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Abstract. A Rhie-Chow based algorithm for quasi 1-D sound propagaitioa low Mach
number mean flow is described. It is shown that the proposést®&how interpolation method
preserves the linear wave equation at first order, givindidence in its ability to properly
simulate flows that feature simultaneously acoustic waned@v Mach number convection.

1 Introduction

When a co-located arrangement of the unknowns is adoptethressible low Mach number
flow calculations may encounter difficulties heavily rethte the way of interpolation on the
cell or element faces (se=g. [4, 5, 6, 7, 8, 9, 12, 18]). In particular, loss of accuracy may
arise for unsteady calculations, when convective and diconaves propagate together at very
different time and space scales, with possible interastion

Versions of Godunov-type schemes that remain accuratevatliach number are designed
such as to conform to some low Mach number continuous asyioptoperties (see.g. [4, 5,

6, 7, 8, 9]). One of these properties is that the thermodyoamil acoustic pressures should be
constant in space at the convective scale [15]. Denotinglbg reference Mach number in the
flow, it was shown in [9] for steady flow calculations, thatsthequests thé/M?—scaling of
the pressure gradient term in the face velocity or the facesrflax to be preserved. If suitable
boundary conditions are chosen, the checkerboard deocgupitoblem that may arise at low
Mach number is thus avoided. As shown in [4, 6, 8], anothemgugtic property provides
insights for the design of Godunov-type schemes that remednrate at low Mach number.
This property is the linear acoustic energy conservatigheriow Mach number regime, which
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holds if periodic boundary conditions are adopted. Assessof the growth rate of the discrete
linear acoustic energy (due to spurious acoustic waves)wasused in [6] to design a modified
Godunov-type scheme accurate at any Mach number for theressiple Euler system. This
scheme generalizes the Low Mach Godunov-type scheme pstyiproposed in [4]. The
guideline in [4, 6] is the study of the behaviour at low Macther of the first-order modified
equation associated to the Godunov scheme applied to thar imave equation. In [5], this
approach is also used in the case of the quasi one-dimehBi@a acoustic equation.

In the present study, we propose to justify in the low Mach hanregime the momentum
interpolation technique, also often called Rhie-Chowrmdéation technique [21], applied to
the quasi one-dimensionnal compressible Euler equatidiwtice that from the momentum
equation, the above mentionggdM? —scaling of the pressure gradient term in the face velocity
is readily satisfied. As a consequence, the momentum irtgipo method does not suffer from
checkerboard modes. Notice that this is not the case fordense proposed in [7] (see also
[3]). The ability of the momentum interpolation method toperly simulate acoustic waves in
low Mach number flows is justified by expliciting the first-erdnodified equation associated to
this scheme in the case of the quasi one-dimensional lirearséic equation. It is shown that,
at the discrete level, the linear acoustic energy behavgsaimilar to that at the continuous
level. It is expected that this will be beneficial for acceratlculation of low Mach number
flows in the non-linear case, including acoustics, in nazrligh variable cross-section area for
which some numerical results are presented.

2 Flow equations

A 1-D flow of air is considered in a nozzle of variable sectibleglecting viscosity effects,
the flow model is given by the Euler equations. To ease dismussn the Mach number scaling
in the different terms, these equations are given in dinoerasss form. Reference pressuyre
densityp, and velocityyv, thought of as a convective quantity, are introduced. A exfee Mach
number is then defined ad, = v,/\/p./0.. Reference length and duratiory,, thought of
as a convective quantity, are also considered, as well afegenee Strouhal numbest, =
(I./v.)/t.. If the reference length is chosen as$,/p./0., Which is an acoustic length, the
reference Strouhal and Mach numbers are relategt by 1/M,. Here however, the possibility
is left open for another choice of reference duration, st wWewill work with the reference
Strouhal numbest,. Denoting byz the dimensionless coordinate in the flow direction Stiyre
dimensionless cross-section area and e dimensionless time, the obtained non-dimensional
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form of the Euler equations reads

St 0:(0S) + 0. (0vS) =0, (1a)

1 1
Sty (ovS) + ax((QUQ + Wp)S) = Wpdms, (1b)
St,0:(0ES) + 0, (ovHS) = 0, (1c)

1
E=e+ Mu?, oH =oE+p, oe= (1d)

y—1

wherey, p, v, e, - and H represent dimensionless density, pressure, velocigtriat energy,
total energy and total enthalpy per unit mass, respectivlythermore;y denotes the ratio of
the specific heats.

