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1 INTRODUCTION

Optimization is the process of improving on a current design. In real world problems,
historically optimization has often been performed manually where designers use intuition
to produce solutions to problems so that the solution performs better than the initial
starting point. However, it has now become commonplace to use automated optimization
algorithms to allow a more streamlined and strict approach to this process and with
the advent of increased computer power available to engineers, expensive optimization
problems are being solved within an entirely automated process. Computational fluid
dynamics (CFD) is at the forefront of aerodynamic analysis capabilities, and application
of numerical optimization algorithms with such analysis is termed aerodynamic shape
optimization (ASO), and has already produced notable results [1, 2, 3]. The authors have
also presented work in this area, having developed a modularised, generic optimization
tool that is applicable to any aerodynamic problem [4, 5, 6].

Solving optimization problems commonly uses either the gradient-based approach (which
uses the local gradient as a guide to the search direction) or global search approach (which
uses a set of agents who cooperate to interrogate the space). The choice of whether to
use a gradient or global system is often made based on objective function evaluation cost,
number and nature of constraints, and degree of multimodality within the problem hence,
within the field of ASO the gradient approach is more popular where there is a require-
ment to minimise the number of objective function evaluations – which represent a CFD
solution. Furthermore, the issue of constraints is particularly prominent in ASO and often
leads to the use of gradient-based algorithms for ease of constraint handling, though at
the expense of global optimum locating ability. The objective of this paper, therefore,
is to investigate the effect that using a constrained global search algorithm has on ASO
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results and whether globally optimal feasible solutions can be obtained for a variety of
aerofoil drag minimization cases. The issues of cost and convergence properties of a con-
strained global search algorithm are considered, as well as design space modality. This
has implications on robustness and optimality, which are considered for several transonic
aerofoil shape optimization cases.

2 CONSTRAINED NUMERICAL OPTIMIZATION

Mathematically, a single objective constrained optimization problem is:

minimise
x∈ℜn

f(x)

subject to g(x) ≤ 0

h(x) = 0

(1)

where x is the solution vector [x1, x2, . . . , xn]
T where each element of the vector is a design

variable, f(x) is the value of the objective function for the given solution vector, g(x)
represents inequality constraints, and h(x) represents equality constraints. The solution
vector is bounded by an upper, Uk, and lower, Lk, bound such that for each xk where
k = 1, 2, . . . , n, the solution must be Lk ≤ xk ≤ Uk. In certain classes of optimization
algorithms, it is typical to transform equality constraints into inequality constraints within
some small tolerance: |h(x)| − ǫ ≤ 0.

Gradient-based optimization algorithms use the local gradient as a basis along which
to search. The most basic forms of this are the steepest descent, conjugate gradient, and
Newton approaches, though in the presence of constraints methods that involve solving
the Karush-Kuhn-Tucker (KKT) conditions are preferred. The most widely adopted ap-
proach is sequential-quadratic-programming (SQP), which allows the strict enforcement
of constraints within the algorithm, and this is the family of numerical optimization al-
gorithms that has found greatest favour within the ASO community [7, 8, 9], primarily
driven by the requirement to minimise the number of objective function evaluations. A
significant issue when using these types of algorithm though is the termination in local
minima, so in a multimodal search space a gradient-based algorithm will run to conver-
gence although the multiple local minima in the problem represent an issue in finding the
overall global best solution.

Global search algorithms avoid the issues associated with gradient-based approaches
by avoiding the computation and use of the gradient, instead employing the current
position of the optimization process in the search space as a method to build an algorithm.
The use of global search algorithms within the ASO community is often limited to two
dimensions where the objective function evaluation is cheaper. The most popular types of
global search algorithm in ASO are evolutionary based (genetic algorithms and differential
evolution) [10, 11, 12]. The particle swarm algorithm is the most widely used agent-based
system within the wider optimization field, and so has also been used for aerofoil [13]
and wing optimizations [14]. When comparing evolutionary- and swarm-based systems,
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the swarm methods tend to perform more efficiently and effectively than evolutionary
algorithms [15, 16].

