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Abstract. Inverse analysis has been established as an ieffetbol for parameter
identification of physical models in many fields @il engineering. One of the main issues
in inverse analysis is defining the well-posedrafsthe problem when a limited set of data is
considered. In fact as shown in previous work, l[deation and the number of the sensors
providing the experimental data greatly affect #toeuracy of the inverse procedure. In this
paper it will be shown that, under certain circuemses, it is possible to approximate the
global field as a linear combination of the expenal data. This provides a rational basis for
the choice of the experimental equipment by minimgighe effect of the measurement error
on the solution of the inverse problem. A numera@pplication regarding the estimation of
the main parameters of an advanced mesoscale rfardelasonry structures highlights the
practicality of this study.

1 INTRODUCTION

Inverse analysis has been established as an efectdl for parameter identification of
physical models in many fields of civil engineeridg, in industrial applications ([2], [3]) and
for the solution of in-situ diagnostic problems]([5], [6]).

In recent years, several methods for solving stmattinverse problems have been
proposed [7] but, as very often only a limited st measured data is available, the
minimization of the discrepancy function represetite most popular technique used in
practical applications.

One of the main characteristics of inverse probl&rhat they can be severely ill-posed
even when the corresponding forward problem is ‘we#led. According to Hadamard’s
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definition [8], an inverse problem is well-posedemhi) the solution exists, ii) it is unique,
and iii) it is stable, i.e. the solution of the thebed” problem remains in the neighbourhood
of the “exact” solution also when a small noiseplied to the known terms. Moreover even
if the existence and the unigueness conditions, lioisl important to study the stability of the
solution by accounting for noise effects, sinceytoannot be neglected when solving real
problems.

An inverse problem may be ill-conditioned in a glbtsense or only for specific
measurement data. In the first case, it is imptesdib determine univocally the parameter
vector by means of inverse techniques even wherfulhéeld measurements are known.
This means that the experimental setup has beenypdwosen, and the sensitivity of the
response (in a global sense) to the variation efitiput data is very low or null. However,
even if the problem is globally well-posed, it mag possible that with the available
experimental data, the sought parameters are $grorftyenced by noise effects. Thus since
type, number and location of the sensors usederedperimental tests are usually chosen in
an empirical way, a rational methodology for theemsment of the experimental equipment is
critical to exploit the full potential of the inv& procedure.

In this work, it will be shown that the use of tmielement (FE) models allows the
approximation of the global field as a functionaofimited number of variables. If these are
the measurable data, it is possible optimize theliection so as to control the propagation of
the error from the measurements to the global .fiEldthermore it will be shown that the
global field obtained this way from the experimérmtata is strictly linked to the solution of
the corresponding inverse problem, thus controltimg error in the “generated” global field
means controlling the error of the inverse proceduarterms of material parameters. The
“model reduction” is achieved by means of Propeth@gonal Decomposition [9], while the
choice of the sensor location can be seen as amisgtion problem, where the aim is
minimising the effect of the noised data on thebgloresponse description. Hereinafter a
practical application of the proposed approachigsussed. This corresponds to a numerical
application where the main material parameters dordetailed mesoscale model for
unreinforced masonry [10] are obtained from a sarpkt set-up. The application of inverse
analysis techniques to this material model was stigated by the authors in previous
research [6], where the need for an optimal sekpé&rimental data was pointed out.

2 OVERVIEW OF THE ELASTIC INVERSE PROBLEM

Let us consider a mechanical system, of volulhend boundarg®, defined by the
positionx in the reference configuration. It is known thia quations governing the quasi-
static behaviour of the system are of three diffetgpes:

1. Equilibrium equations;

2. Compatibility equations;

3. Constitutive equations.

In direct (forward) problems, the aim is obtainthg vector fieldu and, consequently, the
tensor field, by solving the system of Partial Biffintial Equations (PDEs) given by the
above mentioned equations and the boundary conditibhe closed-form solution of such
PDE system is known in very special cases; geneitatlan be approximated using a Finite
Element discretization.
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In inverse problems together with the previouslyntraned unknowns, the constitutive
parametergp, representative of the used material model, abetsought. Clearly, the problem
becomes under-determined, so some new conditiorestbaébe added. These new conditions
may be obtained from experimental measurements t@dikeng the tests.

