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Abstract. Omni wheel is defined as one having rollers along its rim. Respectively
omni vehicle is one equipped by omni wheels. Several steps of development of dynamical
model of the omni vehicle multibody system are implemented. Essential parameters of
the model: (a) number of rollers per the wheel, and (b) angle of the roller axis inclination
to the wheel plane, are introduced. Initially, dynamics of the free roller moving in a field
of gravity and having a unilateral contact constraint with horizontal surface is modeled.
The contact tracking using simplified and efficient algorithm turns out being possible. On
the next stage the omni wheel model is developed and debugged. After that the whole
vehicle model is assembled as a container class having arrays of objects as instantiated
classes / models of omni wheels and joints. Dynamical properties of the resulting model
are illustrated via numerical experiments.

1 INTRODUCTION

Investigation of omni vehicle dynamical properties is sufficiently popular topic in frame
of the multibody dynamics [1, 2, 3, 4]. The omni vehicle is one having omni wheels, wheels
equipped by rollers along the rim. Simplified, idealized models having contacting rollers
as an infinitesimal discrete elements are known. Thus one has a resulting non-holonomic
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constraint being “uniformly distributed” over the wheel rim. As a result, paradoxically,
the physical objects, omni wheels, in this situation describe approximately an idealized
object, “simplified” infinitesimal model.

Our goal in this paper is to develop a technique for building up a dynamical prototype
for the “real” model of the omni vehicle explicitly involving dynamics of physical rollers.
Here we rely upon the 3D multibody dynamics library classes utilized previously in several
examples of the multibody systems dynamics [5]. Simultaneously this library enables us
to create complex dynamical models including unilateral constraints of different nature.

Unlike to [2, 3] we emphasize here on the details of the unilateral constraint implemen-
tation paying special attention to contact switching when rollers changing.

2 PROBLEM FORMULATION

Upon describing the omni vehicle model construct note that the number of rollers per
each wheel and the angle of inclination of the roller axis of symmetry to the wheel plane
are both fundamental parameters of the vehicle dynamical model. For simplicity and
presentation clarity we currently consider omni wheels being equipped by four rollers.
Also, for simplicity rollers themselves have their axes of symmetry lying in the wheel
plane, see Figure 1. These fundamental parameters are easily changed in a way simple
enough. We assume also that the rollers are located on the omni wheel such that for
wheel vertically aligned a projection of the curve of contact consists of segments in the
sequence, each segment corresponding to the contact of individual roller. These segments
are connected in a way such that the normal relative velocity at contact is equal to
zero at the switching point of rollers. This means that the normal impact is always
absent. Discontinuities of the tangent relative sliding velocity are absent for zero angle
of inclination. But the tangent force of friction may have discontinuity of the first kind
in the worst case of angle of inclination if the roller symmetry axis to the wheel plane is
non-zero. Thus, the wheel linear and angular velocities will be continuous at an instant
when roller switching contact. Similar statement takes place for rollers, as well. Then
tangent impacts are also absent.

Note, in addition, that the curve of contacting points forms the xy-projection onto the
wheel plane, having a shape of the circle of radius R, see Figure 1. Thus for translational
and rotational motion we have continuity as well. Resuming we are able to conclude that
the regularity of motion is conserved as roller switching at contact. At least on the level of
integrity of the omni wheel. Recall, that all the description above takes place for vertical
alignment of the omni wheel.

On the next level of assembling process, several omni wheels are interconnected with
the moving platform of the vehicle, see Figure 2, using joint constraint as a class from
the previous stage. In our case, number of wheels may be three or more. They can form
different configurations on the platform body. We analyse an example with three wheels
forming an equilateral triangle in the plane of the platform, see Figure 2, parallel to the
coordinate horizontal plane zx. Axis y here is assumed vertical.
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Figure 1: The omni wheel vertically aligned.

Figure 2: The three wheeled vehicle. Top view.
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3 THE ROLLER DYNAMICS MODEL

Firstly, we presume that the roller is axisymmetric spindle-shaped rigid body having
outer surface defined in body frame of reference Oxyz, see Figure 3, by equation

x2 +
(√

y2 + z2 + R1

)2

= R, (1)

where R is the omni wheel radius, R1 = R cos α is the distance from the roller center to
the wheel center, α = π/n is the half of the roller opening angle of visibility from the
wheel center, n is number of rollers per wheel.

Figure 3: The roller over horizontal surface. Lateral view.

Dynamics of the roller translatory–rotary motion is implemented using equations of
Newton – Euler as was shown in [6]. And rotational motion was modeled by the quaternion
algebra [7].