3 Analysis of the momentum interpolation method with the varable cross-section area
linear wave equation

3.1 Linear acoustic wave equation and acoustic energy

The linear acoustic wave equation for quasi one-dimensitves in the low Mach number
regime is obtained through a two-scale low Mach number asytic@analysis.
From Egs. (1a)-(1b) and (1c)-(1d), one obtains, respdgtive

1
St 00,0 + ov0,v + M28 =0, (2a)
St.0;(pS) + 0. (vpS) = —(v — 1)pd,(vS). (2b)
A variable relevant to reveal the behaviour of the flow at tbeustic length scale is introduced

as
& = M,x.

Then, the pressure is assumed to be expanded as
plz,t,M,) ZM” ", &, t) +o(MN), N=0,1,2,

and similar expansions are assumed for denségd velocityv.
After substitution of these expansions in Egs. (2), Eq. @a&eroth-order and Eq. (2b) at
first order yield:

St 09,0 + (0v) V9,0 + 9,p@ + ap™ =0, (3a)
St SO,V + 0, (vpS) V) + Syp D90 =
— (v = DpMa,(v8) @ — (v = 1)p 0, (vS)W — 4 (pv)VdS. (3b)
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Keeping terms at the acoustic scaléhe first-order linear wave equation for quasi 1-D low
Mach number flow is obtained as

— 1
St, 0,0 4 —39:pM) = 0, (4a)
0
M 4~y 9,0 0,0 99
St,0p" + ' Ocv ) = —p U(O)T' (4b)
Introducing the zeroth-order sound speed as
o ey - [700
00 (¢)
Egs. (4) yield the following non-linear acoustic wave prgakdon equation:
25, 1) 025,51 — (029, M 5
Sty 0up'") — 0 ((cV)?0ep'V) = (V) 0ep 5 (5)

From Egs. (4), one also obtains

— — (0))2 (1)\2 —
—0e (pMo®) = StrQ(O)at((UQ ) ) T 8t((p ) ) +p(1>v<0)%. (6)

00 (c(0))2 2
The linear acoustic energy of quasi 1-D low Mach number flowthe nozzle is defined as
1 [E(— — (1))2
Ea:—/ {Q(0>(v(0))2+,\@7)}5d§. (7)
2 Jo 0 (c0)2

Assume that“) is constant in time. Notice that this amounts to supposditieahermodynamic
pressure®) = p(©)(t) is constant, which is a common assumption for open flowsdsggehe
discussion by Rehm and Baum [20]). Then, from Egs. (6) andtlié)time evolution of the
acoustic energy in quasi 1-D low Mach number flows follows,

St.d B, = —[(pMv©@8)(L) — (pMv©8)(0)]. (8)

3.2 The Rhie-Chow-like interpolation method

Thex axis along the nozzle of lengthis divided intoN cells of lengthAz. A finite volume

formulation in co-located arrangement is applied. For sakeresentationp© andp!) are
designated by andq hereatfter.

1~ denotes the large scale averaige, the average ofx| < 1/M, asM, — 0. This average operation allows
to separate features at the acoustic length scale from #itase convective length scale through the so-called
sublinear growth lemma ; seq. Klein [11] or Meister [17] for details.
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Suppose that Egs. (4) are discretized into

quH-l - uzn a n n
- + M(Qi-i—l/Q - Qi—1/2) =0, (9a)
n+1 n
" —q b " b 1512 — Sic1)2
T (i — ) + g T =, (9b)

wherer = At/Az, a = 1/(St,0®) andb = vp¥ /St,. In particular, it is thus assumed that the
variations ofo(®) in space are negligible at the large acoustic length scale.

Here, the momentum interpolation method is referred to @a&tiie-Chow-like interpolation
method since it is applied to the velocity equation. For H§3, this method is formulated as
follows. The procedure consists firstly in the identificatimf the non-linear convective term
B; in the momentum (or velocity) equation the face velocityasived from. Since Eq. (9a) is
linear, B; is zero. Thus,

7 7 a n n
B; = — + E(QiJrl/Q — i 1) (10)
Eg. (10) must be compared to Eq. (20) (see Section 4.2), whittte discretized momentum
equation as formulated for the momentum interpolation wetihe second step in the Rhie-
Chow-like interpolation method consists in the assumpitian an equation similar to (10) may
be written on the face+ 1/2,

u?jll/z — Ul a

- +E(Q?+1—q?)-

Bi+1/2 =

The third step is then to use a central interpolation on timective terms. Here,

1
B2 = Q(Bz + Bit1), (11)

from which the face velocity expression is derived. In thegent case Eq. (11) results simply

in B;;1/, = 0, and thus

n+1 n

1:1/2 — Uiya)2
T

U a

0= + M (g —ai)-

The definition ofg; ., » must be given. Notice that this choice is independent ofdle feloc-
ity definition provided by the momentum interpolation. Iretbresent study, the face pressure
is defined by central interpolation. The reason of this oheidl be made clear in the fol-
lowing section by examining the first-order modified acaustave equation. The momentum
interpolation scheme for the asymptotic linear acoustieengquation, completed by a central
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interpolation of the pressure, is summarized as

