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Abstract. A Rhie-Chow based algorithm for quasi 1-D sound propagationin a low Mach
number mean flow is described. It is shown that the proposed Rhie-Chow interpolation method
preserves the linear wave equation at first order, giving confidence in its ability to properly
simulate flows that feature simultaneously acoustic waves and low Mach number convection.

1 Introduction

When a co-located arrangement of the unknowns is adopted, compressible low Mach number
flow calculations may encounter difficulties heavily related to the way of interpolation on the
cell or element faces (seee.g. [4, 5, 6, 7, 8, 9, 12, 18]). In particular, loss of accuracy may
arise for unsteady calculations, when convective and acoustic waves propagate together at very
different time and space scales, with possible interactions.

Versions of Godunov-type schemes that remain accurate at low Mach number are designed
such as to conform to some low Mach number continuous asymptotic properties (seee.g. [4, 5,
6, 7, 8, 9]). One of these properties is that the thermodynamic and acoustic pressures should be
constant in space at the convective scale [15]. Denoting byMr a reference Mach number in the
flow, it was shown in [9] for steady flow calculations, that this requests the1/M2

r−scaling of
the pressure gradient term in the face velocity or the face mass flux to be preserved. If suitable
boundary conditions are chosen, the checkerboard decoupling problem that may arise at low
Mach number is thus avoided. As shown in [4, 6, 8], another asymptotic property provides
insights for the design of Godunov-type schemes that remainaccurate at low Mach number.
This property is the linear acoustic energy conservation inthe low Mach number regime, which
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holds if periodic boundary conditions are adopted. Assessment of the growth rate of the discrete
linear acoustic energy (due to spurious acoustic waves) wasthus used in [6] to design a modified
Godunov-type scheme accurate at any Mach number for the compressible Euler system. This
scheme generalizes the Low Mach Godunov-type scheme previously proposed in [4]. The
guideline in [4, 6] is the study of the behaviour at low Mach number of the first-order modified
equation associated to the Godunov scheme applied to the linear wave equation. In [5], this
approach is also used in the case of the quasi one-dimensional linear acoustic equation.

In the present study, we propose to justify in the low Mach number regime the momentum
interpolation technique, also often called Rhie-Chow interpolation technique [21], applied to
the quasi one-dimensionnal compressible Euler equations.Notice that from the momentum
equation, the above mentioned1/M2

r−scaling of the pressure gradient term in the face velocity
is readily satisfied. As a consequence, the momentum interpolation method does not suffer from
checkerboard modes. Notice that this is not the case for the scheme proposed in [7] (see also
[3]). The ability of the momentum interpolation method to properly simulate acoustic waves in
low Mach number flows is justified by expliciting the first-order modified equation associated to
this scheme in the case of the quasi one-dimensional linear acoustic equation. It is shown that,
at the discrete level, the linear acoustic energy behaviouris similar to that at the continuous
level. It is expected that this will be beneficial for accurate calculation of low Mach number
flows in the non-linear case, including acoustics, in nozzles with variable cross-section area for
which some numerical results are presented.

2 Flow equations

A 1-D flow of air is considered in a nozzle of variable section.Neglecting viscosity effects,
the flow model is given by the Euler equations. To ease discussions on the Mach number scaling
in the different terms, these equations are given in dimensionless form. Reference pressurepr,
density̺r and velocityvr thought of as a convective quantity, are introduced. A reference Mach
number is then defined asMr = vr/

√
pr/̺r. Reference lengthlr and durationtr, thought of

as a convective quantity, are also considered, as well as a reference Strouhal number,Str =
(lr/vr)/tr. If the reference lengthlr is chosen astr

√
pr/̺r, which is an acoustic length, the

reference Strouhal and Mach numbers are related byStr = 1/Mr. Here however, the possibility
is left open for another choice of reference duration, so that we will work with the reference
Strouhal numberStr. Denoting byx the dimensionless coordinate in the flow direction, byS the
dimensionless cross-section area and byt the dimensionless time, the obtained non-dimensional
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form of the Euler equations reads

Str∂t(̺S) + ∂x(̺vS) = 0, (1a)

Str∂t(̺vS) + ∂x
(
(̺v2 +

1

M2
r

p)S
)
=

1

M2
r

pdxS, (1b)

Str∂t(̺ES) + ∂x(̺vHS) = 0, (1c)

E = e+
1

2
M2

rv
2, ̺H = ̺E + p, ̺e =

p

γ − 1
, (1d)

where̺, p, v, e, E andH represent dimensionless density, pressure, velocity, internal energy,
total energy and total enthalpy per unit mass, respectively. Furthermore,γ denotes the ratio of
the specific heats.

