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Abstract. We examine inertial movement of a thin body on a plane surface. The contact
area has an elliptical shape. We assume that friction forces are anisotropic. Equations of
motion in such case are developed for situations with regular and linear normal pressure
distribution. Several examples were numerically evaluated.

1 PROBLEM STATEMENT

Contact process between bodies depends on material properties and current state of
each body surface layer. Large variety of effects (including wear, plasticity, mechanical
operations) can lead to the anisotropy of friction forces at the contact area. Anisotropic
friction depends on the direction of sliding. Short review of reasons of frictional anisotropy
with experimental examples is presented in [1].

Summarising results of [2, 3, 4], we assume that for our problem the friction law can
be written in the form:

T = −NF(M)
v

|v|
, (1)

where T – friction force vector, N – normal pressure, F(M) – friction tensor, v – velocity
vector.

It is shown in [4] that one can change axes in such way, that friction tensor becomes:

F(M) =

(
fx f
−f fy

)
, (2)
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where fx, fy, f – frictional coefficients. Let’s assume that tensor components fx, fy, f
remain constant and do not depend on interrelations between contacting surfaces. Such
situation is possible when hardness of one interaction body much more than hardness of
another one.

The objective of this study is to examine a movement of a thin body on a rough surface
in accordance with anisotropy of dry friction forces.

Figure 1 shows coordinate system for our calculations: Cξη – associated with the body
coordinate system, OXY – fixed coordinate system (it is chosen such that friction tensor
has the form (2)). The body mass is m, I – inertia related to axes Cζ perpendicular to
the plate, τx, τy – components of specific friction force, p(ξ, η) – pressure force at the point
of the contact, x, y – coordinates of plate mass center in OXY coordinate system, ϕ –
angle between OX and Cξ.
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Figure 1: Coordinate system

Equation of motion are the following:

mẍ =

∫∫
Ω

τxdξdη, (3)

mÿ =

∫∫
Ω

τydξdη,

Iϕ̈ =

∫∫
Ω

momCζ(~τ)dξdη,
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where

τx = −p(ξ, η)
fx(ẋ− ϕ̇y′) + f(ẏ + ϕ̇x′))

|v|
,

τy = −p(ξ, η)
−f(ẋ− ϕ̇y′) + fy(ẏ + ϕ̇x′))

|v|
,

momCζ(~τ) = (τyx
′ − τxy′),

x′ = ξ cosϕ− η sinϕ, y′ = ξ sinϕ+ η cosϕ,

|~v| =
√

(ẋ− ϕ̇y′)2 + (ẏ + ϕ̇x′)2 .

2 INERTIAL MOVEMENT OF A BODY WITH ELLIPTIC CONTACT
AREA.

Let’s assume that contact area between the body and the surface has an elliptical shape,
where ellipse semi-axes are a and b and eccentricity is e (see figure 1). We will examine
several pressure distribution cases: uniform and linear, taking into account anisotropic
friction forces.

The system (3) can be rewritten with variables v and ϑ, where v – velocity of the
body’s center (with ẋ = v cosϑ, ẏ = v sinϑ ), ϑ – angle between Ox and tangent to

the trajectory. Besides, let’s introduce variables β =
v

ω
(length to instantaneous velocity

center), and µ = fy − fx.
Therefore, we express equation system (3) as follows:

ẋ = v cosϑ, ẏ = v sinϑ, ϕ̇ = ω, (4)

v̇ = − 1

m

a∫
−a

h(ξ)∫
−h(ξ)

p(ξ, η) (A0 + A1η)√
η2 +D1η +D0

dξdη = −Fτ
m
,

ϑ̇ = − 1

mv

a∫
−a

h(ξ)∫
−h(ξ)

p(ξ, η) (B0 +B1η)√
η2 +D1η +D0

dξdη = − Fn
mv

,

ω̇ = −1

I

a∫
−a

h(ξ)∫
−h(ξ)

p(ξ, η) (C0 + C1η + C2η
2)√

η2 +D1η +D0

dξdη = −MCζ

I
.

