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Abstract. Using the static theorem and an algorithm based on dual decomposition, an
efficient formulation for the shakedown analysis of 3D frame is proposed. An efficient
treatment of the load combinations and an accurate and simple definition of the yield
function of cross-section are proposed to increase effectiveness and to make shakedown
analysis an affordable design tools.

1 INTRODUCTION

Shakedown analysis furnishes, in a direct and elegant manner, a reliable safety factor
against plastic collapse, loss in functionality due to excessive deformation (ratcheting)
or collapse due to low cycle fatigue (plastic shakedown) [1]. Due to its importance as a
tool for designers [2, 3, 4], in the last years a notable efforts has been done to propose
efficient numerical algorithms of analysis. The interest in direct methods for application to
limit and shakedown analysis has been encouraged by the availability of new and efficient
optimization algorithms [5, 6, 7] such as the Interior Point method which is employed for
solving very large non-linear problems, [8, 9], as those obtained in the Finite Element
discretization of real-scale engineering structures. An alternative approach is represented
by the specialized direct method proposed in[10, 11, 12] which can be used to evaluate the
shakedown safety factors of structures. This approach is based on a strain-driven strategy
of analysis hinged on closest point projection return mapping schemes and Riks arc-length
solution techniques. It can be seen as the application of the proximal point algorithm to
the static shakedown or limit analysis theorem and the solution of the resulting problem
is performed by means of the dual decomposition strategy [12]. For its relation with
standard elastoplastic analysis, to which it reduce in the limit analysis case, it will be
named pseudo elastoplastic analysis and denoted as SD-CPP (Strain Driven - Closest
Point Projection).

1



Antonio Bilotta, Leonardo Leonetti, Giovanni Garcea

Shakedown analysis in structural design is still confined to the research community
despite its important implications. This is, in part, still due to a series of problems
regarding the efficiency and the robustness of the algorithms of analysis used. In the
case of 3D frame structures, when considering standard rules as the Eurocodes ones,
shakedown analysis requires a preliminary fine tuning o two important aspects to be used
by designers: i) a suitable treatment of the usually large number of load combinations;
ii) an accurate and simple definition of the yield function which defines the nonlinear
behavior of the generic cross-section.

With respect to point i) it is well known how the number of basic actions to be consid-
ered heavily affects the computational costs of the analysis especially when an approach
based on the static theorem is used. In the more simple case of load domain defined as a
combination of basic actions varying between a minimum and a maximum value the elastic
envelope, that is the set of elastic stresses due to all possible load combinations, becomes
a convex polytope with 2p vertexes being p the number of basic loads. For typical values
of p to impose the plastic admissibility for all these vertexes strongly affect the efficiency
of the analysis. This problem becomes also more important if the load domain definition
is not so trivial, as for the case of the actual design rules adopted in Eurocodes. Referring
to the local level of the analysis (i.e. the finite element or the generic Gauss point of the
element) where the plastic admissibility has to be tested, the larger part of the elastic
stresses associated to the load domain vertexes are in the interior of the elastic envelope.
This means that, in order to improve efficiency without affecting the accuracy, we can use
only the convex hull vertexes, to check plastic admissibility and ignore those that, at the
local level, are in the interior. In the paper an efficient and effective strategy that directly
evaluate the significant vertexes of the convex hull is presented and validated.

With respect to point ii) the yield function of 3D frames is usually evaluated only
considering flexural failures. In spite of this simplifying assumption, computing accurate
yield surfaces with combined axial force and bending moments is not an easy task and
has received increasing attention in the literature [4, 3, 2]. A piecewise linearization often
requires a large number of polyhedral facets to obtain a sufficiently accurate approxima-
tion, which can have an important effect on the quality of the estimated bounds [4] but
also on the efficiency of the algorithm. Since the yield criterion has to be verified for a
large number of points throughout the whole structure, a compromise between accuracy
and computational efficiency is required in the case of large-scale problems [10, 11].

Recently a strategy for approximating the true nonlinear yield surfaces by using a
Minkowsky sum of ellipsoids, has been proposed for limit analysis problems in [3] and the
resulting Second Order Cone Programming problem has been solved with the commercial
code MOSEK. A similar approach is adopted in the present work where, however, the
SD-CPP approach is proposed for the solution. The Minkowsky sums of ellipsoids allows
us to accurately describe the section elastic domain using only few analytical functions
while the decomposition strategy we propose allows us to perform the return mapping by
closest point projection (CPP) for each ellipsoid in a separate fashion so increasing the
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computational performance and the robustness of the analysis. The approach we propose
is general and could also be effectively employed in standard path–following elasto-plastic
analysis of 3D frame.