3 Analysis of the momentum interpolation method with the variable cross-section area
linear wave equation

3.1 Linear acoustic wave equation and acoustic energy

The linear acoustic wave equation for quasi one-dimensional flows in the low Mach number
regime is obtained through a two-scale low Mach number asymptotic analysis.

From Eqs. (1a)-(1b) and (1c)-(1d), one obtains, respectively:

Str̺∂tv + ̺v∂xv +
1

M2
r

∂xp = 0, (2a)

Str∂t(pS) + ∂x(vpS) = −(γ − 1)p∂x(vS). (2b)

A variable relevant to reveal the behaviour of the flow at the acoustic length scale is introduced
as

ξ = Mrx.

Then, the pressure is assumed to be expanded as

p(x, t,Mr) =
N∑

n=0

Mn
r p

(n)(x, ξ, t) + o(MN
r ), N = 0, 1, 2,

and similar expansions are assumed for density̺ and velocityv.
After substitution of these expansions in Eqs. (2), Eq. (2a)at zeroth-order and Eq. (2b) at

first order yield:

Str̺
(0)∂tv

(0) + (̺v)(0)∂xv
(0) + ∂xp

(2) + ∂ξp
(1) = 0, (3a)

StrS∂tp
(1) + ∂x(vpS)

(1) + Sγp(0)∂ξv
(0) =

− (γ − 1)p(1)∂x(vS)
(0) − (γ − 1)p(0)∂x(vS)

(1) − γ(pv)(0)dξS. (3b)
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Keeping terms at the acoustic scale1, the first-order linear wave equation for quasi 1-D low
Mach number flow is obtained as

Str∂tṽ(0) +
1

˜̺(0) ∂ξp
(1) = 0, (4a)

Str∂tp
(1) + γp(0)∂ξṽ(0) = −γp(0)ṽ(0)

dξS

S
. (4b)

Introducing the zeroth-order sound speed as

c(0) = c(0)(ξ, t) =

√
γp(0)(t)

˜̺(0)(ξ)
,

Eqs. (4) yield the following non-linear acoustic wave propagation equation:

St2r∂ttp
(1) − ∂ξ

(
(c(0))2∂ξp

(1)
)
= (c(0))2∂ξp

(1)dξS

S
. (5)

From Eqs. (4), one also obtains

−∂ξ(p
(1)ṽ(0)) = Str

˜̺(0)∂t
(
(ṽ(0))2

2

)
+

Str
˜̺(0)(c(0))2

∂t

(
(p(1))2

2

)
+ p(1)ṽ(0)

dξS

S
. (6)

The linear acoustic energy of quasi 1-D low Mach number flows in the nozzle is defined as

Ea =
1

2

∫ L

0

{
˜̺(0)(ṽ(0)

)2
+

(p(1))2

˜̺(0)(c(0))2

}
S dξ. (7)

Assume thatc(0) is constant in time. Notice that this amounts to suppose thatthe thermodynamic
pressurep(0) = p(0)(t) is constant, which is a common assumption for open flows (seee.g. the
discussion by Rehm and Baum [20]). Then, from Eqs. (6) and (7), the time evolution of the
acoustic energy in quasi 1-D low Mach number flows follows,

StrdtEa = −
[
(p(1)ṽ(0)S)(L)− (p(1)ṽ(0)S)(0)

]
. (8)

3.2 The Rhie-Chow-like interpolation method

Thex axis along the nozzle of lengthL is divided intoN cells of length∆x. A finite volume

formulation in co-located arrangement is applied. For sakeof presentation,̃v(0) andp(1) are
designated byu andq hereafter.