- + M(Qi-i—l/Q - Qi—1/2) =0, (12a)
Tl+1 n
4 — 4 b n+1 n+1 b n+1 Si+1/2 — Sl'*l/2 _
- + M. (ui+1/2 - ui—1/2) + M. Y S; =0, (12b)
T
i+1/2 i+1/2 a n n
e - 2y M(qz‘ﬂ —q') =0, (12c)
n 1 n n
Qiv1/2 = 5(% + Gi'yq)- (12d)

When the cross-section aréais constant, scheme (12b)-(12c) is a classical scheme used

to solve the linear wave equation on a staggered cartesiah (see Sections 3.3, 3.4.3 and 6

in [7] in the 2D cartesian case). This staggered schene eentered pressure and staggered
velocities - is sometimes called MAC scheme and was firstbppsed by [10] to solve the
incompressible Navier-Stokes system. In particular, firsven in [7] that the MAC scheme
applied to the linear wave equation is accurate at low Machber on a 2D cartesian mesh.

It is also underlined that this scheme does not suffer froynclaeckerboard modes due to the
even/odd decoupling. These results together with Egs. j(E&fy the good behaviour of the
Rhie-Chow scheme on a 1D/2D/3D cartesian mesh at low Machbagnat least when the
cross-section areét is constant in the 1-D variable cross-section case.

3.3 First-order acoustic wave equation by the Rhie-Chow-ke interpolation method
From Egs. (12b)-(12d), one readily obtains:

n+1 n n—1 n n
q _ qu +q ab n n n ab S¢+1/2 - S¢—1/2 Qiv1 — 41
= - w(%ﬂ —2¢7 +q; ) = w( S, 5 - (13)

Notice that the first-order modified equation associated #g. (13) is

ab ab d,S
Onq — W&mq = WT8:EQ7 (14)
or else, Ls
Onq — abOeeq = abg—ﬁgq, (15)

S

which is identical to Eqg. (5), under the assumption of a dgngP) constant at the acoustic

length scale. As a direct consequence of this result, theséicaeenergy equation (8) is retrieved
at the discrete level, with a second-order error when pariodundary conditions are adopted.
This confirms the suitability of the Rhie-Chow-like intetatton method for the calculation of

acoustic wave propagation in the 1-D variable cross-sectise at low Mach number.
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4 Analysis of the momentum interpolation method with the Eukr equations
4.1 Pressure correction algorithmic framework

The algorithm used for solving the Euler equations (1) waaibsl in our earlier work [18].
Here, it is briefly recalled in order to make the paper sefitamed.

To simplify the presentation, the velocity is assumed todmtive. Each time-step — n+1
is decomposed into iterations denoted by the superskrigt the first iteration of the time-
stepn, one hask = n. The superscriptsx, x and/ denote 'pre-predicted’, predicted and
corrected quantities of each iteratibn denotes the slope limiter. Practically, no more than
five iterations are allowed, and the so-called Bounded @keskope limiter was chosen in the
unsteady low Mach number flow calculations. The ralig Az is denoted byr.

4.1.1 ’Pre-prediction’ step: Construction of the common tlansporting velocity

e o7 from
Str Kk n n— SZ 1 Hk 1
;(301‘ — 40! + o) + TJF [0 + 5%(9%(@? - Q?—l)]vfﬂp

_ Si—1/2
Si

1
[Q:il + §¢i—1(9k)(9f—1 - Q?—Qﬂvf—yQ =0

k
1
o ()" = ovi , (eB) = Wp_z T+ 50 ()

e Transporting face velocity:

1
UiT+1/2 = (0v)i%1)2/0%12 Where o7y, = (o + of)

2

How (ov)7%, , is defined is the matter of Sec. 4.2.
4.1.2 Prediction step
o p; =}
e or from

St, . . e U R S D T

o (307 — 4o + 0/ ) + T@ [Qz‘ + 5%‘(9 )0 — Qifl)]viJrl/Q

Sic12 ¢ 1
- S~/ [Qzel + 51?1'71(0]6)(@?71 - Q;iQ)]Uszlﬂ =0 (16)
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e (pv); from