A series of numerical test confirm the effectiveness and accuracy of our proposal.

2 THE 3D BEAM MODEL

In the following the beam model and its discrete finite element version is presented.
We refers to [13, 14] for more details.

2.1 The beam model

Let us consider a cylinder occupying a reference configuration B of length ℓ confined
by the lateral boundary denoted by ∂B and two terminal bases Ω0 and Ωℓ. The cylinder
is referred to a Cartesian frame (O, s, x2, x3) with unit vectors {e1, e2, e3} and e1 aligned
with the cylinder axis. In this system, see Figure 1, we denote with X = X0 + x the
position of a point P , X0 = se1 is the position of P with respect to the beam axis,
s being an abscissa which identifies the generic cross-section Ω[s] of the beam, while
x = x2e2 + x3e3 is the position of P inside Ω[s].

x1 x2

x3

x3

x

ΩℓΩ0

B

s

X0

X

Ω

∂B
[0 n2 n3]

T

Figure 1: The cylindrical solid.

The displacement field u[X] of the model is expressed, as usual, as a section rigid
motion

u[X] = u0[s] +φ[s] ∧ x (1)

where u0[s] and φ[s] are the mean translation and rotation of the section, ∧ denote the
cross product. The kinematics assumed in Eq.(1) allows to evaluate, using a standard
linear 3D Cauchy continuum, the stress strain work W in terms of the generalized strains
and stresses on the section (see [13]) as

W ≡
∫
ℓ

(N [s] · εL[s] +M [s] · χL[s])ds =

∫
ℓ

t[s]Tρ[s]ds (2)

where ρ[s] = {ε[s],χ[s]} collects the generalized strain parameters ε and χ defined as

ε[s] = u0,s [s] + e1 ∧φ[s] , χL = φ[s],s (3)
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and t[s] = {N [s],M [s]} are the resultant force N [s] and moment M [s] defined as

N [s] =

∫
Ω

sdΩ , M [s] =

∫
Ω

x ∧ sdΩ. (4)

where s = σe1 is the traction applied to the generic cross section. In Eq. (3) a comma
stands for derivative. Finally the elastic constitutive laws is expressed as

ρ[s] = Ht[s] , H [s] =

[
HNN HNM

HT
NM HMM

]
(5)

where the coefficients of the cross-section compliance matrix H are explicitly reported in
[15].

2.2 The finite element for the beam

The beam equilibrium equation for zero body forces

N ,s= 0, M ,s +e1 ∧N = 0 (6)

states that N and the torsional moment M1 are constant while the two flexural compo-
nents M2[s] and M3[s] of M [s] are linear with s. The internal work become then

W = N · (u0[ℓ]− u0[0]) +M [ℓ] ·φ[ℓ]−M [0] ·φ[0] = dT
e Q

T
e βe (7)

so allowing to directly obtain the discrete form of W without need to use any FEM
interpolation for the kinematic variables. In Eq. (7) the vectors collecting the finite
element generalized parameters and the compatibility operator Qe are

βe =


N

M2[0]
M3[0]
M2[ℓ]
M3[ℓ]
M1

 , de =


u0[0]
φ[0]
u0[ℓ]
φ[ℓ]

 , Qe =


−e1 0 e1 0
e3
ℓ

−e2 −e3
ℓ

0
−e3

ℓ
0 e3

ℓ
e2

−e2
ℓ

−e3
e2
ℓ

0
e2
ℓ

0 −e2
ℓ

e3

0 −e1 0 e1

 (8)

Eq. (8) allows us to write the discrete form of the equilibrium equations as

QTβ − λp = 0 with QTβ = Ae{QT
e βe} (9)

where β denotes the global vector collecting all the stress parameters βe and p is the
load vector. The global equilibrium matrix QT is obtained as usual by means of the
contribution of each finite element and Ae is the standard assembling operator which
takes into account the inter–element continuity conditions on u and φ. From now on a
subscript e denote the finite element counterpart of a global vector or matrix.

The element elastic compliance matrix, is obtained from the equivalence∫
ℓ

t[s] ·Ht[s]ds = βT
e Heβe He =

∫
ℓ

Dt[s]
THDt[s] ds (10)

being Dt[s] the matrix collecting the functions used to interpolate t[s].
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3 THE ELASTIC DOMAIN OF THE BEAM SECTION

In this section we shortly present the construction of the elastic domain, extending the
procedure used in Malena and Casciaro [4] with the approach recently proposed by Bleyer
and De Buhan [3], see also [2].

