perfognihe integration by parts, the governing
equations are obtained (all details are omittecséixe of brevity)

Oy i No s + By =00 00, My =\, + T =00 A 2 M= ¥, =0
oW, Vo, N+ d) =0, ow: Y, - N+ §=0 owy,- N=0

Z

(22)

where the resultants of the applied loggs= p” + g, m, = h( g - Féf))are introduced.
Moreover, the following forces and moments stressiltants are defined
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(N Mg )= [ @z )z (v, )= 2. @

) (23)
(Va VLN = e (H D HE D, H) dz (NN )= o Bz MOz MG,
Solving Eqg. (21.1) leads also to the variationatiysistent boundary conditions
ua:Ua D Na/irkzl_\lm; ea:é; D Mwl}:Mn;wa:waD WgQ:Mn (24)

w=w 0 Von =V, w=w0O V,p=V,

wherein the kinematic conditions are applied n and the force conditions org,.

Moreover, the force and moment resultants of tlesqribed tractions, denoted with a bar in
Egs. (24), are defined as

(Non Mo M2 V2 V) = [0 (T 2T 49T H(IT, H(2T) (25)

3.2 Compatibility constraint

The assumed transverse stresses, Eqgs.(18,20),depevectors stressy,, andf, , that

are independent on each other. This allows for gbsesibility to satisfy the Reissner’
constraint on the transverse normal stress sepafaten that regarding the transverse shear
stresses, that is

[ } 002 (&,,-£%)dzdS=0 (26.1)
Q-h
j Tar " (v, -v,) dzdS=0 (26.2)
Q-h

wherein v," ={},.v,.} v." ={¥2.¥i} . By using Egs. (14),(17),(18) and (20),
constraints are expressed in the following form

[0, P@TU,,+ <9 Bl - & (PO, +L()m,)] dzds0 (27.1)

| féuxfzf(zf [Y(2+2¥¥=D (Z,(3F,00+Z,(In, () +Z,( M, ()] dzdS0  (27.2)

where 7(2)" ={1i(2.v2(2}, ¥' ={¢.@,} and LY =diag(s?, 1)) is a diagonal matrix
containing the derivatives of the zigzag functiqu,’é) with respect to the in-plane coordinate

axes. Solving Egs.(27) with respect to the stresgovs, q, andf,, and substituting the

results in Eq. (18) and Eq. (20), the form of tlkewaned stresses satisfying the compatibility
constrain is obtained

0;, =S (2)g)) +S'(Ik +S' (Jw+S"(Jw+S¥( m, (28.1)
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T, =Z,(290+Z,(J¥+Z,(9In, +Z, (40, +Z,,( (28.2)

where S°(2),S'(2),$"(2),5"(2),.S*(2) and Z,(2),Z,(2.2,(2.2,(2.Z,(2) are the

assumed transverse stresses shape functions,wmmialong the thickness direction and able
to satisfy the traction conditions on the top andttdm plate surface. Moreover,

SEJO)T :{ul,l U, Uy, uz,} K :{91,1 6, 0, 92,} s :{‘/'1,1 Wi Wi l/lz} ,
wi={w, w W,0"={4 Glandw, ={w,, w, W, w, w, W}

It is worth to note that, the CZ? model, even be a mixed one, retains as variabiesnly
kinematic ones.

3.3 CzT™ constitutive equations

Introducing Egs. (15) in the definition of the feecand moments stress resultants, Egs.
(23), and making use of the linear strain-displaeeinrelations, Eqgs. (14), the C¥Tplate
constitutive equations are derived. In matrix fothey appear as

N| | A B, C, A, A

n n w qz \V/ AT BT CT DT ET

M Bm D Em Bw qu . n

M* :C F G C C &; V'r=F/ Gy Hy L; N;|g (28)
mnomn Smn Mw ez V,| [M; U PeW, J

NZ AZ Bz Cz DZ EZ

where eb:{sg)) K v w qZ}T,es:{B ¥ w, n, n}, the forces and moments
stress resultants are organizedds={N,;, N, N, N} ,M"={M, M, M, M,}
M =My Mg Mg MEENT =N NG N VT (Y, vt vt =V v
and V" :{Vl'; \VARRAVALRVARRRVAS \/2”}. The definitions of the stiffness matrices come
directly from the substitution of Egs. (15), (18)da(20) in Egs. (23).