Here limits are

h(ξ) =
b

a

√
a2 − ξ2, (5)
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and coefficients are given by relations:

A0 = β(fx + µ sin2 ϑ) + ξ (f cos(ϑ− ϕ) + µ sinϑ cosϕ) + (6)

+ξ (fx sin(ϑ− ϕ)) ,

A1 = f sin(ϑ− ϕ)− µ sinϑ sinϕ−
−fx cos(ϑ− ϕ),

B0 = β(µ sinϑ cosϑ− f) + ξ(−f sin(ϑ− ϕ) + µ cosϑ cosϕ+

+fx cos(ϑ− ϕ)),

B1 = f cos(ϑ− ϕ)− µ cosϑ sinϕ+

+fx sin(ϑ− ϕ),

C0 = ξβ(−f cos(ϑ− ϕ) + µ sinϑ cosϕ+ fx sin(ϑ− ϕ)) +

+ξ2(fx + µ cos2 ϕ)),

C1 = β(−f sin(ϑ− ϕ)− µ sinϑ sinϕ− fx cos(ϑ− ϕ))−
−2ξµ cosϕ sinϕ,

C2 = fx + µ sin2 ϕ,

D0 = β2 + ξ2 + 2βξ sin(ϑ− ϕ),

D1 = −2β cos(ϑ− ϕ).

2.1 Uniform pressure distribution case

Let us consider that pressure in system (4) is of the form:

p(ξ, η) =
P

S
=
mg

πab

and remains constant during the sliding process.
Suppose, that

κ =
√

1− e2, I =
ρπκa4(1 + κ2)

4
, (7)

ξ = aξ1, ξ1 ∈ [−1; 1], η = aκη1, η1 ∈ [−1; 1],

v = v1

√
ag

π
, ω = ω1

√
g

aπ
,

t = t1

√
g

π
, ϑ̇ =

dϑ1

dt1

√
g

aπ
.

Thus, with supplementary operations, we achieve system with dimensionless variables
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(indices 1 are omitted), which is integrated by the variable η (see [5]):

ẋ = v cosϑ, ẏ = v sinϑ, ϕ̇ = ω, (8)

v̇ = −
1∫

−1

[(
A0 − A1

D1

2

)
I1 + A1

1

κ
I2

]
dξ

ϑ̇ = −1

v

1∫
−1

[(
B0 −B1

D1

2

)
I1 +B1

1

κ
I2

]
dξ

ω̇ = − 4

1 + κ2

1∫
−1

[(
C0 − C1

D1

2
+ C2

(
3D2

1

8
− D0

2

))
I1

]
dξ

− 4

1 + κ2

1∫
−1

[(
C1 − C2

3D1

4

)
1

κ
I2 +

C2h(ξ)

2
I3

]
dξ,

where

I1 =
1

κ
ln

(
2
√
D0 +D1κh(ξ) + κ2h(ξ)2 + 2κ2h(ξ) +D1κ

2
√
D0 −D1κh(ξ) + κ2h(ξ)2 − 2κ2h(ξ) +D1κ

)
, (9)

I2 =
√
D0 +D1κh(ξ) + κ2h(ξ)2 −

√
D0 −D1κh(ξ) + κ2h(ξ)2,

I3 =
√
D0 +D1κh(ξ) + κ2h(ξ)2 +

√
D0 −D1κh(ξ) + κ2h(ξ)2,

and h(ξ) =
√

1− ξ2, coefficients Ai, Bi, Ci, Di remain the same as in (6).

2.2 Linear pressure distribution case

Let’s suppose that pressure is linearly distributed. According to [6], one can write the
following law:

p(ξ, η) = p0 + p1ξ + p2η, (10)

where p0 =
P

S
(same as in previous case) and p1 =

Pξc
Iηη

, p2 =
Pηc
Iξξ

, where inertia

moments are Iξξ =
ma2(1− e2)

4
and Iηη = ma2

4
and ξc, ηc – the body’s gravity center

coordinates.
Thus, equation system (4) can be rewritten to the form:
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ẋ = v cosϑ, ẏ = v sinϑ, ϕ̇ = ω, (11)

v̇ = − 1

m

a∫
−a

h(ξ)∫
−h(ξ)

A01 + A11η + A21η
2√

η2 +D1η +D0

dξdη,

ϑ̇ = − 1

mv

a∫
−a

h(ξ)∫
−h(ξ)

B01 +B11η +B21η
2√

η2 +D1η +D0

dξdη,

ω̇ = −1

I

a∫
−a

h(ξ)∫
−h(ξ)

C01 + C11η + C21η
2 + C31η

3√
η2 +D1η +D0

dξdη,

where coefficients defined as following:

A01 = p0A0 + ξp1A0, (12)

A11 = p0A1 + ξp1A1 + p2A0,

A21 = p2A1,

B01 = p0B0 + ξp1B0,

B11 = p0B1 + ξp1B1 + p2B0,

B21 = p2B1,

C01 = p0C0 + ξp1C0,

C11 = p0C1 + ξp1C1 + p2C0,

C21 = p0C2 + ξp1C2 + p2C1,

C31 = p2C2,

and h(ξ) has the form (5), Ai, Bi, Ci, Di are determined as in uniform pressure distri-
bution case (6).