Let us suppose we have a mathematical model (& an&del)F(p, x) which, once the
geometry, the spatial distribution of the matepedperties and the boundary conditions are
known, gives the displacements as function of théenml parametens

u(x) = F(p,x) Q)

In the hypothetical case in which the full displaemnt fieldii(x) is known, a necessary
condition for the solution of the inverse problesrihe equality between the computed and the
reference fields,

F(p,x) =u(x)inB 2

In globally well-posed inverse problems, this cdiogh is also sufficient, and the most
widely used method to solve inverse problems isntirémization of a “cost” function which
measures the discrepancy between the measurecnidtdne computed counterparts. With
this approach, the optimization problem to be sblge

p = arg min ( f 15(x) — F(p, x)||2dV) 3)
p B

where ||-|| is a suitable norm measuring the discrepancy ketwbe computed and the
reference displacement.

Since Eqgn. (2) is an overdetermined system, thatieal is exact only in absence of noise
in %(x); otherwise it is a solution in a least-square seardd its quality depends on both the
noise and the conditioning of the system.

The hypothesis of a whole displacement field béingwn is usually satisfied only for
small specimens, restricting loading conditionsclsuas plane strain) and particular
measurement equipment (i.e. Digital Imaging Cotrefa[11]). Conversely in most common
cases, only a discrete number of displacement memsumts is available which can be
obtained using extensometers or trasducers (gatigrreferred to asensors). Thus it is
critical to establish the amount of informationread by the experimental data, and how to
select the optimal position for the sensors.

3 THE CASE OF A DISCRETE NUMBER OF EXPERIMENTAL DAT A

When the full displacement field(x) is not known, and only a limited set lofdataii; is
available, it is common practice to replace thebfmm (3) with the following:

L
p = arg min (leﬁi ~F(p, x,->||2> )
P
i=1

or, sometimes, with others having more complicdtechs involving weight matrices and/or
regularization terms. In Eqgn. (43,is the position of the i-th sensor.

While the solution of Eqn. (3) is the g®twhich fits best the global experimental response,
nothing is known about its relationship betweengbleitionp, of (4), which only fits best the
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data provided. It is intuitive thaim; _,, ., p, = p1, but, for finite values ok, the discrepancy
in the solutionp, — p4is not only function oL, but also of the position;, and there is no
guarantee that increasing the amount of data dmpdove the accuracy of the estimation (as
proved in [12] with reference to an inverse problehgravity). In the next subsection, the
relationship between the displacement field anerete number of data is investigated.

3.1 From a displacement field to discrete values

Using the Finite Element Method the domain can Iserdtised into finite number of
elements and the dependencyuobn the positiorx in the global reference system can be
made explicit by means of the relationship:

u=F(p,x) = B,(x,) A, U(p) 5)

in which the subscripe indicates the element which the point P with global local
coordinatesx and X, belongs to. The matriB(x.) collects theshape functions, which
depend on the type of finite element considere@ tfansformation matriR transforms the
global nodal displacement vectdrinto the local reference system. Since the shapetibns
and the transformation matrix are known a pridig tlependence of the full displacement
field on the material parameters is completely abtrized by the knowledge of the
relationshipU = U(p). From a theoretical point of view, imposing theuglifty between the
displacement field (functional equality (2)) is @éguent to imposing the vectorial equality:

Up) =T (6)

whereU is theN-sized vector collecting the displacements of theéeisan which the structure

is discretised. If we neglect the possible erreegiby the used shape functions, the inverse
problem is solved when a limited number of disphaeats i.e. the nodal displacements are
known, and the infinite-sized system (2) is repthlog theN-sized system (6).