Algorithm for contact tracking plays an important role for the correct and efficient work
of the computer model of the contacting process of the roller and the horizontal surface.
For modeling and simulation of the rigid body dynamics with unilateral constraint we
apply the technology described in [8]. So we could have used in the object of contact a
system of well known algebraic or implicit differential–algebraic equations. However, these
equations degenerate at the roller tips defined by equations x = ±R sin α in the roller
coordinates, see Figure 1. Usually, such a degeneration causes an abnormal completion
of the simulation process.

In our case of the spindle-shaped roller over the horizontal surface, arranging the con-
tact tracking procedure turns out being sufficiently simple. So one can point out explicit
procedure for computing the nearest point PB of the roller to the horizontal surface, see
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Figure 4. This surface has its own nearest point PA at contact. Evidently the point PA

is a vertical projection of the point PB of the roller.

Figure 4: Contact tracking scheme.

Denote by i = (1, 0, 0)T the unit vector along the axis OBxB of the roller connected
coordinate system from Figure 4. This vector is resolved with respect to (w. r. t.) the
system OBxByBzB. Let TB be the rotational matrix of the roller w. r. t. the inertial
frame of reference. The latter frame, in our case, coincides with the fixed horizontal
surface coordinate system OAxAyAzA. Also, let rB be the roller current mass center
radius vector w. r. t. the inertial system, and nA = (0, 1, 0)T be the ascending vertical
unit vector. Simultaneously nA is the normal vector to the horizontal plane.

Conventionally, we denote the plane as body A, and roller as body B. Let d be the
horizontal unit vector defined by equation

d =
TBiB × nA

|TBiB × nA| .

Therefore, the directed segment
−−−→
OBO must have a length R1 and be defined by formula

−−−→
OBO = R1d× TBiB.

Here, O is the curvature center for the circle of the roller vertical section, see Figure 4.
This segment is located simultaneously in the vertical plane and in the wheel plane. Thus
from Figure 4 we see that the lowest point PB of the roller outer surface is defined by
equation

rPB
= rB + R1d× TBiB −RnA (2)
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since the PB lies on the same vertical with the point O and on the circle mentioned above.
To compute position of the point PA one has to put

rPA
= (xPB

, 0, zPB
)T . (3)

All the procedure above is valid only if the vector TBiB is inclined to the horizontal
plane within an angle ±α. Otherwise one has to put PB = B− where B− is the “left”, see
Figure 4, tip of the roller for angle of the vector TBiB inclination greater than the value
α. If this angle is less than −α then one has to guess PB = B+ where B+ is the “right”
tip of the roller.

Finally, one can write down a contacting condition between roller and horizontal surface
in the form

|TBiB · nA| ≤ sin α. (4)

This condition, however, is satisfied simultaneously for the lowest, being in contact, roller,
and the highest one. To reject the latter case one can add to condition (4) yet another
one

yB < R (5)

where yB is the altitude of the roller mass center w. r. t. inertial frame of reference.
So a conjunction of conditions (4) and (5) is equivalent to the case of contacting.

Otherwise condition of normal reaction being zero should take place. Indeed, according to
Signorini’s law a following alternative is implemented for each individual roller: (a) contact
takes place – relative normal velocity at contact should be zero; (b) contact is absent –
normal reaction (and tangent too) of unilateral constraint should be zero.

Condition (a) has several alternative possibilities of implementation. Firstly, from the
geometric viewpoint a presence of contact is equivalent to the scalar condition

yPB
= 0. (6)

Its absence is equivalent also to the scalar condition

Fn = 0

where Fn is the normal component of a reaction force acting on the roller at the point
PB.

Computational experience shows that equation of contact in the form (6) usually causes
an abnormal termination of the simulation process for the dynamical model of the roller.
One has similar result if we use equation

vn = 0

as an implementation of condition (a). Here vn is the normal component of the relative
velocity at contact point. And only equation of the form

v̇n = 0
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leads to the required result: object of contact works properly during the simulation pro-
cess. One has to recall here that all the implementation of the contacting process has the
“rigid” point-contact model.

For each roller of the omni vehicle model when contacting the friction model being
used is “turned on”. In our model being developed the “simple” law of the Amontons –
Coulomb dry friction is applied. Actually we use known piecewise approximation [8] to
exact dry friction instead. This approximation has high accuracy over long time inter-
vals [9]. In general, implementation of unilateral constraint model is based on the results
outlined in [8].

If the angle of inclination for the roller axis of symmetry to the wheel plane has non-
zero value then some of the above relations ought to be slightly corrected. In this case,
rollers become distorted along the wheel rim. Given the position rO ∈ R3 of the wheel
center, point O, see Figure 4, firstly, we have to build up an auxiliary base consisting of
unit vectors:

i′ = TB




1
0
0


 , j′ =

rO − rOB

|rO − rOB
| , k′ = i′ × j′.

After that a matrix of coordinates change has the form T ′ = (i′j′k′) where i′, j′,k′ assumed
as vector columns. This matrix defines transformation from inertial frame of reference
connected with the fixed body A to the frame defined by the vector base B′ = {i′, j′,k′}
introduced above in the following way




xA

yA

zA


 = T ′




x′

y′

z′


 .