23 [3(ov); —4(0v); + (ev)i™']
+ 22 )+ Sunlen) )t — ()T}l

_ S@'Szﬂ {(Qv)fﬂ + %wil((Qv)k)[(gv)fl — (Qv)fﬁ]}vz{lp
1

1 k k k
+ M2, (Si+1/2pz'+1/2 - Si—1/2p¢71/2) = M%Sipi (Si+1/2 - Si_1/2)

P 1 [(ev)iP?
oy—102 g

and (oH); = (0E); +p}

4.1.3 Correction step

e p; from

Sty n " Siv1/2 Si-1/2

S BB — 4(B)! + (0B)i '+ P (o), — =5 (ovH) )y = 0,
where

(QUH)fill/z = (QH)?H/zUErl/z + H o o(0V)ig1 /0 + (QH)§+1/2Uz'T+1/27
(eH)i 12, Hiypo @ upwinded in second-order accurate form

2
(QH);—H/Q = v 1 ;+1/2>

p§+1/2 = f;(Mz*)p; + f;(M;H)p;H, (17a)

1(1 £ si >1
where f=(m) — | 2L Esisnlm) o m) (17b)

1mE1)22Fm) £ zm(m® —1)7 , |m| <1

2T

! =————[S;1pi — Sip — 1 Sit1—S;)]. 17¢c
(Qv)z+1/2 3M§SZ-+1/2[ +1Pit+1 Di pz+1/2( +1 )] (17c)

Notice that with Egs. (17a)-(17b), the pressure corredidhe face is that given by the AUSM
scheme (see [14]). Eq. (17¢) is the SIMPLE approximatiomgfasi 1-D flows.
e (ov); from

3 / SZ / 1 / /

Z(QU% = _%ﬂ{(@v)i + 5¢z((9“)k)[(97))z - (Qv)ifl]}viTJrl/Q

Si— / 1 / /
sk {(Qv)ifl + 51%'71((@@)]6)[(@@)171 - (Qv)ifZ]}vafl/Z

1

+
Si
- M2S. [Si+1/2p;+1/2 - 1'71/2]9;,1/2 - p;<5i+1/2 - Siq/z)]

8
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4.1.4 Updates

¢ Cell quantities:

P}
pitt =i, ot =4 (1 " ﬁ) . (o0)i ™t = ()] + (ov);

)

k+1
* p;

(0E)J* = (0B); + Vo1 (oH)EH = (oE)F +pit!
¢ Cell-face quantities:
Face pressure and face velocity updated by the AISkheme (see Eqgs. (17b) for the defini-
tion of fF):

pi s = FEOME PP + fr (MET !

and

k+1 k+1 MkJrl

i+1/2 = Ciyr2Viv1y2

where the face sound spe€g, is defined by:

()

01/2 = min{EL, ER},
with

&, = (¢*)?/max{c’, v} , ér = (¢)?/max{c*, —vr} , (c¢")? = MH

v+1

The face Mach numbe/; ., is given by

Miy12 = far(My) + f(Mg),

where
1
oo i), m| > 1
fiitm) {ii(mi 1>+ 1(m*=1)?, |m <1
4.2 The Rhie-Chow-like interpolation method for quasi 1-D fows

The discretized momentum equation (1b) at the pre-predictiep reads:

it; [3(ov)7* — 4(ov)} + ()i '] + Slg—jﬂ{(gv);* n %wi((gv)k”(gv)f (et
P R NP (P P 0 S

1 1
+ m(5i+1/2p§+1/2 - Si71/2p§—1/2> = mpf(siﬂﬁ - Si71/2)- (18)
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Setting

Siv1/2
Ay = 3, Vit1/2

and

Bi= — T2 (000 — 0Tk

Si—1/2

+SZ_

** 1
{(ov)iZ, + §wi_1((gv)k)[(gv)f_1 - (Qv)f—Q]}Uf—l/za (19)
the momentum equation (18) may be re-written for conver@ersc

2St, I
- (QU)i +

( 3St,
2T

n—1 *x
)+ S ov);

B; = Az’(QU);* -
+ —1 (Szﬂrl/ﬂpl‘ﬁ 12 — z‘fl/zpl-C 1/2) — —1 pk(SiJrl/Q - Si*1/2)' (20)
M2S; +1/ -1/ M2S;""

The first step for momentum interpolation is to assume thahdag equation holds on the face
i+1/2,

2St, . o, ., 3St
Bit1y2 = Aiv172(00)51 )2 — — (V)41 /2 + _(QU)Z-Hl/Q + ——(0v)F1)2