In most cases, the choice of the nodal discretisafor the analysed domain is clearly
distinct from the choice of the nodes the displaets of which are recorded during the test
and usuallyN is much larger thah. What we want to prove, though, is that, orice
displacement$i; are available, it is possible to express the velitas linear combination of
them.

Let us suppose that it is possible to exploit ttpeshdence dfl onp by simply choosing a
convenient basis. In this work, the choice of tleevrbasis has been done by analysing the
behaviour of the structure using Proper Orthog@®domposition (POD, [9]) and varying
randomly. Thus the displacement field expressademew basis reads:

K

U®) = ) a®) @i = ® a®) ")
i=1

whered® is anN x K matrix representing the new basis afd) is a vector collectind
amplitudes. This way, the dependencepan restricted to the amplitudes, while the basis i
fixed once-for-all. IfK=N, U is simply expressed in a different equivalent §aGin the other
hand if the variation of the material parameteracts onU simply modifying the relative
importance of a limited numbé&i<<N of “shapes’p;, the advantages in expressidgas in
(7) become apparent.
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In fact let us consider a displacemeant From (7), it can be written as:
u; = @ a(p) ®

where ®! is the 3 x K matrix obtained choosing the rows d&f corresponding to the
displacementsy;. Consequently, the vectar collecting thelL displacementsu; can be
expressed as:

u=®,a(p) ©)
with:
1
o =|" (10)
d)L

On the other hand, a relative displacemiurt between two points (respectively placed at
x“! andx*?) along the direction of the line connecting there.(as in the case of relative
displacements measured by transducers in physisis)tcan be expressed as:

T
Auk = (uk,Z _ uk,l) = ckT(q,k,z _ (Dk,l) a (11)
wherecy, is the vector of the director cosines of the dicgcconsidered. The matri®,. now
becomes:

T(pl2 _ Ll
CLT(q)L,Z _ (DL,I)

If rank(d,.)=K, it is possible to invert eqn. (9) obtaining:
a=o,u (13)

where®,' is the left pseudo-inverse matrix &. (®,'=®,1 if ®, is squared). From (7)
and (13):

U=dd, u=Pu (14)

3.2 The choice of the sensors

Expression (14) is a linear relationship betweea tlodal displacement vector and a
limited set of data (both absolute displacemengs.. €10), or relative displacements, eqn.
(12)). Thus it is natural to investigate how aroein u propagates into the global response.
Applying a perturbation ta in Egn. (14) and subtracting the unperturbed esgiom it can be
obtained:

6U =P du (15)
Reminding one of the basic equations for the ndrenmoatrix:
18Ul < [IP]| [|&ull (16)

it is clear that given an error in the measured dafusually not controllable), an upper
bound for the error in the vecttf (and, consequently, in the global field) is given the
norm of the matriXP. SinceP changes with changing sensor locati¥nghrough the terms of
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®,"), a rational approach in the choice of the measare data may be the minimization of
the corresponding norfiP||:
Xs1
] = arg min(IP(X)I) (7)

X
XsI,
wherexg indicates the position of the i-th sensor. Althlbwatifficult to express in an analytical
form, the optimization problem (17) can be eagibated by using meta-heuristic techniques
such as Genetic Algorithms [13].

It is important to point out that there is an ingflirelationship between the global field
evaluated in (14) and the solution of (4). In fawglecting the error made in the compact
representation (7), the displacemedtare obtained by solving the overdetermined syg8m
using a least-square approach. This representgltioal displacement field whose nodal
displacemenu fits best the experimental data among all posseyeesentations given by the
FE model. On the other hand, that is the same itefinfor the solution of (4), which
corresponds to the vectprgiving the best fitting nodal displacemerép, x;) in a least-
square sense. It results that the solution ofritierse problem will be as accuratelas: P u
and the propagation of the error in the inverse@dare can be easily controlled by a careful
choice of the sensor location.