To reduce an analysis to the case of β = 0 already considered above we have to rotate
the base B′ about j′ by the angle −β such that after the rotation a new base B = {i, j,k}
should be aligned with the wheel plane containing the unit vectors i, j. The rotation
mentioned has the matrix

S =




cos β 0 − sin β
0 1 0

sin β 0 cos β




in the base B′. Then in the base of the indicated body A the rotation of the unit vector i′

can be represented as follows i = T ′S(1, 0, 0)T . Suppose also j = j′, k = i× j. Evidently
k = d where d is the unit vector given above.

Thus based on the formula (2) and taking into account Figure 4 we can conclude that
for the case of β 6= 0 the following result takes place

rPB
= rB + R1j−RnA − R1 tan β sin γ√

1− sin2 γ
j× i, (7)

7



Ivan Kosenko, Kirill Gerasimov

Figure 5: The omni wheel visual model.

where the angle γ satisfies the equation

sin γ = i · nA.

4 ASSEMBLING VEHICLE MODEL

An assembling process of the omni vehicle prototype is implemented by two steps: (a)
assembling the omni wheel consisting of the wheel itself and a set of rollers attached to
the wheel; (b) assembling the vehicle by instantiating objects of the omni wheel class from
stage (a) into the container class of the vehicle prototype.

To connect rollers, rather objects of the roller class, and the wheel we use model of the
joint constraint previously developed and described in [5]. It is simply revolute class with
free relative rotation about its axis. Codes of all the classes / models for the prototype are
implemented as Modelica classes library. See visual model of the omni wheel in Figure 5.
Here, in our example we selected for simplicity and certainty n = 4.

The model of main interest is one of the whole vehicle which is “assembled” on the
second stage of the assembling process. Connecting devices were also implemented as
objects of the same joint class from stage (a). These joints connect the vehicle body
and each of wheels. All joints above allow relative rotation without any resistance and
lock sliding along the joint axis. See visual model of the vehicle in Figure 6. Here, for
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Figure 6: The omni vehicle visual model.

presentability, objects are shown as scalar elements. Actually, one has to instantiate
corresponding arrays of objects of classes “Roller” and “OmniWheel” for arbitrary n and
arbitrary number of wheels in the vehicle.

Recall that before the DAE index reduction process the whole vehicle model consists of:
(a) one rigid body of the vehicle platform; plus (b) three rigid bodies of the vehicle wheels;
plus (c) twelve rigid bodies of rollers located on the wheels. According, for instance, to
[5] for each object of rigid bodies we implement six Newton’s ODEs for the mass center
motion plus seven Euler’s ODEs for rotational motion about the mass center. For the
latter case we have four Euler’s kinematical equations for the rigid body quaternion plus
three Euler’s dynamical equations for the rigid body angular velocity. Totally, the whole
vehicle model includes system of ODEs of order 16 · 13 = 208. Besides, constraint objects
are able to generate additional differential equations.

Wheels being assembled into the vehicle will keep the vertical alignment unavoidably.
For this reason the simplified contact tracking algorithm described above works properly.

Computer experiments were performed for the case under consideration. Correspond-
ing results were interpreted. For instance, an evolution of the contact process for one
wheel of the three wheeled vehicle is shown in Figure 7. Paying attention to the Figure
legend we are seeing variables with suffixes “.h” and respectively curves of four colours.

9



Ivan Kosenko, Kirill Gerasimov

These variables represent so called mutual approaches for contacting bodies. Their values
are simply distances between rollers of the wheel and the horizontal surface of rolling.
These curves correspond to rollers being in different phases of wheel rotation: before con-
tact, at contact, after the contact. See an instance of the roller change being zoomed in
Figure 7.

Figure 7: Process of rollers contact replacement

Simultaneously, one can also observe the unilateral constraint accuracy being kept by
the model at contacting, see Figure 8. In this Figure we can observe how a numeric
error of the unilateral constraint contact accuracy slowly diverges, mutual approach ...h

gradually grows, for each successive roller at contact. Meanwhile, an absolute value of
error stays near negligible value of 10−7 meters. Change of the curve colour corresponds
to change of the contacting roller.

5 CONCLUSIONS

As a summary of main results obtained in the course of the omni vehicle model devel-
opment we can highlight the following issues:

• There exist a possibility for smooth impactless switching between rollers at contact
upon rolling of omni wheel;
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Figure 8: Accuracy of the unilateral constraint.

• Efficient and simplified contact tracking algorithm was implemented;

• Influence of friction model on dynamics of the omni vehicle was analyzed.

This work was performed with partial support of RFBR, projects 11-01-00354-a, 12-
01-00536-a, 12-08-00637-a.
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