1 ·̃ denotes the large scale average,i.e. the average on|x| < 1/Mr asMr → 0. This average operation allows
to separate features at the acoustic length scale from thoseat the convective length scale through the so-called
sublinear growth lemma ; seee.g. Klein [11] or Meister [17] for details.
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Suppose that Eqs. (4) are discretized into

un+1
i − uni
τ

+
a

Mr
(qni+1/2 − qni−1/2) = 0, (9a)

qn+1
i − qni

τ
+

b

Mr
(un+1

i+1/2 − un+1
i−1/2) +

b

Mr
un+1
i

Si+1/2 − Si−1/2

Si
= 0, (9b)

whereτ = ∆t/∆x, a = 1/(Str
˜̺(0)) andb = γp(0)/Str. In particular, it is thus assumed that the

variations of̺̃ (0) in space are negligible at the large acoustic length scale.
Here, the momentum interpolation method is referred to as the Rhie-Chow-like interpolation

method since it is applied to the velocity equation. For Eqs.(9), this method is formulated as
follows. The procedure consists firstly in the identification of the non-linear convective term
Bi in the momentum (or velocity) equation the face velocity is derived from. Since Eq. (9a) is
linear,Bi is zero. Thus,

Bi =
un+1
i − uni
τ

+
a

Mr

(qni+1/2 − qni−1/2). (10)

Eq. (10) must be compared to Eq. (20) (see Section 4.2), whichis the discretized momentum
equation as formulated for the momentum interpolation method. The second step in the Rhie-
Chow-like interpolation method consists in the assumptionthat an equation similar to (10) may
be written on the facei+ 1/2,

Bi+1/2 =
un+1
i+1/2 − uni+1/2

τ
+

a

Mr

(qni+1 − qni ).

The third step is then to use a central interpolation on the convective terms. Here,

Bi+1/2 =
1

2
(Bi +Bi+1), (11)

from which the face velocity expression is derived. In the present case Eq. (11) results simply
in Bi+1/2 = 0, and thus

0 =
un+1
i+1/2 − uni+1/2

τ
+

a

Mr
(qni+1 − qni ).

The definition ofqi+1/2 must be given. Notice that this choice is independent of the face veloc-
ity definition provided by the momentum interpolation. In the present study, the face pressure
is defined by central interpolation. The reason of this choice will be made clear in the fol-
lowing section by examining the first-order modified acoustic wave equation. The momentum
interpolation scheme for the asymptotic linear acoustic wave equation, completed by a central
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interpolation of the pressure, is summarized as

un+1
i − uni
τ

+
a

Mr
(qni+1/2 − qni−1/2) = 0, (12a)

qn+1
i − qni

τ
+

b

Mr
(un+1

i+1/2 − un+1
i−1/2) +

b

Mr
un+1
i

Si+1/2 − Si−1/2

Si
= 0, (12b)

un+1
i+1/2 − uni+1/2

τ
+

a

Mr

(qni+1 − qni ) = 0, (12c)

qni+1/2 =
1

2
(qni + qni+1). (12d)

When the cross-section areaS is constant, scheme (12b)-(12c) is a classical scheme used
to solve the linear wave equation on a staggered cartesian mesh (see Sections 3.3, 3.4.3 and 6
in [7] in the 2D cartesian case). This staggered scheme -i.e. centered pressure and staggered
velocities - is sometimes called MAC scheme and was firstly proposed by [10] to solve the
incompressible Navier-Stokes system. In particular, it isproven in [7] that the MAC scheme
applied to the linear wave equation is accurate at low Mach number on a 2D cartesian mesh.
It is also underlined that this scheme does not suffer from any checkerboard modes due to the
even/odd decoupling. These results together with Eqs. (12)justify the good behaviour of the
Rhie-Chow scheme on a 1D/2D/3D cartesian mesh at low Mach number, at least when the
cross-section areaS is constant in the 1-D variable cross-section case.

3.3 First-order acoustic wave equation by the Rhie-Chow-like interpolation method

From Eqs. (12b)-(12d), one readily obtains:

qn+1
i − 2qni + qn−1

i

τ 2
−
ab

M2
r

(qni+1 − 2qni + qni−1) =
ab

M2
r

(
Si+1/2 − Si−1/2

Si

)(
qni+1 − qni−1

2

)
. (13)

Notice that the first-order modified equation associated with Eq. (13) is

∂ttq −
ab

M2
r

∂xxq =
ab

M2
r

dxS

S
∂xq, (14)

or else,

∂ttq − ab∂ξξq = ab
dξS

S
∂ξq, (15)

which is identical to Eq. (5), under the assumption of a density ˜̺(0) constant at the acoustic
length scale. As a direct consequence of this result, the acoustic energy equation (8) is retrieved
at the discrete level, with a second-order error when periodic boundary conditions are adopted.
This confirms the suitability of the Rhie-Chow-like interpolation method for the calculation of
acoustic wave propagation in the 1-D variable cross-section case at low Mach number.

