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Abstract. Predictive materials models for dielectric elastomers are required to assess
their performance in complex applications and improve those designs. The main challenge
is the characterisation of the large deformations typical of their applications and by the
rate dependent constitutive law. This work proposes a nonlinear-viscoelastic material
model for the VHB4905 polymer suitable for implementation in a general-purpose finite-
element code. The elastic part has been proven to predict the performance of different
devices considered. The viscoelastic part of the consitutive model has been fitted with
experimental data available in the literature and also showed a good agreement with the
case considered.

1 Introduction

Dielectric elastomers (DEs) are being considered in a new generation of smart devices.
Heart pumps and cardiac valves [1], artificial muscles [2], tunable lenses [3, 4] and mem-
brane wings [5], just to name a few of them, can be redesigned to embed these materials.
The absence of mechanisms and the simplicity of construction could reduce the weight
and the cost of the devices and increase their reliability. In the biomedical field, Tews at
al. [1] measured the pressure-volume characteristics of dielectric elastomer diaphragms to
investigate the use of DEs for cardiac applications. Tunable lenses made with dielectric
elastomers have been studied in Refs. [3, 4]. Hochradel et al.[6] proposed an acoustic
device made with an acrylic elastomer, VHB4905. All the aforementioned studied, except
for [6], were focused on the static characterisation of the material performances, neglecting
the visco-elastic time dependent behaviour that is fundamental when dynamic applica-
tions are considered. To reproduce these experiments and predict the behaviour of DEs
an electromechanical constitutive model able to deal with large deformations, material
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nonlinearities, viscoelastic effects, and electrostriction [7].
Experimental characterisation tests have often been too simplistic compared to actual
loading conditions in typical applications. Typical examples can be found in [8, 9] where
uniaxial tests are considered representative of the general behaviour of DEs. This is one
of the factors that have led to a poor matching between experiments and numerical sim-
ulations. and has been presented also by [10], who showed how passing from uniaxial
to equi-biaxial loading conditions requires the coefficients of the material model to be
modified.
Another limitation of the majority of existing models is that viscoelastic effects are either
neglected or modelled with a linear approach [9]. Wissler and Mazza [9] proposed a linear
viscoelastic approach based on Prony series to model the viscoelastic behaviour of the
material. However, the agreement between the model and experimental results indicates
that a viscoelastic linear approach is not appropriate for DE with large strains. Alterna-
tively, Mokarram et al. [11] used the multiplicative decomposition approach to model the
viscoelastic behaviour of DE for a tensile test. The results showed a good agreement for
a wide range of deformation velocities, both for loading and unloading conditions.
This work proposes a dynamic, non-linear visco-hyperelastic model coupled with a lin-
ear electric model suitable for finite-element software implementation. It is based on a
non-linear viscous model with a linear evolution law [12]. The implementation of the
model has been verified against experimental uniaxial data [11], showing a very good
agreement. Numerical simulations involving loads similar to the conditions encountered
in aeronautical and biological applications, i.e. membrane inflation, are compared with
dynamic experiments available in literature. The same model is be also used to evaluate
the static performance of tunable lenses made with dielectric elastomer actuators. The
aim is to reproduce recent experimental results [4] in which the lenses are made of two
transparent prestretched circular DE enclosing a fluid volume and demonstrate that the
model proposed is predictive of the performances of an actual device.

2 Constitutive Model

2.1 Assumptions

An isotropic constitutive model will be assumed. This has been experimentally verified
up to a stretch of 1.5 [13], but would need further investigation for higher stretches. The
electrostatic stresses are decoupled from the mechanical ones, such that the total stress
tensor σ is [7]

σ = σm + σel (1)

where σm and σel are the mechanical and electromechanical stress tensors. In addition to
this, the viscoelastic stresses are assumed to be related only to the deviatoric part of the
deformation gradient [14]. This will be described in Section 2.2. It is also assumed the
independence of the electrostatic stresses from the viscoelastic behaviour of the material,
so that they only depend on the purely elastic deformation [7]. The evolution of the
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electrostatic forces is further assumed to be instantaneous, since its time scale is several
order of magnitude faster than the mechanical ones. The electric model also neglects
the electrostrictive (non-linear) effects and a constant value of the dielectric constant is
assumed for the range of the deformation in the model proposed [15]. Zhao and Suo [16]
showed that when considering a wide range of strains, electrostrictive effects can be not
negligible and need to be included in the model.

