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Abstract. The paper presents some exact formulas for the maximum deflection of symmetric 

beams, subject to different boundary and loading conditions, within the framework of the 

Refined Zigzag Theory, recently proposed for the analysis of multilayered structures. 

Considering sandwich-like stacking sequences, these formulas can be simplified further in 

order to be easily used for practical applications. Based on these results, two studies are 

conducted: on the contribution of zigzag deformation to the bending of sandwich beams and 

on the evaluation of shear correction factor based on the Refined Zigzag Theory.   
 

 

1 INTRODUCTION 

Sandwich structures are widely used in several engineering fields due to their high 

stiffness-to-weight ratio, impact energy absorption and noise reduction. Face-sheets are 

usually made up of stiff and high-strength materials, metallic or composite. Cores can be 

cellular (foams), honeycomb or corrugated. 

Modeling the mechanical behavior of sandwich structures is quite challenging due to the 

complex geometry of the core in some cases (honeycomb or corrugated) and to the high 

transverse anisotropy (faces are usually orders of magnitude stiffer than the core). The use of 

high-fidelity, three-dimensional finite element models allows successfully addressing both 

problems but with high computational costs [1]. Beam and plate theories can be used to 

reduce these costs but an adequate levels of accuracy is not always guaranteed. At first, the 

core layer has to be substituted with a homogeneous medium with equivalent mechanical 

properties [2]. Then, particular attention is required for the choice of the beam or plate theory. 

On one hand, equivalent single layer theories are computationally affordable but provide poor 

response predictions, in particular in terms of transverse stresses. The First-order Shear 

Deformation Theory (FSDT) requires the use of shear correction factors to allow calculating 

accurate global responses (deflection, vibration frequencies, buckling loads) [3]. On the other 

hand, layerwise theories accurately describe the local and global behavior of sandwich 

structures but involving a large number of kinematic variables. 

An interesting compromise between high accuracy and low computational costs is 

represented by the Refined Zigzag Theory (RZT) , a recently developed model for the 
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analysis of multilayered composite and sandwich beams and plates [4-6]. The theory is an 

improvement of FSDT since it takes into account the normal distortion (zigzag effect), typical 

of multilayered structures, through the enrichment of the FSDT in-plane displacement field 

with zigzag additional terms. The through-the-thickness shape of these terms is described by 

the so-called zigzag functions whereas the amplitude of the normal distortion is measured by 

the zigzag rotations, two kinematic variables that are additional with respect to the classical 

five of FSDT. Several papers have already been published demonstrating the accuracy and 

computational efficiency of RZT-based analyses. Analytic approaches (of the Navier’s type or 

with the Rayleigh-Ritz method [7-8]) and FEM solutions [9,10] have been used to evaluate 

the static response, the free vibration modes and the buckling loads of multilayered composite 

and sandwich structures. Nevertheless, a more practical engineering approach for the solution 

of the same problems would require simple formulas based on the key material and geometry 

properties of the structure.  

The present work aims at developing, in the framework of RZT, exact-analytic formulas 

for the static response of beams in planar bending. The focus will be on sandwich-like 

stacking sequences and on typical boundary and loading conditions. This study will also be 

the occasion to investigate how the normal distortion (zigzag effect) contributes to the 

deflection of sandwich beams. Moreover, the derived formulas will be used to obtain an 

expression for the shear correction factor of the Timoshenko beam theory. 

2 THE REFINED ZIGZAG THEORY FOR BEAMS 

In this section, the basic assumptions of the RZT for beams are reviewed and the equations 

necessary for the subsequent investigation are derived. For further details, refer to [4]. 