6



Y. Moguen, S. Dellacherie, P. Bruel and E. Dick

4 Analysis of the momentum interpolation method with the Euler equations

4.1 Pressure correction algorithmic framework

The algorithm used for solving the Euler equations (1) was detailed in our earlier work [18].
Here, it is briefly recalled in order to make the paper self-contained.

To simplify the presentation, the velocity is assumed to be positive. Each time-stepn→ n+1
is decomposed into iterations denoted by the superscriptk. At the first iteration of the time-
stepn, one hask = n. The superscripts⋆⋆, ⋆ and ′ denote ’pre-predicted’, predicted and
corrected quantities of each iterationk. ψ denotes the slope limiter. Practically, no more than
five iterations are allowed, and the so-called Bounded Central slope limiter was chosen in the
unsteady low Mach number flow calculations. The ratio∆t/∆x is denoted byτ .

4.1.1 ’Pre-prediction’ step: Construction of the common transporting velocity

• ̺⋆⋆i from

Str
2τ

(3̺⋆⋆i − 4̺ni + ̺n−1
i ) +

Si+1

Si

[
̺⋆⋆i +

1

2
ψi(̺

k)(̺ki − ̺ki−1)
]
vki+1/2

−
Si−1/2

Si

[
̺⋆⋆i−1 +

1

2
ψi−1(̺

k)(̺ki−1 − ̺ki−2)
]
vki−1/2 = 0

• (̺v)⋆⋆i = ̺⋆⋆i v
k
i , (̺E)⋆⋆i =

pki
γ − 1

+
1

2
̺⋆⋆i (vki )

2

• Transporting face velocity:

vTi+1/2 = (̺v)⋆⋆i+1/2/̺
⋆⋆
i+1/2 where ̺⋆⋆i+1/2 =

1

2
(̺⋆⋆L + ̺⋆⋆R )

How (̺v)⋆⋆i+1/2 is defined is the matter of Sec. 4.2.

4.1.2 Prediction step

• p⋆i = pki
• ̺⋆i from

Str
2τ

(3̺⋆i − 4̺ni + ̺n−1
i ) +

Si+1/2

Si

[
̺⋆i +

1

2
ψi(̺

k)(̺ki − ̺ki−1)
]
vTi+1/2

−
Si−1/2

Si

[
̺⋆i−1 +

1

2
ψi−1(̺

k)(̺ki−1 − ̺ki−2)
]
vTi−1/2 = 0 (16)
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• (̺v)⋆i from

Str
2τ

[3(̺v)⋆i − 4(̺v)ni + (̺v)n−1
i ]

+
Si+1/2

Si

{
(̺v)⋆i +

1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]
}
vTi+1/2

−
Si−1/2

Si

{
(̺v)⋆i−1 +

1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2]
}
vTi−1/2

+
1

M2
rSi

(Si+1/2p
k
i+1/2 − Si−1/2p

k
i−1/2) =

1

M2
rSi

pki (Si+1/2 − Si−1/2)

• (̺E)⋆i =
pki

γ − 1
+

1

2

[(̺v)⋆i ]
2

̺⋆i
and (̺H)⋆i = (̺E)⋆i + pki

4.1.3 Correction step

• p′i from

Str
2τ

[3(̺E)k+1
i − 4(̺E)ni + (̺E)n−1

i ] +
Si+1/2

Si
(̺vH)k+1

i+1/2 −
Si−1/2

Si
(̺vH)k+1

i−1/2 = 0,

where

(̺vH)k+1
i+1/2 = (̺H)⋆i+1/2v

T
i+1/2 +H⋆

i+1/2(̺v)
′

i+1/2 + (̺H)′i+1/2v
T
i+1/2,

(̺H)⋆i+1/2 , H⋆
i+1/2 : upwinded in second-order accurate form,

(̺H)′i+1/2 =
γ

γ − 1
p′i+1/2,

p′i+1/2 = f+
p (M

⋆
i )p

′

i + f−

p (M
⋆
i+1)p

′

i+1, (17a)

where f±

p (m) =

{
1
2
(1± sign(m)) , |m| ≥ 1

1
4
(m± 1)2(2∓m)± 3

16
m(m2 − 1)2 , |m| < 1

(17b)