3.1 Evaluation of the true support functions of the beam elastic domain

We decompose the beam section domain Ω as the union of nd subdomains Ωi in which
the material is homogeneous. For each Ωi, the plastic admissibility condition is expressed
in terms of the normal stress only as −σci ≤ σ11 ≤ σti where σti is the ultimate normal
stress in tension (positive) and σci in compression (negative). This corresponds to assume,
as usual for technical application, frame members infinitely resistant with respect to shear
effects as well as torsion. Hence, the cross-section yield surfaces will be described in the
3D space involving axial force N1 and bending moments M2 and M3 collected in vector
tσ[s] = {N1,M2,M3}.

Due to the section rigid motion hypothesis, a generic section collapse mechanism will
be defined by the position of the neutral axis, i.e. by the condition

ε1 + x3 χ2 − x2 χ3 = 0 (11)

Denoting with ε̇k = {ϵ1, χ2, χ3} the collapse mechanism direction we can evaluate the
associated ultimate section strength tσk as

tσk =

 Nk

Mk2

Mk3

 with



Nk =
∑
i

(∫
Ω+

i

σtidΩi −
∫
Ω−

i

σcidΩi

)

Mk2 =
∑
i

(∫
Ω+

i

x3σtidΩi −
∫
Ω−

i

x3σcidΩi

)

Mk3 =
∑
i

(∫
Ω+

i

x2σtidΩi −
∫
Ω−

i

x2σcidΩi

) (12)

where we assumed positive the action if in the positive direction of the axis while Ω+
i and

Ω−
i are the portion of dSi in traction or compression for the given mechanism ε̇k.
This definition states that, for each position of the neutral axis, i.e for each ε̇k, the cor-

responding generalized stress tσk on the yield function is obtained by considering uniaxial
stress fields reaching their maximum strength capacity in each region, either in tension
or in compression. We refer to [4] for a suitable choice for the collapse mechanics ε̇k for
RC beams.

The collapse resultants defined in (12) belong to the boundary of the section yield
function for construction and they are then characterized by the following condition

πEs [ε̇k] = sup{ε̇Tk tσ : tσ ∈ Es}, (13)
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Eq.(13) is the definition of the support function of the section elastic domain Es in the
direction ε̇k (see [3]).

3.2 The approximation of Es using a Minkowsy sum of ellipsoids

Having obtained the support function πEs [ε̇k] for a series of direction ε̇k, we use them to
approximate Es by means of a Minkowsky sum of ellipsoids with the Ith of them defined
as

E [CI , cI ] =
{
tσ : ∥J−1

I (tσ − cI)∥ − 1 ≤ 0
}

(14)

where ∥ · ∥ stand for the Euclidean norm, the symmetric and definite positive matrix
CI = CT

I = JT
I J I gives the orientation and cI the origin of the ellipsoid. The support

function of the Minkowsky sum of NE ellipsoid is the sums of their support functions πEI
[3], so

πE [ε̇k] =

NE∑
I=1

πEI [ε̇k] =

NE∑
I=1

∥J I ε̇k∥+ ε̇Tk c with πEI [ε̇k] = ∥J I ε̇k∥+ ε̇Tk cI (15)

and c =
∑

I cI . The values of the unknowns that define J I and c are obtained by
minimizing the difference error between πEs [ε̇k] and πE [ε̇k] for a series of Np direction ε̇k

minimize

Np∑
k=1

(
πEs [ε̇k]−

NE∑
I=1

∥J I ε̇k∥ − ε̇Tk c

)2

(16)

Eqs.(15) allow us to approximate the elastic domain as the Minkowsy sum of n ellipsoids
centered in the origin and of a singleton c, as

Es[t
σ] ≡

(
NE⊕
I=1

EI

)
⊕ c , EI ≡ E [CI ,0] (17)

The admissibility condition for tσ[s] can be now expressed as a sum of NE + 1 terms

tσ =

(
c+

NE∑
I=1

tσI

)
∈ Es ⇐⇒ tσI ∈ EI (18)

or in terms of the section s yield functions ϕI [s, t
σ[s]] as

ΦE [s, t
σ[s]] ≤ 0 ⇐⇒ ϕI [s, t

σ
I [s]] ≡ ∥J I [s]

−1tσI [s]∥ − 1 ≤ 0 ∀I = 1 · · ·NE (19)