2.2 Mechanical Material Model

The viscoelastic constitutive model for DEs is developed in the finite deformation
framework [12, 17, 14]. Consider a body in the reference configuration B0, with X the
initial position vector identifying each particle in the domain. At time t the body is in
the new, actual configuration B and the motion of the particle is tracked by the mapping
x = φ(X, t). The deformation gradient F at the time t is defined as the gradient of φ
in the reference coordinate system, F = ∇Xφ where ∇X,j = ∂

∂Xj
. The description of the

kinematics of the model uses the multiplicative decomposition of F into its volumetric
and isochoric components, that is, [18]

F̄ = FJ−
1
3 (2)

where F̄ maps the isochoric deformation of the body and J = det(F ) is related to the
change in volume. The volumetric part is assumed to be purely elastic, while the deviatoric
contribution is decomposed into the elastic and viscous parts. The viscous contribution
is obtained through the multiplicative decomposition of F̄ into its elastic and viscous
components [12]. Considering a number N of relevant viscous mechanisms involved in the
material constitutive model, for each of them, we define a correspondent elastic tensor
F̄ eα

F̄ eα = F̄ F−1
vα (3)

where F vα is the viscous tensor associated with the α-th viscous mechanisms consid-
ered. F vα represents the internal variables describing the nonequilibrium evolution of the
material constitutive law

Ċvα =
1

τα
[C −Cvα] (4)

which is a linearisation of the one proposed by [17] where τα is the time constant relative
to the α relaxation mechanisms considered and has to be experimentally determined. By
construction, it is det(F vα) = 1. The viscoelastic stresses for each viscous mechanism
are expressed as function of F̄ eα. The evolution of the internal variables from the initial
condition considered, is driven by an internal evolution law F̄ and the thermodynamic
equilibrium is reached when F vα = F̄ . Thus at equilibrium F̄ eα = I and hence the elastic
stresses are zero. For the general derivation of the evolution law see [12, 17]. In this work
a linearised version of the evolution law is considered (Section 2.2), but that model can
be easily modified with a different one.
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The isotropic assumption allows the definition of the free-energy function of the mate-

rial in terms of the invariants of the right Cauchy-Green deformation tensors. C̄ = F̄
T
F̄

is used for the deviatoric elastic contribution and C̄eα = F̄
T
eαF̄ eα for the viscous contri-

bution. J is used for the volumetric contribution [17]. This removes the dependency of
the stresses on the material orientation. Thus the free energy function is of the form

W = U (J) + Φ∞
(
Ī1, Ī2

)
+

N∑
α=1

Φvα

(
Ī1eα , Ī2eα

)
(5)

where U (J) is the volumetric energy function accounting for the variation in volume
defined by J , Φ∞

(
Ī1, Ī2

)
is the deviatoric free energy function expressed in terms of Ī1

and Ī2 , which are the first and second invariants of F̄ , respectively

Ī1 = trC̄ Ī2 =
1

2

((
trC̄

)2 − trC̄
2
)

(6)

and Φvα

(
Ī1eα , Ī2eα

)
is the energy function corresponding to the viscoelastic stresses related

to the α-th mechanism. Ī1eα and Ī2eα are the first and second invariants of C̄eα defined
in (3)

Ī1eα = trC̄e,α Ī2eα =
1

2

((
trC̄eα

)2 − trC̄
2
eα

)
(7)

The stresses are derived from the free energy function through the derivation respect to
the stretches in the directions considered [17]. In the reference configuration the stresses
are

S = 2
∂W

∂C
= 2SJ + 2S∞ + 2Sv = J

∂U

∂J
C−1 + 2J−

2
3P :

(
∂Φ∞
∂C̄

+
∂Φv

∂C̄

)
(8)

where S is the second Piola-Kirchhoff stress tensor, SJ are the stresses due to the contri-
bution of the volumetric energy function, S∞ is the contribution of the elastic deviatoric
stresses, Sv the viscous stresses, and the projection tensor is P = I− 1

3
C−1⊗C with I the

symmetric fourth-order identity tensor. The stress tensor in the deformed configuration
σ is finally obtained through a push-forward operation on S

σ =
1

J
F TSF (9)