(̺v)′i+1/2 = −
2τ

3M2
rSi+1/2

[Si+1p
′

i+1 − Sip
′

i − p′i+1/2(Si+1 − Si)]. (17c)

Notice that with Eqs. (17a)-(17b), the pressure correctionat the face is that given by the AUSM+

scheme (see [14]). Eq. (17c) is the SIMPLE approximation forquasi 1-D flows.
• (̺v)′i from

3

2τ
(̺v)′i = −

Si+1/2

Si

{
(̺v)′i +

1

2
ψi

(
(̺v)k

)
[(̺v)′i − (̺v)′i−1]

}
vTi+1/2

+
Si−1/2

Si

{
(̺v)′i−1 +

1

2
ψi−1

(
(̺v)k

)
[(̺v)′i−1 − (̺v)′i−2]

}
vTi−1/2

−
1

M2
rSi

[Si+1/2p
′

i+1/2 − Si−1/2p
′

i−1/2 − p′i(Si+1/2 − Si−1/2)]

8
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4.1.4 Updates

• Cell quantities:

pk+1
i = pki + p′i , ̺k+1

i = ̺⋆i

(
1 +

p′i
pki

)
, (̺v)k+1

i = (̺v)⋆i + (̺v)′i

(̺E)k+1
i = (̺E)⋆i +

pk+1
i

γ − 1
, (̺H)k+1

i = (̺E)k+1
i + pk+1

i

• Cell-face quantities:
Face pressure and face velocity updated by the AUSM+ scheme (see Eqs. (17b) for the defini-
tion of f±

p ):
pk+1
i+1/2 = f+

p (M
k+1
L )pk+1

L + f−

p (M
k+1
R )pk+1

R

and
vk+1
i+1/2 = ck+1

i+1/2M
k+1
i+1/2,

where the face sound speedc1/2 is defined by:

c1/2 = min{c̃L, c̃R},

with

c̃L = (c⋆)2/max{c⋆, vL} , c̃R = (c⋆)2/max{c⋆,−vR} , (c⋆)2 =
2(γ − 1)

γ + 1
H.

The face Mach numberMi+1/2 is given by

Mi+1/2 = f+
M(ML) + f−

M(MR),

where

f±

M(m) =

{
1
2
(m±|m|) , |m| ≥ 1

±1
4
(m± 1)2 ± 1

8
(m2 − 1)2 , |m| < 1

4.2 The Rhie-Chow-like interpolation method for quasi 1-D flows

The discretized momentum equation (1b) at the pre-prediction step reads:

Str
2τ

[3(̺v)⋆⋆i − 4(̺v)ni + (̺v)n−1
i ] +

Si+1/2

Si

{(̺v)⋆⋆i +
1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]}v
k
i+1/2

−
Si−1/2

Si
{(̺v)⋆⋆i−1 +

1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2]}v
k
i−1/2

+
1

M2
rSi

(Si+1/2p
k
i+1/2 − Si−1/2p

k
i−1/2) =

1

M2
rSi

pki (Si+1/2 − Si−1/2). (18)

9
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Setting

Ai =
Si+1/2

Si
vki+1/2

and

Bi = −
Si+1/2

Si

{
1

2
ψi((̺v)

k)[(̺v)ki − (̺v)ki−1]}v
k
i+1/2

+
Si−1/2

Si
{(̺v)⋆⋆i−1 +

1

2
ψi−1((̺v)

k)[(̺v)ki−1 − (̺v)ki−2]}v
k
i−1/2, (19)

the momentum equation (18) may be re-written for convenience as

Bi = Ai(̺v)
⋆⋆
i −

2Str
τ

(̺v)ni +
Str
2τ

(̺v)n−1
i +

3Str
2τ

(̺v)⋆⋆i

+
1

M2
rSi

(Si+1/2p
k
i+1/2 − Si−1/2p

k
i−1/2)−

1

M2
rSi

pki (Si+1/2 − Si−1/2). (20)

The first step for momentum interpolation is to assume that a similar equation holds on the face
i+ 1/2,