The selection of gradient-based or global search algorithms is highly dependent on the
optimization case analysed, specifically the degree of modality present. The presence of a
multimodal search space is dependent on the extent of the surface representation and the
fidelity of the flow analysis tool, although the true aerodynamic optimization problem is
independent of these two modules. As such, if given any surface representation method,
if a multimodal space can be proved using this then it logically follows that a multimodal
space must exist for the true aerodynamic optimization problem, and this has been shown
for aerofoil optimizations [17, 13, 7] and aircraft topology [18] optimizations, however
Chernukhin and Zingg [18] have also shown that for a B-spline based parameterization
of the surface, drag minimization of the RAE2822 aerofoil has one global optimum. It is
therefore imperative to have a parameterization that can represent all possible shapes.

3 CONSTRAINED GLOBAL SEARCH ALGORITHM

This work investigates the extent to which a global search algorithm can optimize a
constrained aerodynamic shape optimization problem, so a suitable constraint handling
system (separation-sub-swarm) has been combined with a gravitational search algorithm
(GSA) [19] swarm mechanism that allows efficient optimization to be performed. The
constraint handling framework developed by the authors is specifically applicable to GSA
and takes into account the global transfer of data within the GSA algorithm by creating
two separate swarms depending on the feasibility of agents. The separate swarms then
either minimise the constraint violation by a particle swarm mechanism, or optimize the
true objective function by the GSA mechanism. The infeasible swarm uses particle swarm
to allow transfer of data out from the feasible space to the infeasible particles by a set
of feasibility rules [20]. The correct transfer of data between search agents is the key to
efficiency of agent-based global search algorithm.

The algorithm requires a system of N agents to be initialised within the bounds of the
design variables. The velocity of the agents is also initialised to be a random value that
is smaller than the bounds of the search space. For each agent, the objective function
and the values of the constraints need to be calculated. The objective function associated
with the n-th agent is:

f(xn) =

{

f(xn) if x
n
is feasible

∑G

j=1max{0, gj(xn)}+
∑H

j=1 |hj(xn)| else
(2)

The particle’s best ever position, pn, and the swarm’s best ever position, s, need to be
updated, which is done by comparing the current position with the best positions by the
following rules:

1. if current and best positions are feasible, the one with best fitness wins
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2. if either the current or best positions are feasible and the other infeasible, the feasible
position wins

3. if current and best positions are infeasible, the one with the minimum constraint
violation wins

For the Nf feasible particles only, the mass of the i-th feasible particle is calculated
based on a particle’s feasible fitness:

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(3)

Mi(t) =
mi(t)

∑Nf

j=1mj(y)
(4)

where the best and worst fitnesses are from the feasible particles only. The force acting
on particle i from particle j, where both particles are feasible is:

F d
i,j(t) = G(t)

(

Mi(t)×Mj(t)

Ri,j(t) + ǫ

)

(xd
j (t)− xd

i (t)) (5)

where G(t) = G0 exp(−αt/T ). The total force acting on the i-th feasible particle is:

F d
i (t) =

min{Nf ,Kbest}
∑

j=1,j 6=i

randjF
d
i,j(t) (6)

The acceleration of the feasible particles uses the cognitive and social memory pa-
rameters of particle swarm combined with the global transfer of data through the force
mechanism of gravitational search to facilitate faster convergence:

adi (t)gsa = F d
i (t)/Mi(t) (7) adi (t)pso = c1r1i(p

d
i − xd

i (t)) + c2r2i(s
d − xd

i (t)) (8)

adi (t) = (adi (t)gsa + adi (t)pso)/2 (9)

where pi and s are the particle’s and swarm’s best positions ever, which are always feasible
in this part of the optimization process. The cognitive, c1, and social, c2, parameters do
add additional parameters to the problem but it is expected that these have the same
value as the cognitive and social parameters is the infeasible search (equation 10).

The acceleration of the j-th infeasible particles is done by a pure particle swarm ap-
proach:

adj (t) = c1r1j (p
d
j − xd

j (t)) + c2r2j (s
d − xd

j (t)) (10)

The updating procedure for all of the particles is:
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vdn(t + 1) = randnv
d
n(t) + adn(t) (11) xd

n(t+ 1) = xd
n(t) + vdn(t+ 1) (12)

If a particle exceeds the boundary of the search space then this is not an infeasible
particle but is a particle without a solution so is reinitialised in its last position with a
zero velocity.