X =

4 A NUMERICAL APPLICATION

In this numerical application the main elastic miate parameters of an advanced
mesoscale model [10] for masonry structures areaidd utilising inverse analysis
techniques. After a brief description of both thatemial model and the FE description for a
specific experimental setup, the influence of randerrors in the displacement field on the
solution of the inverse problem is analysed. Whiis fiim a “pseudo-experimental” approach
is used and a vectgris fixed a priori, while the displacements areleated performing FE
analysis eventually perturbed by a random noise. ddmparison between the solution of the
“perturbed” inverse problem and the known solutedlows an accurate investigation of the
noise effects.

4.1 The material model

In the mesoscale model employed here to represaht/idlock-masonry [10], blocks are
modelled using continuous 20-noded elastic sol@meints whereas mortar and the brick—
mortar interfaces are modelled by means of 16-n&i2aonlinear interface elements. The
interface local material model is formulated inmter of one normal and two tangential
tractions ¢ and relative displacements evaluated for each integration point over the
reference mid-plane. In the elastic range, theyiaked by the expression:

Ty kV 0 0 Uy
g = kou {Ty} = [ 0 kV 0 l{uy} (18)
o 0 0 kN U,

in which specific elastic stiffness values are adered assuming decoupling of the norikal
and tangentiaky stiffness. In the following the unknowns are reyerged by the vector
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P= [:V] while brick Young modulus is assumed to be knodaro-thickness interfaces are
N

also arranged in the vertical mid-plane of all BEydut in this work their stiffness is set very
high to model the continuity of the material. Thisterial model was previously developed
and implemented into ADAPTIC, a general finite etgrnhcode [14].

4.2 The experimental test

The experimental test analysed in this work is anm@ssive diagonal test on an
approximately squared masonry panel. It is widedgcuin practise ([15], [16]) to estimate
strength of masonry as a homogeneous materiahignpgper it will be shown that this test
can provide also useful information to obtain tHasec properties of interface elements
representing mortar joints when using the previpdsiscribed mesoscale model.

The experimental setup is shown Rigure 1-a. A 11761200<120 mn{ large masonry
panel, made up of 2560x120 mnf large bricks and 10 mm thick mortar joints is sagd
to an imposed diagonal displacemept=ul mm. The structure is assumed to behave
elastically. The pseudo-experimental model is emamposing k = 50 N/mnf, ky = 120
N/mm?®, B, = 2500 N/mrf, v = 0.15, where kand k are the mortar interface stiffness values
described in section 4.1, and Bndv are the brick Young modulus and Poisson ratio,
respectively. The displacement field of the pseexperimental model is shown Fgure 1-
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Figure 1: (a) Experimental setup and (b) pseudo-experineigplacement field.

4.3 The POD analysis

To create the POD basis, 200 FE model sampleswaiiable material parametepshave
been considered. The samples have been generatedylrygp in a reasonable rang&gble
1) by using a pseudo-random technique (i.e. Soluplesgce [17]).
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Table 1 Variation range of the interface elastic stiffees

Parameter Lower bound  Upper bound Step
(N/mn) (N/mn) (N/mn’)
ky 10 300 1
Ky 30 500 1

In the POD theory, it is possible to prove that #reor in the POD approximation is
controlled by the ratio:

K 2.
r= i=14 (19)
i

with:
* K number of chosen modes;
e M number of samples
« )i i-th eigenvalue of the modified correlation matbx U'U. U is the so-called
snapshot matrix, i.e. the matrix collecting the displacensenf the samples as
columns.
The analysis shows that 3 modes are sufficientpioraximate the response, as they
provider = 100%. A graphical representation of the three modefigsvn inFigure 2.

Mode 3

0.000285 0.0145 0.0287 0.000158 0.0149 0.0297 0.000492 0.0144 0.0283
L - E— e

Figure 2: Basic modes after the POD analysis.

4.4 Error propagation analysis

In the analysis different measurement setups amsidered: i) setup 1 - the whole nodal
displacement vectoU; ii) setup 2 -nine sensors measuring relative ldments in the
vertical directionFigure 13-a; iii) setup 3 - nine sensors placed as the omésoof the
optimization problem given by eqgn. (17) and sohNlyda Genetic AlgorithnFigure 13-b.
This is not described here for the sake of briefnes
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Figure 3: (a) Sensor setup 2 and (b) setup 3.