Bi+1/2 = Ai+1/2(̺v)
⋆⋆
i+1/2 −

2Str
τ

(̺v)ni+1/2 +
Str
2τ

(̺v)n−1
i+1/2 +

3Str
2τ

(̺v)⋆⋆i+1/2

+
1

M2
rSi+1/2

(Si+1p
k
i+1 − Sip

k
i )−

1

M2
rSi+1/2

pki+1/2(Si+1 − Si), (21)

whereAi+1/2 andBi+1/2 have yet to be defined. Several alternatives for definition ofAi+1/2

andBi+1/2 were studied in our earlier work [18], where unsteady low Mach number flows in-
cluding acoustic calculation were considered. We observedthat the definition ofAi+1/2 and
Bi+1/2 affects directly the time consistency of the scheme (see also e.g. [12, 19]). Two ways
of interpolation that ensure that the steady state (if any) does not depend on the time-step were
identified: the Rhie-Chow-like interpolation method and the method of interpolation suggested
by Lien and Leschziner [13]. In [18] we also recognized that the method of interpolation sug-
gested by Choi [2] is identical to that by Shenet al. [22], and that this method gives time-step
dependent steady state. Notice that the method proposed by Li and Gu [12] is based on the
reformulation of the method by Choi [2] in the time-marchingframework. In the present semi-
implicit framework, the method by Li and Gu [12] can therefore be identified to that by Choi
[2]. In the following, the Rhie-Chow-like interpolation method is presented in the context of
quasi one-dimensional flows.

To define the face velocity by momentum interpolation,Ai+1/2 andBi+1/2 in Eq. (21) have
to be defined. As recognized in [19] for incompressible flows,and in [18] for low Mach number
compressible flows, the method presented for steady problems in the pioneering work of Rhie
and Chow [21], is also suitable for solving unsteady problems. This method consists in the
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linear interpolation of the convective terms of the discretized momentum equation (see Eqs.
(20)-(21)), as follows:

Bi+1/2

Ai+1/2

=
1

2
(
Bi

Ai

+
Bi+1

Ai+1

). (22)

Setting

ai+1/2 = 1 +
1

Ai+1/2

3Str
2τ

,

the mass flux obtained from Eq. (22) is

(̺v)⋆⋆i+1/2 =
1

2ai+1/2

(
Bi

Ai

+
Bi+1

Ai+1

)
−

1

ai+1/2Ai+1/2Si+1/2M2
r

(Si+1p
k
i+1 − Sip

k
i )

+
pki+1/2

ai+1/2Ai+1/2Si+1/2M2
r

(Si+1 − Si) +
Str

2τai+1/2Ai+1/2

[
4(̺v)ni+1/2 − (̺v)n−1

i+1/2

]
. (23)

To defineAi+1/2 in Eq. (23), it is usual to set (seee.g. [16])

1

Ai+1/2

=
1

2
(
1

Ai
+

1

Ai+1
). (24)

5 Numerical experiments

A five-meter long converging-diverging nozzle is considered. The cross-section area (dimen-
sions in meter) is given by

S(x) =





0.1, 0 ≤ x ≤ 10/28

0.1

{
0.4 + 0.6

[
2
(

x− 55

28

45

28

)2

−
(

x− 55

28

45

28

)4
]}

, 10/28 ≤ x ≤ 100/28

0.1, 100/28 ≤ x ≤ 5

A downstream propagating Gaussian acoustic pulse in a five-meter long pipe is generated
through a superimposition onto a mean flow, with constant density̺0 = 1.2046 kg/m3, velocity
v0 = 0.030886 m/s and pressurep0 = 101 300 Pa, of a perturbation of pressureδp, density
δ̺ = δp/c20, and velocityδv = δp/(̺0c0), wherec0 =

√
γp0/̺0. At t = 0,

δp = 200 exp

[
−
(x− 0.2)2

2σ2

]
Pa, where σ = 2× 10−2 m.

In this test case, the Mach number of the background flow is10−4. The time-step is chosen
so that the acousticCFL number is about5, which is allowed by the semi-implicit algorithm
used, see Section 4.1. The grid is uniform with2 500 cells.

The pulse propagation through the nozzle is presented in Fig. 1. A soon as the pulse is
entering the varying nozzle section, its intensity is evolving as a decreasing function of the
cross-section area. So, it reaches its highest level at the nozzle throat. Since there exists no
dissipation mechanism, this behaviour is simply the signature of the expected constancy of the
acoustic power through the different sections of the nozzle.