The 3S-GSA algorithm is independent of objective function evaluation, so for the po-
sition of any given agent that agent need only know a value for the objective function.
In the aerodynamic shape optimization process implemented here the objective function
evaluation requires one flow solution to obtain the aerodynamic forces which are then
used to evaluate the objective and constraints. The nature of agent-based search systems
means that the objective of each particle is independent of other particles, and this makes
the algorithm ideal for parallelisation, which is done in the MPI environment. The algo-
rithm is independent of objective function so the agents call a wrapper which perturbs
the surface and CFD mesh, followed by a flow solver to obtain the forces which form the
objective function and constraints. Once the agents have the objective and constraint
values, the master process carries out the position update by the 3S-GSA algorithm.

4 AERODYNAMIC SHAPE OPTIMIZATION

The aerodynamic shape optimization process involves integrating an effective shape
parameterization and mesh deformation technique with a numerical simulation method
and an effective optimizer. These are generally developed in a modular manner to allow
the effective development of code independent techniques which have varying flexibility
and cost in terms of aerodynamic flexibility, number of degrees of freedom and complexity
of the optimization scheme. Work at the University of Bristol has been produced in this
area, where development of a general shape parameterization [4, 5] and mesh deformation
method [21, 22] has been linked to a parallelised FSQP optimizer [23], where the objec-
tive function is analysed by a finite-volume, inviscid, upwind flow solver. This unified
shape parameterization and deformation technique is employed here to allow fully flexible
aerodynamic shape optimization.

4.1 Geometry Parameterization

The shape parameterization and mesh deformation module must be flexible enough to
allow sufficient design space investigation, robust enough to be applicable to any geometry,
and efficient enough to maximise design space coverage with a minimum number of design
parameters. To satisfy these requirements, an efficient domain element shape parameteri-
zation method has been developed by the authors and presented previously for CFD-based
shape optimization [4, 5, 6]. The parameterization technique, surface control and volume
mesh deformation all use radial basis functions (RBFs), wherein global interpolation is
used to provide direct transfer of domain element movements into unified deformations
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of the design surface and the CFD mesh, which is deformed in a high-quality fashion.
The method requires very few design variables to allow free-form design; the authors have
recently used a mathematical approach to derive efficient design variables [24, 25], and
those design variables are used here.

From a deformation of a set of control points (as given in figure 1), a set of interpolation
points (which is the aerodynamic mesh) are deformed by:

∆Xa = Hac∆Xc (13)

where the interpolation matrix is formed between a multiplication of a matrix of basis
functions between the interpolation and control points, A, and the inverse of a matrix
of basis functions between the control points, H. Compactly supported basis functions
are preferred for mesh deformation, and Wendland’s C2 function [26] is used here. This
matrix is never actually constructed, but applied row by row for each evaluation point
(see Morris et al. [4]).

4.2 Flow-Solver

The flow-solver used is a structured multiblock finite-volume, unsteady, inviscid up-
wind code[27] using the flux vector splitting of van Leer[28]. Convergence acceleration is
achieved through multigrid [29]. A single block O-mesh was generated, using a conformal
mapping approach. Figure 1 shows two views of the 257× 97 point mesh and the surface
based control points which decouple the design variables from the surface and mesh, which
extends to 40 chords at farfield. All surface cells have an aspect ratio of one.

(a) Farfield (b) Nearfield (c) Control point deformation

Figure 1: 257× 97 O-mesh for NACA0012 aerofoil with surface based control points

4.3 Cases Considered

The primary factor investigated in this work is the performance of a global search
algorithm when used for constrained aerodynamic shape optimization. This also requires
consideration of: 1)optimizer convergence; 2) optimizer robustness; 3) optimizer efficiency
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and cost; 4) design space modality. To investigate these factors, aerodynamic shape
optimization problems using the optimizer described are tested, using various numbers
of design variables for compressible inviscid optimization. All cases were run with strict
constraints (1% margins were allowed):

Objective: Minimize drag (CD)

with respect to control point positions

Constraint 1 (lift): CL ≥ 0.99 C initial
L

Constraint 2 (pitching moment): |CM | ≤ 1.01
∣

∣C initial
M

∣

∣

Constraint 3 (internal volume): V ≥ 0.99 V initial

The aerofoil optimization cases considered are given in table 1, where the constraints
given refer to the greater-than or less-than constraints above. The pitch degree of freedom
moves the control points globally, whereas the modes derived from SVD move the control
points subject to those design variables. Cases 1 and 2 are used to investigate the transonic
optimization of the same aerofoil and investigate whether shock free inviscid solutions
result in different flow conditions. Case 3 [30] is a symmetric zero lift drag minimization
case so has no pitch parameters. Finally, case 4 is a standard optimization case and was
chosen to allow deviation from a symmetric initial starting aerofoil. This case may also
represent a typical transonic aerofoil optimization problem.