2T 2T

1 1
————(Sinaphi — Sipf) =~ p(Si1 — Si), (21
+ M?Si—l—l/Z( +1DPi+1 pz) M%Si+1/2pz+l/2( +1 ) ( )

where A, ,/» and B, ,,/, have yet to be defined. Several alternatives for definitior of /,
and B, /, were studied in our earlier work [18], where unsteady low Maamber flows in-
cluding acoustic calculation were considered. We obsetiratithe definition of4;,,,, and
B/, affects directly the time consistency of the scheme (seeeats [12, 19]). Two ways
of interpolation that ensure that the steady state (if angscot depend on the time-step were
identified: the Rhie-Chow-like interpolation method and thethod of interpolation suggested
by Lien and Leschziner [13]. In [18] we also recognized thatmethod of interpolation sug-
gested by Choi [2] is identical to that by Shetral. [22], and that this method gives time-step
dependent steady state. Notice that the method proposed dydLGu [12] is based on the
reformulation of the method by Choi [2] in the time-marchirgmework. In the present semi-
implicit framework, the method by Li and Gu [12] can there&fdre identified to that by Choli
[2]. In the following, the Rhie-Chow-like interpolation rid is presented in the context of
guasi one-dimensional flows.

To define the face velocity by momentum interpolatidn, , » and B, , in Eq. (21) have
to be defined. As recognized in [19] for incompressible flaavs] in [18] for low Mach number
compressible flows, the method presented for steady prabietme pioneering work of Rhie
and Chow [21], is also suitable for solving unsteady proldenfihis method consists in the

10
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linear interpolation of the convective terms of the diseel momentum equation (see Egs.
(20)-(21)), as follows:

By _ 1 Bi | Biny (22)
Aivyip 2°A0 Aip
Setting
" 1 3St,
a; - 9
+1/2 Aops 27
the mass flux obtained from Eq. (22) is
1 Bi Bi+1 1 k k
o) :7(_+ )_ Sit1Pip1 — Sib;
R 2ai112 \Ai A ai+1/2Ai+1/25i+1/2M%( i )
k
Diy1y2 Sty 1
a¢+1/2A¢+1/252‘+1/2M%( i ) 2701172404172 (@0)iaje = (@] - (23)

To defineA, ., in EQ. (23), itis usual to set (se. [16])
1 1.1 1

= —(— + .

Ai+1/2 2 (Az' Az‘+1)

(24)

5 Numerical experiments

A five-meter long converging-diverging nozzle is consideréhe cross-section area (dimen-
sions in meter) is given by

0.1, 0<x<10/28
55 \ 2 55\ 4
S(z)={ 0.1 {0.4+0.6 {2 (”C;}) - (ﬁg) ]} 10/28 < x < 100/28
28 28
0.1, 100/28 <z < 5

A downstream propagating Gaussian acoustic pulse in a fatemhong pipe is generated
through a superimposition onto a mean flow, with constansiten, = 1.2046 kg/m?, velocity
vo = 0.030886 m/s and pressurg, = 101 300 Pa, of a perturbation of pressure, density
do = op/c3, and velocitydv = dp/(0oco), Wherecy = /vpo/0o- At t =0,

(x —0.2)?

op = 200 exp [— 52
o

] Pa, where ¢ =2 x 1072 m.

In this test case, the Mach number of the background flooi$. The time-step is chosen
so that the acoustiCFL number is abou®, which is allowed by the semi-implicit algorithm
used, see Section 4.1. The grid is uniform withoo cells.

The pulse propagation through the nozzle is presented in EigA soon as the pulse is
entering the varying nozzle section, its intensity is ew@lvas a decreasing function of the
cross-section area. So, it reaches its highest level atdhelenthroat. Since there exists no
dissipation mechanism, this behaviour is simply the sigreadf the expected constancy of the
acoustic power through the different sections of the nozzle

11
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Figure 1: Downstream propagation of an acoustic pulse in a five-metgy nozzlecf. Sec. 5. Pressure distri-
bution att = 0.00 ms, ¢t = 1.75ms, t = 3.50 ms, t = 5.25 ms, ¢t = 7.00 ms, ¢t = 8.75 ms, t = 10.50 ms and
t =12.25 ms.

6 Conlusion

This preliminary study is encouraging. Indeed, it dematiss that the proposed Rhie-Chow
based algorithm for quasi 1-D sound propagation in a noz#le avlow Mach number mean
flow is able to produce physically sound results. Since inpitesent configuration the Mach
number is very low, it is expected that the Doppler effecoregd by Campos and Lau [1] is
absent in the simulated flow configuration. Future work walthcentrate on assessing the capa-
bility of the proposed algorithm to accurately capture trappler shift that must be observed
as soon as the Mach number of the backflow is sufficiently aszd.

12
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