In (5) we introduced the free energy function. Several models have been proposed in the
literature [8, 9, 10, 19, 20, 21, 22] offering different behaviours of the constitutive model of
the material. For any of them the coefficients have to be determined experimentally and
usually static uniaxial tests are considered. The issue is that, even if data are obtained
for very slow deformation rates, they include some viscoelastic effects. To the best of the
authors’ knowledge, only [21, 11, 13] obtained static results on DEs including material
relaxation.
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2.2.1 Electrostatic Stresses

The electrostatic stresses are modelled with the Maxwell’s stress tensor. Given an
electric field vector E, the stress tensor σel is defined as [7]

σel = εE ⊗E − 1

2
ε (E ·E) I, (10)

where ε is the material dielectric constant, E is the electric field vector in the deformed
coordinate system and I is the unitary second order tensor.

2.2.2 Tangent Stiffness Matrix

To use the constitutive model in a finite-element model that adopts a Newton-Raphson
scheme, the tangent stiffness matrix needs to be evaluated to build the operator for the
iterative solution scheme. The tangent stiffness matrix C in the reference configuration
is obtained as [17]

C = 2
∂S

∂C
, (11)

and in S all the stresses contributions, elastic (volumetric and deviatoric) and viscous
(deviatoric) are included. The derivation of the expression of (11) can be found in [23].
The tensor can be written in the deformed coordinate system by means of a push forward
operation Ca

ijkl = FipFjqFkrFlsCpqrs

3 Inflated membrane model

The previous model will be used in this work to study the behaviour of inflatable
circular DE. We will consider an axial-symmetric simplified model assuming spherical
deformation of the inflated membrane. This assumption is representative of the real
behaviour of an inflated circular membrane when the ratio between the maximum camber
amplitude and the initial diameter is below 15% [4].

3.1 Analytical membrane model

Consider a prestretched circular membrane with initial diameter 2a and radial pre-
stretch λp. The initial thickness is H and, assuming incompressibility, the thickness of
the stretched membrane is h = Hλ−2

p . If z is the out-of-plane displacement of the centre
of the membrane, the radius R of the correspondent spherical cap is related to z by

z = R−
√
R2 − a2 (12)

Considering Newton’s second law of dynamics for a membrane element of infinitesimal
area subjected to a uniform pressure difference ∆P and uniform tension T , we obtain

ρh
∂2z

∂t2
= −2T

R
+ ∆P (13)
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where ρ is the membrane density, t is the membrane thickness and T is the in-plane
tension per unit of area of the membrane. In the case of actuated DE, T is the sum of the
mechanical elastic and viscoelastic in-plane stresses and the equivalent in-plane Maxwell
stress for incompressible materials, −εE2 [7]. If we consider the static equilibrium, the
displacement z due to ∆P is given by

∆P = 2T

(
1

R

)
(14)

where T in this case is the sum of the purely elastic stresses and the Maxwell stress.
Combining (12) and (14) we have

z =
2T

∆P
−

√(
2T

∆P

)2

− a2. (15)

For low values of z, T can be assumed as a constant in the problem. When the
deformation increases the tension needs to be recomputed considering the updated value
of the stretch due to the out-of-plane displacement. For a given the displacement z, the
updated membrane length L is

L = λp arcsin
( a
R

)
R (16)

which can be used in the material model (5) to compute the new in-plane tension T and
an updated value of z till convergence.
Consider now a reference static configuration identified by the parameters ∆P0, T0, z0 and
R0. Consider now a perturbation of the static equilibrium that can be due to a variation of
the actuation voltage that causes a variation of the Maxwell stress δσel, or a fluctuation
of the difference of pressure δP . Expanding (13) from the reference configuration and
linearising we have

ρh
∂2z

∂t2
= −2δT

R0

+
2T0

R2
0

δR + δP (17)

where δT is the variation of in-plane tension considering the elastic, viscous and Maxwell
contributions and δR is the variation or R due to z. It is possible to express δT as function
of z and δσel. however, the variation of the elastic tension due to the deformation, in the
range of validity of this linearised model, is negligible. Thus δT is written as the sum of
the contribution of the viscoelastic stresses and the Maxwell stresses. Using the Laplace
transform for (17)

ρhs2L{z} = −2L{δT}
R0

+
2T0

R2
0

L{δR}+ L{δP} (18)

Through linearisation δR can be expressed as

δR =
z2

0 − a2

2z0

z (19)
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Considering a linearised form of the viscoelastic stresses, L{δT} can be written as

L{δT} = L{δσel}+
N∑
α=1

Ω(xα, s)ΓL{z} (20)

where N is the number of viscoelastic mechanisms considered, Γ = Γ(a, h0, R0) is a
function of the initial conditions to linearise the variation of the length of the spherical
cap and Ω(xα, s) is the transfer function from the membrane stretch (ΓL{z}) to the
viscous stresses.