4 SHAKEDOWN ANALYSIS BASED ON PROXIMAL POINT METHOD
AND DUAL DECOMPOSITION

In this Section the approach proposed in [12] is particularized to the shakedown analysis
of 3D frame in case of yield domain obtained as Minkowsky sums of ellipsoids.
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4.1 The elastic envelope of the stresses

We assume that the external actions p[t], variable with the time t, are expressed as a
combination of p basic loads pi belonging to the admissible closed and convex load domain
P. This is defined according to the Eurocode rules for ultimate limit states, that prescribe
Nβ combination of actions, each of them obtained by considering a leading variable action
pβ, assumed with its characteristic value while the other variable actions pj, which may
act simultaneously with the leading variable one, are taken into account as accompanying
variable actions and are represented by their combination value, i.e. their characteristic
value reduced by the relevant factor ψj. All the action are multiplied by the coefficient
αj to consider the variability in time so obtaining the load domain as

P :=

Nβ∪
β=1

P(β) , P(β) :=

{
p[t] ≡ αβpβ +

p∑
j=1,j ̸=β

ψjαjpj : α
min
i ≤ αi ≤ αmax

i

}
. (20)

The elastic envelope S defines the set of the elastic stresses β̂[t] produced by each load
path contained in P. Due to the local definition of the stress variables it can be decoupled
for each finite element as

Se =
Nc∪
β=1

S(β)
e , S(β)

e :=

{
β̂e[t] ≡ αββ̂eβ +

p∑
j=1,j ̸=β

ψjαjβ̂ej : α
min
i ≤ αi ≤ αmax

i

}
(21)

where β̂i are the elastic stress solution for pi. We have that

β̂[t] ∈ S ⇔ β̂e[t] ∈ Se ∀e (22)

Without affecting the results we can substitute the true Se with its convex hull, i.e. with
a convex polytope. Its significant vertexes are, in general, a subset of the (Nβ ·2p) vertexes
corresponding to the load domain in Eq.(20). Each β̂e ∈ Se can then be expressed as a

convex combination of the Nv elastic envelope vertexes β̂
α

e that can be usefully referred

to the reference stress β̂
0

e so obtaining

β̂e[t] = β̂
0

e +
Nv∑
α=1

sαβ̂
α

e sα ≥ 0
Nv∑
α=1

sα = 1 (23)

If the external loads increase by a real number λ, called load domain multiplier, the elastic

envelope becomes λS :=
{
λβ̂ : β̂ ∈ S

}
.

4.2 The shakedown elastic domain

The plastic admissibility condition, being locally defined, can be decoupled at the
element local level, i.e. β will be plastically admissible if

Φ[β] ≤ 0 ⇐⇒ Φe[βe] ≤ 0, ∀e. (24)
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At the local level Eq. (24) can be expressed in terms of the admissibility of the end
nodes generalized stresses tσ[s] with s = 0, ℓ extracted from βe as tσ[0] = Sσ[0]βe and
tσ[ℓ] = Sσ[ℓ]βe . End nodes stresses and, according to Eq.(18), are considered as as sum of
ellipsoid contributions. The element plastic admissibility condition, according to Eq.(19),
rewrites as

Φe[βe] ≡
[
ΦE [0, t

σ[0]]
ΦE [ℓ, t

σ[ℓ]]

]
≤ 0 (25)

Shakedown analysis requires the plastically admissible condition for all the stresses
contained in the amplified elastic envelope λSe translated by β̄e. Due to the convexity
of Φe this can be easily expressed in terms of the plastic admissibility of all the α stress

vertexes βα
e = λ(β̂

α

e + β̂
0

e)+ β̄e of the convex envelope of Se, regardless from the convexity
of Se

Φe[λβ̂e + β̄e] ≤ 0, ∀β̂e ∈ Se ⇐⇒ Φe[β
α
e ] ≤ 0, ∀α (26)

where, from now on, a Greek superscript denotes the convex hull vertexes quantities.