Consider a beam of length L, cross-sectional area 2A h b   made of N perfectly bonded 

orthotropic layers; each layer is denoted by the superscript (k). The beam is referred to the 

Cartesian coordinate system (x,y,z), where  ,a bx x x  is the beam longitudinal axis, and 

 ,z h h   the thickness coordinate. The thickness of the kth layer is 2h
(k)

. 
( )k

xE  and 
( )k

xzG  

denote, respectively, the kth layer axial and transverse-shear moduli. Only planar 

deformations in the (x,z) plane are considered. The displacement field of RZT is 

( ) ( ) ( )( , ) ( ) ( ) ( ) ( ), ( , ) ( )k k k

x zu x z u x z x z x u x z w x       (1) 

where 
( )k

xu  and zu  are the displacements in the directions of the x- and z-axis, respectively, 

the kinematic variables are the uniform axial displacement, ( )u x , the deflection, ( )w x , the 

average cross-sectional (bending) rotation, ( )x , and the zigzag rotation, ( )x . This variable 

represents the magnitude of the zigzag displacement, 
( ) ( )k x  , which models the cross-

sectional distortion. The zigzag function, 
( ) ( ) ( ) ( )( , , , )k k k k

xzz h G G  , has units of length, is a 

piecewise linear, 
0C -continuous function of the thickness coordinate and of the stacking 

sequence. 
( )k  is defined in terms of its layer-interface values, ( ) ( 0,1,..., )i i N  , and is linear 

with the thickness coordinate, z, within the kth layer between the two values ( 1)k   and ( )k . 

The interfacial values of 
( )k  are defined as follows 
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   ( ) ( ) ( ) ( ) ( )

( ) ( 1) ,

(0) ( 1)

2 , 1 1,...,

0, 0

k k k k k

k k z xz

N

h G G k N    

 





     

 
 (2) 

where 

11 ( )

( ) ( )
1

21 1

2 2

kNh

k kh
xz xzk

hdz
G

h hG G






  
   

   
   

  (3) 

represents a weighted-average transverse shear modulus of the total laminate. The complete 

derivation of Eqs. (2) and (3) can be found in [4]. The definition of 
( )k  can be extended in 

order to be also valid for some particular cases. For homogeneous single-layer beams, 
( )k  

would vanish according to Eqs. (2) and (3), thus leading to the Timoshenko beam theory but, 

by adopting the Homogeneous-Limit Modelling [6], the zigzag function is modified in order 

to make RZT capable of predicting highly accurate response quantities including the strains 

and stresses. Moreover, the zigzag function may be naturally and accurately modified for the 

case of laminates having external layers with low transverse shear moduli [8].  

The linear strain-displacement relations yield the strain field of RZT 

( ) ( ) ( ) ( )

, , , ,( , ) , ( , )k k k k

x x x x xz xx z u z x z w              (4) 

If each layer is orthotropic with the orthotropy axes aligned with the Cartesian axes, the beam 

exhibits a plane-stress behavior in the (x,z) plane, and the transverse normal stress 
( )k

z  is 

smaller than the axial and transverse shear stresses, the kth-layer constitutive relations are 

( ) ( ) ( ) ( ) ( ) ( ),k k k k k k

x x x xz xz xzE G      (5) 

The beam is subject to distributed transverse load, q
b
(x) and q

t
(x), (units of force/length) 

applied at the bottom and top beam surfaces. The end cross-sections are subject to the 

prescribed axial (Txa, Txb) and transverse shear (Tza, Tzb) tractions. Equilibrium equations of 

the beam according to RZT can be obtained using the Principle of Virtual Works (PVW) [4] 

, , , ,0, , 0, 0x x x x x x x xN V q M V M V         (6) 

where 
b tq q q   and 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,k k k k k k k

x x x x x x xz xz
A

N M M V V z dA                (7) 

are the stress resultants. Consistent boundary conditions, also obtained with the PVW, read as 

( ) or ( ) , ( ) or ( )
( , )

( ) or ( ) , ( ) or ( )

x x x x

x x

u x u N x N x M x M
a b

w x w V x V x M x M

       

        

 


 

    


    

 (8) 

where 

( ), , , , , , ( , )k

x x x x x x z
A

N M M V T zT T T dA a b                 (9) 

are the prescribed-stress resultants at the beam ends. The constitutive equations, expressing 
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the relation between stress resultants and derivatives of the kinematic unknowns, are 