Table 1: Test cases considered

Case Ref. Aerofoil
Freestream Design

Constraints
parameters variables

1 [4] NACA0012
M∞ = 0.65 Pitch + CL, CM ,
α = 5◦ 6,8,10,15 SVD modes Volume

2 - NACA0012
M∞ = 0.70 Pitch + CL, CM ,
α = 3◦ 6,8,10,15 SVD modes Volume

3 [30] NACA0012
M∞ = 0.85 4,6,8,10

Volume
α = 0◦ symmetric SVD modes

4 [31] RAE2822
M∞ = 0.73 Pitch + CL, CM ,
α = 2.7◦ 6,8,10,15 SVD modes Volume

5 RESULTS

3S-GSA has been run for all cases with 96 particles, 1500 timesteps, G0 =30, α =10,
c1 = c2 =2.0, which have all been set based on performance of analytical test cases.
The results of the drag minimization problems and the implications of those results are
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discussed below, though the performance of the optimizer needs consideration. The con-
vergence results of cases 2 and 3 are given in figure 2 which show that the optimization
algorithm has allowed a balance between exploration and exploitation in all cases. To-
wards the start of the optimization process, the particles look to explore the design space
which sends many of them infeasible, though these particles are soon brought back to
effectively search the feasible design space. This is represented in the convergence plots
by no results in the first few iterations (such as in case 2), though when the particles are
optimizing the feasible space, they still explore it thoroughly and ultimately lead to a
fully explored design space with a fully exploited optimal solution.
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Figure 2: Optimizer convergence

5.1 Effect of Different Flow Conditions - Cases 1 and 2

Cases 1 and 2 (figure 3) represent the same shape optimization problem, though dif-
ferent flow conditions which results in different flow properties. The flow here is inviscid
so the majority of drag at transonic Mach numbers of two-dimensional aerofoils is due to
wave drag. The reduction of the wave drag therefore produces the most sharp reduction
in overall drag over the aerofoil so the minimum drag solution is the shock free solution.
Assuming that a shock free solution is possible at the given Mach number, the globally
optimal solution should always be a shock free solution to eliminate as much as possible
the wave drag. This can be seen in both the cases considered here even though they are
at different flow conditions. The upper surface shock has successfully been eliminated
from the solution, though the exact shapes differ between the two cases which maybe
due to spurious drag that is as a result of numerical noise at the two flow conditions, or
the optimizer not exactly exploiting the global minima. Nonetheless, the minimum drag
solution, with no shock, has still been found in both cases.
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Figure 3: Surface shapes and pressure distributions for 10 modes, and dimensionality effect, for cases 1
and 2

5.2 Effect of Dimensionality

The addition of further design variables expands the size of the design space and there-
fore provides the optimization algorithm with a more complicated problem. In general,
the algorithm has been successful at finding an almost globally optimal solution, however
in all the cases considered a feasible solution has always been found which is encouraging.
Case 3 (figure 4) represents a difficult optimization where the formation, strength and
position of a shock is highly sensitive to the exact surface so the optimizer must have
a good exploitation ability to accurately locate an optimal solution that is shock free.
In fact this problem is considered to be the first Mach number at which a shock free
solution is not possible [30], though six and eight mode cases have resulted in a shock
free solution. The authors have also presented results on this case using a finer mesh
[32] and demonstrated further drag reductions (99.7% reduction was possible), indicating
that the solution is extremely sensitive to mesh density. Finally, the fourth case (figure
5) shows further high quality results from the optimizer, though it appears that a shock
free solution is only possible using high numbers of design variables.

6 CONCLUDING REMARKS

This paper has considered the effect of using a constrained global optimizer on a set
of aerodynamic shape optimization transonic test cases. The results indicate high per-
formance of the optimizer, successfully locating a feasible solution for all cases tested,
and successfully locating a globally optimal solution the majority of the time. High drag
reduction results were observed when considering transonic drag minimization of various
aerofoils at various conditions, though the cost of using the global optimizer is high. This
high number of solutions was made possible due to the parallelisation of the optimizer,
when each agent in the search system is assigned to a processor to evaluate its objective.
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Figure 4: Dimensionality effect, surface shapes and pressure distributions for case 3
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Figure 5: Dimensionality effect, surface shapes and pressure distributions for case 4
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