After integration by η with relations (7), we achieve system of equations (see [5]):
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ẋ = v cosϑ, ẏ = v sinϑ, ϕ̇ = ω,(13)

v̇ = −
1∫

−1

[(
A∗01 − A∗11

D1

2
+ A∗21

(
3D2

1

8
− D0

2

))
I1

]
dξ

−
1∫

−1

[
(A∗11 − A∗21

3D1

4
)
1

κ
I2 +

A∗21h(ξ)

2
I3

]
dξ,

ϑ̇ = −1

v

∫
−1

11

[(
B∗01 −B∗11

D1

2
+B∗21

(
3D2

1

8
− D0

2

))
I1

]
dξ

−1

v

1∫
−1

[
(B∗11 −B∗21

3D1

4
)
1

κ
I2 +

B∗21h(ξ)

2
I3

]
dξ,

ω̇ = − 4

1 + κ2

1∫
−1

[(
C∗01 − C∗11

D1

2
+ C∗21

(
3D2

1

8
− D0

2

)
− C∗31D1

(
3D0

4
+

5D2
1

16

))
I1

]
dξ

− 4

1 + κ2

1∫
−1

[(
C∗11 − C∗21

3D1

4
+ C∗31

(
5D2

1

8
− 2D0

3

))
1

κ
I2 +

h(ξ)

2

(
C∗21 − C∗31

5D1

6

)
I3

]
dξ,

where index ∗ means that coefficients (12) are dimensionless and Ii have the form (9).

3 Results

3.1 Uniform pressure law

Situations with regular normal pressure distribution are widely investigated in the
literature but for more simple contact areas: circle [4, 6, 7, 8, 9] and ring [4], line [10] and
rectangular [11]. This study deals with elliptic contact area. We examined our problem,
assuming t0 = 0, v0 = 1, ω0 = 1,ϑ0 = π

4
, as initial conditions.

The following equation arise from the system (8):

dv

dω
= Φ(β, ϑ∗), (14)

where

Φ(β, ϑ∗) =
I∗Fτ
Mcζ

, (15)

with I∗ – dimensionless inertia moment.
ϑ∗ is a parameter in equation (15), which is zero for orthotropic friction (see [4]).
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Figure 2: β(t), ϑ(t) with e = 0.866, regular pressure distribution

Summarising results of [4], we obtain equation for β:

β − Φi(β, ϑ∗) = 0, (16)

which was solved numerically for several ϕ. The results are presented in the table 1.

Table 1: β(µ) with e = 0.866. Regular pressure distribution.

µ 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24
ϕ = π

4 0.404 0.446 0.486 0.524 0.561 0.599 0.642 0.704 0.787
ϕ = π

3 0.494 0.521 0.547 0.572 0.597 0.620 0.643 0.667 0.689
ϕ = π

2 0.577 0.593 0.608 0.623 0.637 0.650 0.664 0.677 0.690

It can be seen from the table, that resultant β strictly depends from µ, growing faster
for lower values of ϕ. Figure 2 shows evolution of β and ϑ during motion. Sliding and
spinning stop at the same moment with ϑ = 0.

3.2 Linear pressure law

Assuming linear pressure law, we solved system (11) (which was obtained for ellipse
center) for ξ0 = 0.1, η0 = 0.1 (see equation (10)) and same initial conditions as in the
previous case. (Similar case for disk was studied in [12]).

Results of numerical analysis of linear pressure law are shown on figure 3: β here is
a distance between ellipse center and instantaneous velocity center and it is limited at
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Figure 3: β(t), ϑ(t) with e = 0.866, linear pressure distribution

the stopping moment, thus sliding and spinning end simultaneously. On figure 4 normal
force evolution is presented. It can be seen, that for all 3 examples Fn seeks zero, thus,
we achieved end of the movement.