 

   

11 12 13 ,
,

12 11 12 ,

13 12 22 ,

,

x x
x x

x x

x

N A B B u GA G G AV w
M B D D

V G G A G G AM B D D










                                            

 (10) 

where the stiffness coefficients are defined as 

       ( ) 2 ( ) ( ) ( ) ( )
11 12 11 13 12 22

1
, , 1, , , , , 1, , ,

2

h
k k k k k

x x xz
A A h

A B D E z z dA B D D E z dA G G dz
h

 


      (11) 

By substituting Eqs. (10) into Eqs. (6), the equilibrium equations expressed in terms of the 

kinematic variables can be written 

   

   

     

11 , 12 , 13 ,

, , ,

12 , 11 , 12 , ,

13 , 12 , 22 , ,

0

0

0

xx xx xx

xx x x

xx xx xx x

xx xx xx x

A u B B

GA w G G A q

B u D D GA w G G A

B u D D G G A w G G A

 

 

   

   

  

    

      

       

 (12) 

3 EXACT FORMULAS FOR BEAMS DEFLECTION 

Solution of Eqs. (12), subject to boundary conditions (8), depends on the applied loads. 

Let us consider first a beam subject to concentrated forces and moments only (q(x)=0). A 

general solution of Eqs. (12) can be found in the following form 

 

   

22 7 2 7 3

8 3 7 1 2 6 72 * *

11 11

3 2 52

4 6 3 5 1 23 * *

11 11

3 22 3 2 54

4 3 5* *

11 11

( ) cosh( ) sinh( )
2

1
( ) sinh( ) cosh( )

26

C C C C a
u x C C C a Rx a Rx x a x a

R D D

C C CC
w x C R C C C a Rx a Rx

R RR D D

C a C Ca
x x C a a x a

D D

 
        
 

  
         
   

  
       

   

 

8

22 32

3 1 2 4 52 * *

11 11

1 2 3

( ) cosh( ) sinh( )
2

( ) cosh( ) sinh( )

C aC
x C a Rx a Rx x a x a

R D D

x a Rx a Rx a





 
       
 

  

 
(13) 

where  1,...,8iC i  , 
*

11D  and R  are functions of the stiffness coefficients defined in Eqs. 

(11) whereas the ( 1,...,8)ia i   unknown constants are determined from the boundary 

conditions, Eqs. (8) (refer to [4] for further details). Solution (13) is valid not only when 

forces and moments are applied to the beam ends but also when there are concentrated loads 

at n internal points within the beam span. In the latter case, for each of the (n+1) beam 

segments between concentrated loads, the exact solution is in the form of Eqs. (13), thus 

8(n+1) unknown constants ia  have to be determined: 8 conditions will be obtained at the 

beam ends (Eqs. (8)), the remaining 8n conditions will enforce continuity of the kinematic 



Marco Gherlone 

 5 

variables (u, w, , ) and continuity (or jumps) of the resultant forces and moments (

, , ,x x xN V M M ) at each of the n internal points. 

We consider three example problems that are important for practical applications (see Table 

1). In particular, the three-point-bending and four-point-bending loading schemes are widely 

adopted for the experimental characterization of sandwich beams [11]. 
 

Table 1: Loading and boundary conditions of the considered example problems with concentrated loads. 

Geometry, loading and 

boundary conditions 

Boundary conditions 

at x=0 

Boundary conditions 

at internal points 

Boundary conditions 

at x=L 

 

0u w       / 
0x x

x

N M M

V F

  


 

 

0x xw N M M     
, , , , , ,x xu w N M M   continuous, 

xV  with a jump (F) 
0x xw N M M     

 

0x xw N M M     
, , , , , ,x xu w N M M   continuous, 

xV  with a jump (F/2) 
0x xw N M M     

 

Application of the solving procedure described above leads, for the case of symmetric 

stacking sequence ( 12 13 0B B  ), to the following expression of the maximum deflection 

 
3

max

11

2FL FL F h
w RL

D GAGA
      (14) 

where  and  are numeric coefficients,  is a coefficient depending on the stacking sequence 

and  is a function of the stacking sequence and of the length of the beam, L, through the 

product RL. For symmetric laminations,  and R are defined as follows 

   
2

212
11 12 11 22

11

2 ,
DG G G G

R h R AG G G D G D D D
G D G


      

         
      

 (15) 

,  and  (Eq. (14)) are different for the considered problems, see Table 2. 
 