4.3 Simplified evaluation of the elastic envelope

In the following we denote with Sσ[s] the set obtained from Se considering only normal
stresses t̂

σ
[s] = Sσ[s]β̂e. The elastic envelopes for the beam node s is evaluated by

referring to the significant vertexes of Sσ[s] with respect to Nh supporting hyperplanes of
Es[s] of assigned normal nk and tangent to Es[s] in tσk[s]

fk[β] ≡
{
nT

k t
σ − ck

}
≤ 0 , ck = (tσk)

Tnk k = 1, · · · ,m. (27)

The vertex associated with the kth hyperplane is obtained as the values of t̂
σ
[s] ∈ Sσ[s] at

minimum distance from fk, that is maximizing its projection bk through the simple and
fast expression:

bk := max
t̂
σ∈ Sσ [s]

{nT
k t̂

σ}. (28)

Recalling the definition of Se in Eq.(21) we have, for each β

bk =

p∑
i=1

aki, t̂
σ

α =

p∑
i=1

akit̂
σ

i with aki :=

⟨
αmin
i nT

k t̂
σ

i if nT
k t̂

σ

i < 0

αmax
i nT

k t̂
σ

i if nT
k t̂

σ

i ≥ 0

and maintaining that producing the maximum bk for each β.
We obtain, at the end of this filtering process, Nv ≤ Nh vertexes of the convex hull of

Se. As this operation is performed once and for all at the beginning of the analysis we can
also use a fine mesh of controlling hyperplane to improve accuracy. Notwithstanding its
simplicity the algorithm presents many advantages with respect to standard evaluation
of the convex hull of Se

- It is available also for complex load combination, not directly expressible as Minkowsky
sum of segments.
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- It directly furnishes the vertexes of the elastic envelope without the need of a pre-
liminarily evaluation of all those corresponding to the load vertexes (2p for each
β).

4.4 The pseudo-elastoplastic step for shakedown analysis

Shakedown analysis is performed using the algorithm proposed in [10, 11, 12] (see also
[16]), which is based on the application of the proximal point method to the Melan static
theorem. A sequences of subproblems or steps are obtained by adding a quadratic positive
term, using the compliance matrix H , to the objective function

maximize ∆ξ(n)λ(n) − 1

2
∆βTH∆β

subject to QTβ(n) − λ(n)p0 = 0

Φα[β, λ] ≡ Φ[β̄ + λsβ̂
α
] ≤ 0, α = 1 · · ·Nv

(29)

where the superscript (·)(n) will denote quantities evaluated in the nth step, the symbol
∆(·) = (·)(n)−(·)(n−1) is the increment of a quantity from the previous step and ∆ξ(n) > 0

is an assigned real positive number, p0 ≡ QT β̂
0
and β ≡ β̄ + λsβ̂

0
.

For limit analysis the first order condition of (29) exactly corresponds to a step of the
arc-length algorithm used to solve the incremental elastoplastic problem [10, 11, 12]. As
for elastic perfectly plastic structures the limit load can be evaluated by recovering the
complete equilibrium path by means of a path-following algorithms in the same fashion
the skakedown multiplier can be obtained by evaluating a sequence of states, by solving
a series of problems (29). i.e defining a pseudo-elastoplastic equilibrium curve [10].

The solution is performed in two step as for standard strain driven elasto-plasticity
analysis: 1) in the first step, performed at the local level, a return mapping by closest
point projection process is used to evaluate the stresses in terms of the displacements; ii)
an arc-length Riks method is used, at the global level, to define the pseudo-elastoplastic
equilibrium path. It is possible to shown as this algorithm corresponds to use a dual
decomposition to solve the proximal point step. We refer to [12, 16] for further details.

5 NUMERICAL RESULTS

In this section we present some tests regarding the accuracy and the efficiency of the
new proposal in the shakedown analysis of 3D reinforced concrete frames.

5.1 Yeld function and elastic envelope vertexes for a L-shaped section

In Fig. 2 the yield function approximations for a L shaped reinforced concrete (see fig.4
of [4]) are reported on the basis of 1, 3 and 5 ellipsoids. The points correspond to the
true values of tσk. The increase in accuracy is evident in the case of more ellipsoids.

In Fig. 3 we report, for the same section, the convex hull vertexes of Sσ for a sequence
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Figure 2: Section geometry and yield function approximation with 1, 3 and 5 ellipsoids

a

Figure 3: Convex hull evaluation.

of 5 assigned t̂
σ

j with 0 ≤ αj ≤ 1. The Figure corresponds to the exact and approximate
evaluation of Se using the 26 hyperplanes proposed in [4].

5.2 Shakedown analysis of a 3D frame

The influence on the shakedown multiplier of an approximated evaluation of the elastic
envelope is tested analyzing the structure reported in fig.4. The frame has been analyzed
adopting an xx yy hyperplanes evaluation of Se. The results have been also compared
with the results obtained maintaining all the vertexes and are reported in table 1
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