4 APPENDIX

We shall give some remarks on the movement of a thin body resting on a circle contact
area. This case was observed in [7, 8]. Assuming, that solid body rests on the circle
contact area, let’s look at 3 classical pressure distribution cases: uniform law, Boussinesq
law, Herz law:

p =
mg

πa2
, p =

p0√
1− ρ2/a2

,

p0 =
mg

2πa2
,

p = p0

√
1− ρ2

a2
, p0 =

3mg

2πa
.

Suppose that axes Ox and Oy of orthogonal coordinate system are chosen so, that the
orthotropic friction law is:

T = −p
(
fx 0
0 fy

)(
vx/v
vy/v

)
, (17)

where T – friction force vector; p – pressure at the contact point; vx, vy, v – velocity
projections on Ox and Oy axes and it’s magnitude .
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Figure 4: Normal force evolution, with e = 0.866, linear pressure distribution

Velocity vector of the circle area center is:

vo = vo(cosϑi + sinϑj),

where vo – magnitude of velocity vector; ϑ – directional velocity angle, starting from Ox.
Thus, several statements can be formulated (for Herz pressure distribution) [13]:
Statement 1. Let a body rests on horizontal plane surface and contact area is a circle,

and pressure is distributed following Herz law. Let friction forces have orthotropic prop-
erties: fx, fy – friction coefficients along orthogonal axes Ox and Oy, fixed with plane
and fy ≥ fx, µ = fy − fx ≥ 0. Let’s assume that gravity force projection on the plane
matches circle center and dimensionless inertia moment of the body about axes, passing
through the center, is I∗ = I/(ma2) (* is omitted in the following text). Than:

1. with I ∈ (0, (fx+µ)/(5fx)), angular velocity of the body ω goes to zero faster, than
linear velocity of circles center vo, but becomes zero simultaneously with ω/vo → 0,
tangent to the phase trajectory at the point vo = 0, ω = 0 has a zero inclination
angle;

2. with I ∈ ((fx + µ)/(5fx), (6fx + 5µ)/(24fx)), ω and v becomes zero simultaneously
with the rule v0 = kω, k > 1;

3. with I ∈ ((6fx + 5µ)/(24fx), (2fx + µ)/(4fx)), ω and v0 turn to zero at the same
time with the rule v0 = kω, k < 1
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4. with I ∈ ((2fx+µ)/(4fx),+∞) ω and v0 turn to zero simultaneously with ω/v0 → 0,
but v seeking zero faster, than ω and tangents to the phase trajectories at the point
v0 = 0, ω = 0 have an inclination angle of π/2.

Same statements can be formulated for two other laws (see [14, 15]). Results compar-
ison is in the table 2.

Table 2: Moment inertia intervals in wich statement 1 is true

uniform law Boussinesq law Herz law
1 (0, (fx + µ))/(4fx) (0, (fx + µ)/(3fx)) (0, (fx + µ)/(5fx))
2 ((fx + µ)/(4fx), (5fx + 4µ)/(15fx)) ((fx + µ)/(3fx), (4fx + 3µ)/(8fx)) ((fx + µ)/(5fx), (6fx + 5µ)/(24fx))
3 ((5fx + 4µ)/(15fx), (2fx + µ)/(3fx)) ((4fx + 3µ)/(8fx), (2fx + µ)/(2fx)) ((6fx + 5µ)/(24fx), (2fx + µ)/(4fx))
4 ((2fx + µ)/(3fx),+∞) ((2fx + µ)/(2fx),+∞) ((2fx + µ)/(4fx),+∞)

5 CONCLUSIONS

- Differential equations of the body’s movement, resting on elliptical area are achieved
in accordance with anisotropic friction.

- Differential equations were analysed. It is shown that direction of center of mass
velocity vector matches the axes along which friction coefficient has a minimum
value.

- Dependency of distance from elliptical plate center to the instantaneous velocity cen-
ter at the stopping moment from components of friction tensor, ellipse eccentricity
and it’s orientation on the plane was identified. It is shown that sliding and spinning
end at the same moment for regular and linear normal pressure distribution.

- For circle contact area statement, which connects inertia moment of the body, fric-
tion tensor and pressure distribution law with the distance to the instantaneous
velocity center at the stopping moment was approved.
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