11
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Figure 1: Downstream propagation of an acoustic pulse in a five-meterlong nozzle,cf. Sec. 5. Pressure distri-
bution att = 0.00 ms, t = 1.75 ms, t = 3.50 ms, t = 5.25 ms, t = 7.00 ms, t = 8.75 ms, t = 10.50 ms and
t = 12.25 ms.

6 Conlusion

This preliminary study is encouraging. Indeed, it demonstrates that the proposed Rhie-Chow
based algorithm for quasi 1-D sound propagation in a nozzle with a low Mach number mean
flow is able to produce physically sound results. Since in thepresent configuration the Mach
number is very low, it is expected that the Doppler effect reported by Campos and Lau [1] is
absent in the simulated flow configuration. Future work will concentrate on assessing the capa-
bility of the proposed algorithm to accurately capture the Doppler shift that must be observed
as soon as the Mach number of the backflow is sufficiently increased.
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spectives, J. Fořt, J. Fürst, J. Halama, R. Herbin and F. Hubert Editors, 313–321, Springer-
Verlag, 2011.

[6] S. Dellacherie, P. Omnes and P.-A. Raviart. Construction of modified Godunov type
schemes accurate at any Mach number for the compressible Euler system. Preprint 2014 :
http://hal.archives-ouvertes.fr/hal-00776629.

[7] S. Dellacherie, P. Omnes and F. Rieper. The influence of cell geometry on the Godunov
scheme applied to the linear wave equation.J. Comput. Phys., 229, 5315–5338, 2010.

[8] H. Guillard and A. Murrone. On the behavior of upwind schemes in the low Mach number
limit: II. Godunov type schemes.Comput. Fluids, 33, 655–675, 2004.

[9] H. Guillard and C. Viozat. On the behavior of upwind schemes in the low Mach number
limit. Comput. Fluids, 28, 63–86, 1999.

[10] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface.Phys. Fluids 8(12) 2182–2189, 1965.

[11] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number
asymptotics I: One-dimensional flow.J. Comput. Phys., 121, 213–237, 1995.

[12] X.-S. Li and C.-W. Gu. The momentum interpolation method based on the time-marching
algorithm for all-speed flows.J. Comput. Phys., 229, 7806–7818, 2010.

[13] F.S. Lien and M.A. Leschziner. A general non-orthogonal collocated finite volume algo-
rithm for turbulent flow at all speeds incorporating second-moment turbulence-transport
closure, Part 1: Computational implementation.Comput. Methods Appl. Mech. Eng, 114,
123–148, 1994.

[14] M.-S. Liou. A sequel to AUSM: AUSM+. J. Comput. Phys., 129, 364–382, 1996.

[15] A. Majda and J. Sethian. The derivation and numerical solution of the equations for zero
Mach number combustion.Combust. Sci. and Tech., 42, 185–205, 1985.

13



Y. Moguen, S. Dellacherie, P. Bruel and E. Dick

[16] S. Majumdar. Role of underrelaxation in momentum interpolation for calculation of flow
with nonstaggered grids.Numer. Heat Transfer, A, Vol. 13, 125–132, 1988.

[17] A. Meister. Asymptotic Single and Multiple Scale Expansions in the Low Mach Number
Limit. SIAM J. Appl. Math., 60(1), 256–271, 1999.

[18] Y. Moguen, T. Kousksou, P. Bruel, J. Vierendeels and E. Dick. Pressure-velocity coupling
allowing acoustic calculation in low Mach number flow.J. Comput. Phys., 231, 5522–
5541, 2012.

[19] A. Pascau. Cell face velocity alternatives in a structured colocated grid for the unsteady
Navier-Stokes equations.Int. J. Numer. Meth. Fluids, 65, 812–833, 2011.

[20] R.G. Rehm and H.R. Baum. The equations of motion for thermally driven buoyant flows.
J. Res. Nat. Bur. Stand., 83(3), 297–308, 1978.

[21] C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil with
trailing edge separation.AIAA J., 21(11), 1525–1532, 1983.

[22] W. Z. Shen and J. A. Michelsen and J. N. Sørensen. Improved Rhie-Chow interpolation
for unsteady flow computations.AIAA J., 39(12), 2406–2409, 2001.

14