Substituting (20) and the Laplace transform of (19) in (18) the linear dynamics of the
system is

L{z} =
2L{δσel}R−1

0 + L{δP}
ρhs2 +

∑N
α=1 Ω(xα, s)Γ− 2T0

R2
0

z20−a2
2z0

(21)

Equation (21) represents the linear response of the inflated membrane when a variation
in pressure of voltage is applied over the reference configuration considered.

When a mechanical constitutive model W is selected, the mechanical stresses can be
computed. The elastic tension T0 is equal to σ0Hλ

2
p where σ0 is the in-plane tension

obtained from

σ =

(
−pI + 2

∂Φ∞
∂I1

C

)
(22)

where C is the left Cauchy Green deformation gradient and p is the hydrostatic pressure
that is determined from the plane stress condition on the membrane, σ

(3,3)
0 = 0. The

Maxwell stress, using the incompressibility assumption, is

σel = −ε
(
V

H
λ2
p

)2

Hλ−2
p (23)

where V is the applied voltage. The viscoelastic model proposed in Section 2.2 is linearised
and coupled with the evolution law giving the following expression of Ω(xα, s) for (20)

Ω(xα, s) =
µαs

1
τα

+ s
(24)

This is the linear transfer function of the Maxwell elastic element.

3.2 Viscoelastic Material Model for VHB4905

A second, detailed, model is proposed next as a material model to simulate an actuated
inflated membrane made of VHB4905 based on the formulation defined in Section 2. First,
static and dynamic results available from [8, 21] will be used to define the coefficients of
the material model. From [21], the initial membrane thickness is 0.5 mm, the final radius
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is 88.9 mm with a prestretch of 3.5 [21]. The elastic constitutive law considered is the
Gent incompressible model [24]

Φ∞ = −µJm
2

log

(
1− I1 − 3

Jm

)
(25)

where µ is the shear modulus of the material and Jm is a coefficient related to the limiting
stretching value of the polymer. The viscoelastic energy function selected for the different
mechanism is the incompressible Neo-Hookean model

Φv,α =
µ

2

(
Īe1,α − 3

)
(26)

with a linear evolution law (4).

3.2.1 Definition of Φ∞

The first step in the definition of the material model is the determination of the co-
efficients of Φ∞, in this case the values of µ and Jm for the Gent model selected. The
static model (15) with the iterative correction of the tension (16) has been used to define
a least-square fitting process with the static data in [21] to identify the best value of the
coefficients. The coefficients obtained were found to be close to µ= 20kPa, Jm= 100 and
εr=2.7 and those are the values that will be used for the model. The coefficients are used
to reproduce the membrane inflation with three different models: The analytical models
proposed in this section (linear and nonlinear) and a model defined using a commercial
finite element software are considered. The results are presented in Fig. 1 and compared
with the experimental data. It can be seen that the range of validity of the linear model
is limited and is overestimating the deformed configuration since the elastic tension is not
updated. The nonlinear model is in very good agreement with both the experiments and
the finite element model.

3.2.2 Definition of Φv,α

The model is based on the fitting of the actuated membrane experiments proposed in
Ref. [21]. The circular membrane is inflated with a bias pressure of 80 Pa and actuated
with a sinusoidal voltage with amplitude, Φ, of 1.5 kV and various frequencies. The
Maxwell stress is

σel = −ε
(

Φ

H
λ2
p

)2

sin2(2πνt) = −ε
(

Φ

H
λ2
p

)2
1− cos(2πνt)

2
(27)

The reference configuration selected for the membrane is represented by the static
equilibrium with ∆P0 = 80 Pa and a constant Maxwell stress equal to the mean value

in (27), − ε
2

(
Φ
H
λ2
p

)2
. With this reference condition, using (18), the transfer function of
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Figure 1: Static fitting of an inflated membrane of VHB4905 for 0 kV(red), 1.25 kV (blue)
and 2.5 kV (orange) of applied voltage. Symbols represent experimental data from [21]
and continuous lines the predictions of the numerical models proposed.

the membrane is defined. The expressions of the amplitude and phase delay of the forced
response are used in a least-square fitting problem in order to identify the viscoelastic co-
efficients of the viscoelastic model. Only one viscoelastic mechanism has been considered,
representing a good compromise between computational cost and accuracy of the results.
The coefficients are µα = 32.27 MPa and τα = 2.01 10−4 s.