Table 2: Coefficients  and  and function  for problems CF, 3PB and 4PB (Table 1). Simplified 

expressions for  are reported for the RL values that guarantee errors below 1% with respect to the exact 

definition. 

    Simplified expression for  

CF 1/3 1  tanhRL RL  1RL  (RL>3) RL  (RL>100) 

3PB 1/48 1/4  4 1 2 tanh 2RL RL  4 1 2RL   (RL>3) 4RL  (RL>200) 

4PB 11/768 1/8    4 28 1 2 1RL RL RLRL e e e    8RL  (RL>14) 
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When q(x) is the only external load, there is no general solution for the bending problem; 

depending on the boundary conditions and on the function q(x), an exact analytic expression 

for the kinematic variables could even not exist. The classical case of a simply supported 

beam with sinusoidal transverse load  0( ) sin /q x q x L  is here considered. Boundary 

conditions on both the beam ends prescribe that 0x xw N M M    . An exact solution for 

Eqs. (12) can be found in the trigonometric form 

       0 0 0 0( ) sin / , ( ), ( ), ( ) , , cos /w x w x L u x x x u x L        (16) 

Substituting Eqs. (16) into Eqs. (12), a set of algebraic equations is obtained that provides the 

amplitudes 0w , 0u , 0 , and 0  [4]. After some further manipulations, the maximum deflection 

of the beam (for symmetric stacking sequence) is found to be 

 

 

24 2 2

0 0 0

max 0 4 2 22 2
11

2
RLq L q L q L

w w R h
D GAGA RL


  

   


 (17) 

Some observations can be made on the exact formulas for maximum deflection of 

symmetric beams obtained using the Refined Zigzag Theory, Eqs. (14) and (17). 

 In Eqs. (14) and (17), the first deflection term is the one due to bending according to 

Bernoulli-Euler beam theory, the second term is the additional contribution due to 

transverse shear deformability according to Timoshenko beam theory ( GA  is the 

transverse shear stiffness of the beam), thus the third term represents the further 

deflection caused by the so-called zigzag effect modeled by RZT. 

 For both bending and shear contributions to deflection, the dependency on stacking 

sequence and the dependency on the beam length can be easily distinguished whereas the 

zigzag additional term has a more complex structure. In particular, this term does not 

depend simply on the length, L, but on a non-dimensional beam length, RL, where R is a 

stacking-sequence related coefficient (Eqs. (15)). 

 For very short beams subjected to concentrated loads (Eq. (14)), the bending deflection 

contribution ( 3L ) in negligible with respect to the shear one ( L ). The zigzag 

contribution is also negligible, since any  function is 3L  for small L (Table 2). 

Similarly, for the beam subject to distributed sinusoidal load (Eq. (17)), the bending and 

the zigzag contributions are 4L  in the limit for short beams and are thus negligible with 

respect to the shear deflection that is 2L . 

 When considering long beams, it is the bending deflection term to prevail. This 

contribution is 3L  for the case of concentrated loads (Eq. (14)), 4L  for distributed 

loads (Eq. (17)). Both transverse shear and zigzag terms can be neglected being L  or 
2L  for concentrated and distributed loads, respectively. 

 The use of Eqs. (14) and (17) involves some stiffness coefficients of the RZT (in 

particular G , 12D , 22D ) that can be somehow difficult to calculate whereas both 11D  and 

GA  are, respectively, the usual bending and transverse shear stiffness coefficients. 