4 NUMERICAL RESULT

In order to assess the accuracy of the €7Zmodel, a simply supported on all edges
rectangular plate, subjected to bi-sinusoidal tvarse pressure load applied on the top plate
surface, is considered. Results provided by €Zite compared with the exact 3D-Elasticity
solution as derived by Pagano [14].

The rectangular platéofa=2, a/2h=5) is composed by equal four layers, with orieotat
(0°/90°/90°/0°), while the material mechanical pdpes are 5.9 GPa, E=Es= 10 GPa;
Gi>= 5.9 GPa, &=0.2 GPa, &=0.7 GPa;v,,=v,,=V,,=0.25. For this type of load and

boundary conditions, the exact C#Tsolution exists and is derived by approximating th
kinematic variables with trigonometric functionstire x, and x,direction in order to satisfy
the boundary conditions.
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Figure 2. Through-the-thickness distribution of normalizecblane displacementd,, = (104 Dll/qoa“) u,.

0.5 0.5

(m)
* czr ° * czr™m

— 3D-Elasticity °

— 3D-Elasticity|

Thickness coordinate/2h
o

Thickness coordinate/2h
o

1 0.5 1 15 b2 0 02 04 06 08

Normalized transverse shear strésg0,b / 2,z) Normalized transverse shear strégga/ 2,0,z)

Figure 3. Through-the-thickness distribution of normalizeghisverse shear stressgs,= (2h/q,a2) T,,.

Figure 2 demonstrates great accuracy of the ®zmodel in predicting the through-the-
thickness distribution of in-plane displacements;aaconsequence, the distributions of in-

plane normal stresses (here omitted for brevitgyioled by the proposed model fit very well
with the reference solution.

Moreover, the constitutive normalized transverssaslstresses result accurate if compared
with the Elasticity solution with a slight overesaition of the maximum value for the
transverse shear stress (see Figure 3).

10
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The prediction of the transverse normal behavioterms of displacement (Figure 4a) and
stress (Figure 4b) is higly accurate if compareth\ile reference solution, since the model
captures the actual through-the-thickness disiobubf transverse displacement (with an
error less than 1%) and provides a distributiomafmal stress that matches the Elasticity
solution for every location.

0.5 0.5

-0.5 -0.5

Thickness coordinate/2h
o

Thickness coordinate/2h
o

* czr™

— 3D-Elasticity|

. m |
. ® CZT
. . — 3D-Elasticity.

_1.3' 131 1.32 1.33 1.34 _-6_2 0 O‘.2 O‘.4 O‘.6 0.8

Normalized transverse displacemehtia/ 2,b/2,z) Normalized transverse normal stregg(a/2,b/ 2,z)

Figure 4. (a) Through-the-thickness distribution of normalizeahsverse displacemeﬁg = (102 Dll/qoa“) U,

(b) Through-the-thickness distribution of normalizeghsverse normal stregg, = (2h/q)a2)azz.

5 CONCLUSIONS

In this paper, a novel Mixed Cubic Zigzag model,T€?, is presented. The development
of the model is based on the Reissner Mixed Vamaii Theorem, which allows independent
assumption for displacements and transverse ssreBle assumed displacement field results
in a enrichment of the First-Order Shear Deformmafibeory: to the in-plane displacements a
piece-wise cubic contribution is added, whereas tthasverse displacement is assumed
smeared quadratic along the thickness directior.adsumed transverse shear stresses profile
is derived with the aid of the three-dimensionalilgrium equations and the transverse
normal stress is postulated smeared cubic. Eaobuease stress profile is continuous along
the thickness direction and able to satisfy thetitma conditions on the top and bottom plate
surface. Finally, the CZT) model results in a constant number of kinematitabées, nine,
irrespective of the number of layers.

Numerical result provided in this paper shows highel of accuracy of the proposed
model in the analysis of thick laminates and sacbes if compared with the exact Elasticity
solution. Due to the low computational cost andfdaemulation, the proposed model is
suitable for an efficient finite element implemerda allowing accurate large scale analysis
of geometrically complex and thick multilayered quosite and sandwich structures.

11
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