A uniform random noise of amplitud¢0.01 mm has been applied to the pseudo-
experimental displacement field. By means of Edd) (it is possible to evaluate the “best
fitting” displacement field, given the set of daieovided by the three measurement setups,
and compare it with the “real” field shownkigure 1-b. The results are reportedkigure 4.

Some considerations may be done. The knowledgheobverall perturbed displacement
field allows for the determination of an error-aaged field which is affected by a remarkable
less inaccuracy. Expression (14) represents ao$dregularization” of the field, averaging
the error. In the “regularized” version of the figFigure 4-b), the maximum error (0.00257
mm) is about six times smaller than the maximurtheoriginal perturbed field (0.0167 mm,
seeFigure 4-a). As far as sensor setup 2 is concerned, iteigtly affected by the error in the
measurements (maximum error in the generated égilcl to 0.255 mm). On the contrary, a
rational arrangement of the nine sensors (setugl@)s for a minimal propagation of the
error onto the generated field (maximum error 07006 1m).

The Frobenius norm of the matriR (Eqn. (16)), which is an upper bound to the
perturbation of the generated field, as shown ttige 3.2, reflects these considerations. In
fact for the proposed setups we have:

« |IPllp, =VK =1.732
® ||P||F,2 = 1239.2
b ||P||F,3 = 37.36



C. Chisari, L.Macorini, C. Amadio and B.A. lzzuddin

L
~|
™ Ny
==
Random Noise (mm) Sensor setup 1 error (mm)
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Sensor setup 2 error (mm) Sensor setup 3 error (mm)
0.00623 0.131 0.255 1.21¢-005 0.00339 0.00677
[ - T B — ]
(c) (d)

Figure 4. (a) Random noise, (b) “best fitting” displaceméald for sensor setup 1, (c) setup 2 and (d)s8tu

4.5 The inverse analysis

Inverse analysis has been carried out assessirapility of the sensor setups described in
the previous section to solve the calibration peabfor the elastic interface stiffness values.
30 perturbations of the pseudo-experimental digpfent field (in the range-0.01 mm)
have been considered, and each of them has baemedss known term in the discrepancy
function (4) for the sensor setup 1. Furthermore dach perturbation, the nine relative
displacements corresponding to the nine sensastaps 2 and 3 have been evaluated. They
thus represent the variabl&s in (4), andL = 9 in these cases. The minimization of the
discrepancy function has been carried out by meatie Genetic Algorithm described in [6].
The results are shown Figure 5.

10
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Figure 5: Results of the inverse analyses with sensor sktap, 2 (b) and 3 (c).

The global well-posedness of the problem is cordoinby the excellent results obtained
using the whole displacement field (sensor setupidure 5-a), where it is clear that the
knowledge of the field allows an accurate estinmatas the material parameters even in
presence of a random noise. On the other handhkese analysis reflects the inadequacy of
the sensor setup 2 when compared against senagy 8etThe error in the parameter
estimation is practically unbound in the first casdile very limited in the other one. It
confirms what has been said about the represeetatss of the measured data with respect to
the global field, and, as consequence, the welkgosss of the inverse problem when a
limited set of experimental data is available.

5 CONCLUSIONS

In this work a numerical study has been carriedtounvestigate the well-posedness of
elastic inverse problems when different sets ofeeirpental data are considered. It has been
shown that it is possible to approximate the glabsgplacement field as a linear combination
of the experimental data. Furthermore, the dispred field obtained this way from noise-
affected data is strictly related to the solutidrine inverse problem when the same data are
used in the minimisation of a discrepancy functidhus it has been found that a rational
basis for the optimal experimental equipment (numdie location of the sensors) for the
inverse problem can be based on the control optbpagation of the error from the measured
data to the global field. The application of thegwsed procedure to a simple laboratory test
on a masonry specimen modelled by means of a masodescription confirms that a proper
choice of the experimental equipment is cruciaintintain the well-posedness of the global
problem.
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