Taking into account these observations, the problem of sandwich beams will be considered in 

the next Section in order to derive easier-to-use formulas for the maximum deflection and to 
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investigate the importance of the zigzag effect at different beam-slenderness regimes. 

3 SIMPLIFIED FORMULAS FOR SANDWICH BEAMS DEFLECTION 

A symmetric sandwich beam is considered. Each face has thickness hF and is made of an 

isotropic material (EF is the Young modulus and GF the shear modulus), the core has 

thickness hC, Young modulus EC and shear modulus GC. The following ratios are introduced 

, , , 2E C F G C F h F Cr E E r G G r h h L h     (18) 

For common sandwich structures, the following assumptions can be made 

1 100, 1 100E Gr r   (19) 

whereas no limitations are considered for rh, thus including in the analysis sandwich beams 

with thick faces. Using Eqs. (18) and (19), the following simplified expressions are obtained 

in order to compute the zigzag contribution to maximum deflection in Eqs. (14) and (17) 

   
  

 
 
  

2
3 2

0 0 3 2

0

3 2

0

2 12 18 6
2 1 2 , 1 2 ,

8 12 61 2 2

8 12 61
1 2 , 6

3 2 2

h h h h E

h h

h h h Eh h G

h h h EF

F G h G

F h h E h G

r r r r r
R h R r RL R r

r r r rR r r r

r r r rG
G G r r R r

E r r r r r

 
   

   
     

  


 

 (20) 

The use of Eqs. (14) and (17) together with Eqs. (20) provides the maximum deflection for 

the considered sandwich beams expressed in terms of known or easy-to-calculate quantities. 

Using these simplified relations, it is also possible to investigate the importance of the 

zigzag contribution to the maximum deflection at different slenderness regimes. Let us 

consider, for example, sandwich beams subjected to concentrated loads. Eq. (14) can be 

simplified as follows in order to highlight the effect of the slenderness ratio,  

 3

max

0

F F F
w

bD bGbG
         (21) 

where   3

0 11 2D D b h . The effect of the material and geometry ratios (rE, rG, rh and ) on 

the maximum deflection will be now investigated. Further to Eqs. (19), the following 

conditions are considered in order to examine realistic cases 

1 10000 1 100, 1 100 1, 8 100E G hr r r         (22) 

In particular, it is supposed that rE=rG and problems with <8 are not considered since for 

very short sandwich beams transverse normal deformability (not modeled by RZT) is not 

negligible [8]. Figures 1-3 illustrate some results for the 3PB problem at different values of . 

BE, SH, and ZZ are the percent contribution due to bending, shear, and zigzag deformation to 

the maximum deflection, respectively (see Eq. (21)). W
*
 is the non dimensional maximum 

deflection, defined as   33

max / 2Fw FL E b h . The contribution due to shear deformation is 

below 1% for >26 whereas, for the considered range of , the main effects are the bending 

and the zigzag one. The latter is particular important for sandwich beams with high values of 
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rh and small values of rE=rG (thick faces much stiffer than the core) and does not vanish even 

if considering really slender beams (=100) for which ZZ can reach 60%. 

 

Figure1: Problem 3PB, sandwich-like stacking sequence. Bending, shear, and zigzag contribution to the 

maximum deflection and non-dimensional maximum deflection for =8.  

 

Figure2: Problem 3PB, sandwich-like stacking sequence. Bending, shear, and zigzag contribution to the 

maximum deflection and non-dimensional maximum deflection for =26. 
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Figure 3: Problem 3PB, sandwich-like stacking sequence. Bending, shear, and zigzag contribution to the 

maximum deflection and non-dimensional maximum deflection for =100. 

Similar results are found for the 4PB and CF problems: the minimum value of  for which 

SH<1% is 22 and 13, respectively, whereas ZZ at =100 reaches 55% and 30%, respectively. 