The results are plotted against the experimental data from [8, 21] in Fig. 2 in two
different conditions showing a good agreement. The first natural frequency of the mem-
brane, including the viscoelastic effects, is found to be 69 Hz, which is close to the 70 Hz
reported in the experiments [21].

4 Tunable Lens Model

The material model for VHB4905 proposed in Section 3.2 is used to reproduce the
experimental results of [4] on a tunable lens. The lens is composed of two membranes
made of transparent DE membranes and mounted on a rigid frame (Fig.3a). A transparent
fluid is encapsulated between the membranes. The passive membrane is made of VHB4905
while the active one is made of VHB4910. When the active membrane is actuated, the
in-plane tension is reduced causing a redistribution of the enclosed fluid and a variation
of the focal length. The two membranes are modelled with the dynamic model proposed
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Figure 2: Dynamic actuation of the circular VHB4905 membrane. Experimental data
[21] (solid lines) are compared with the numerical models proposed for a) 1Hz sinusoidal
pressure and b) 35 Hz sinusoidal voltage.

in Section 3. The Gent model is chosen for the elastic-equilibrium stresses, while the
Neo-Hookean one is used for the viscous stresses. The initial selected focal length f0

is 5.40 mm, with passive and active membranes diameters respectively of D1 = 10 mm
and D2 = 16 mm and the frame thickness is 4 mm. The passive membrane prestretch
is λ1 = 2.0 while the active one is λ2 = 4.0. The material model considered for the
VHB4905 membrane is the one proposed in Section 3.2. The elastic active membrane
model is fitted in order to obtain the best agreement with the experimental data given
the boundary conditions. The elastic coefficients of the Gent material model used are µ
= 24 kPa and Jm = 90. The values of the coefficients obtained from the fitting of the
static inflation of the VHB4910 membrane proposed by [25] that are found to be close to
µ = 22 kPa and Jm = 95. The error between the two shear moduli, δµ, is less than 10%.

The initial fluid volume and pressure determine the initial focal length. This configu-
ration, identified by the displacements of the passive and active membranes z10 and z20, is
taken as reference configuration for the model and, as in Section 3, ∆z1 and ∆z2 are the
displacements of the passive and active membrane from the reference point. When the
active membrane is actuated, the pressure of the fluid is reduced till both the membranes
are in equilibrium and the constant volume constraint is satisfied.

A comparison of the static model with experimental data from [4] is presented in Fig.
3b. The performances predicted by the lens model proposed are represented by the black
solid line in Fig. 3b. The initial focal length is considered as a constraint and the shear
modulus of the active membrane is varied in the range of values determined by the δµ
error previously defined. The corresponding variation of performance is defined by the
dash lines in Fig. 3b. A softer active membrane would lead to higher variations of the
focal length. This is due to the greater impact that the applied Maxwell stress will have
and to the higher volume of fluid available for displacement [4]. Contrarily, a stiffer active
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Figure 3: a) Tunable lens model. b) Performances of the actuated lens. Experimental
data (symbols) from [4] are compared with the numerical model proposed.

membrane leads to lower performance.

5 Conclusions

The design process and performance evaluations of DE actuators require a numerical
model able to deal with large deformations, material nonlinearities, viscoelastic effects,
and electrostriction. The constitutive model needs to be representative of the effective
loading conditions of the actuators and has to include viscoelastic effects to be able
to reproduce a wide range of cases. This work proposed a dynamic, non-linear visco-
hyperelastic model suitable for finite-element software implementation that can be used
for the most common applications of DEs. The coefficients of the model have been de-
fined considering dynamic actuation experiments at various frequencies, with dynamic a
dynamic pressure variation and sinusoidal voltage. The static model showed excellent
agreement with experimental data in the literature and it has proven to be predictive for
general applications of DEs, as in the case of the tunable lens problem.
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