Another important application of Eqs. (14), (17) and (20) is the evaluation of the shear 

correction factor for sandwich beams, k
2
, by using the Refined Zigzag Theory. The definition 

of k
2
 is here based on the equivalence between the maximum deflection computed using the 

RZT and the maximum deflection computed by Timoshenko beam theory with a corrected 

transverse shear stiffness. Considering again the case of concentrated loads (Eq. (21)), 

 3 3

2
0 0

F F F F F

bD bG bDbG k bG
              (23) 

that yields 

 
1

2 1
G

k
G

 

 



 
   
 

 (24) 

Eq. (24) reveals that the shear correction factor based on RZT depends not only on the 

stacking sequence (through coefficients G , G  and   and function ) but also on the 

boundary and loading conditions (through coefficient , see Table 2) and on the slenderness 

ratio . For example, Figure 4 shows the shear correction factor for the three-point bending 

problem and for different values of  (Eqs. (22) are still valid). For high values of rh and low 

values of rE, k
2
 can change of about an order of magnitude in the considered range of  

whereas, when rh is low and rE is high, k
2
 seems to be independent of the slenderness ratio.  
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Figure 4: Problem 3PB, sandwich-like stacking sequence. Shear correction factor for different values of . 

This result contradicts those definitions of the shear correction factor that only depend on the 

stacking sequence [3]. 

An interesting case is the one for which RL is high. RL is a non-dimensional beam length that 

appears in the definition of  (Table 2). Eqs. (20) show that RL is proportional to the beam 

slenderness, , through the coefficient  0 1 2 hR r  that only depends on the stacking 

sequence. This coefficient is shown in Figure 5 as a function of rh and rE: when rh is small 

(and especially when rE is high),  0 1 2 hR r  exhibits values that are three orders of 

magnitude higher than those in the rest of the considered (rh,rE) domain. This means that, for 

a fixed , RL is higher for low values of rh and high values of rE. 
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Figure 5: Sandwich-like stacking sequence. Coefficient  0 1 2 hR r . 

When RL is high, the function  can be substituted by simplified expressions, in particular 

those reported in Table 2 that are proportional to RL. As a consequence, the expression of k
2
, 

Eq. (24), can be greatly simplified  

  

1
2

3 2

2

3 2

12 18 6
1 2

8 12 6 1 2

h h h h E

G h h h E h

r r r r r
k

r r r r r r



       
        

 (25) 

This definition depends on the stacking sequence only since the dependency on boundary 

conditions, loads and beam slenderness ratio cancels out using the simplified expressions of . 

In other words, when rh is low and rE is high, RL is high and the shear correction factor 

depends on the stacking sequence only, as shown by Eq. (25) and by Figure 4. A similar 

discussion is valid for the case of distributed loads: when RL is high, the same expression for 

the shear correction factor is found, Eq. (25). 

6 CONCLUSIONS 

In this paper, the Refined Zigzag Theory (RZT) has been used to investigate the static 

response of sandwich beams to transverse loads. The focus is on the derivation of simplified 

and easy-to-use formulas for the maximum deflection of symmetrically laminated sandwich 

beams under different boundary and loading conditions. 

The basic definitions and relations of RZT have been reviewed in order to set the 

framework for the present study. Exact solutions of the equilibrium equations have been 

derived for simply supported and cantilevered beams with symmetric stacking sequence and 

subjected to concentrated and distributed transverse loads. In particular, explicit formulas for 

the maximum deflection have been obtained. When considering sandwich-like stacking 
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sequences, these formulas can be simplified in order to be used easily for practical 

applications. 

Based on the simplified formulas, the effect of zigzag deformation on the maximum 

deflection of sandwich beams has been studied for different geometry and material properties 

(face-to-core thickness and stiffness ratios and beam slenderness). The numerical results have 

shown that, also for beams with high length-to-thickness ratios, the zigzag contribution to the 

beam deflection can be relevant, especially for sandwich beams with thick faces and a high 

face-to-core stiffness ratio. Moreover, an expression for the shear correction factor of the 

Timoshenko beam theory has been derived for sandwich beams, showing that the correction 

does not depend only on the stacking sequence but also on boundary/loading conditions and 

on the beam slenderness.  
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