COMPARISON OF DIFFERENT CORRELATION APPROACHES BETWEEN GNSS-R AND GROUND SOIL MOISTURE DATA OVER THE VALENCIA ANCHOR STATION SITE DURING THE SMOS VALIDATION REHEARSAL CAMPING 2008

Buil, A.\(^{(1)}\), V. Gomez Rubio\(^{(2)}\), F. Fabra\(^{(3)}\), E. Cardellach\(^{(3)}\), A. Rius\(^{(3)}\), E. Lopez-Baeza\(^{(1)}\)

\(^{(1)}\) University of Valencia. Dept. of Physics of the Earth & Thermodynamics. Climatology from Satellites Group
\(^{(2)}\) University of Castilla-La Mancha, Dept. of Mathematics
\(^{(3)}\) Spanish Advanced Council for Research, Institute of Space Sciences

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Contents

• Objectives

• Characteristics of the Valencia Anchor Station site

• The ESA SMOS Validation Rehearsal Campaign in 2008
 • First-hand analysis of the correlation between GPS and SM measurements
 • Analysis of the matching between ground and aircraft measurements
 • Influence of the elevation angle
 • Analysis of the use of geostatistical models to increase data correspondence
 • Selection of homogeneous conditions to optimize correlations

• Regression models used

• Results and conclusions

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Objectives

Contribute to the development of a methodology to measure soil moisture using the free GPS signals

Take advantage of the soil moisture network and of the SMOS campaigns data and of the significant characteristics of the Valencia Anchor Station area
Observation of soil moisture from satellites has always been predominantly performed in the microwave electromagnetic region, mainly in the range 1-3 GHz. This is because atmospheric attenuation in that range is largely reduced and better penetration of vegetation at longer wavelengths. Njoku and O’Neill (1982) showed that P-band (0.775 GHz) and L-band (1.4 GHz) frequencies are optimal for sensing soil moisture in the top 0–4 and 0–2 cm surface layers, respectively.

- GPS signals are readily available and also at L-band
- GPS equipment is more economical that radar or other passive instruments
Study Area

The study area includes the reference area of the Valencia Anchor Station in the natural region of the Utiel-Requena Plateau, located west of the province of Valencia. It represents a fairly homogeneous area of about 2500 km², mainly dedicated to the cultivation of vine, with dry continental climate.

Within this area a robustly equipped control zone of 10 x 10 km² is dedicated to monitoring soil moisture and other meteorological parameters.

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
The ESA SMOS Validation Rehearsal Campaign

The Valencia Anchor Station Site

19th April – 2nd May 2008

2010 Workshop on GNSS Reflectometry (GNSS-R'10), Barcelona, Spain, 21-22 October 2010
Ground Team Distribution Along the Flight Lines
Example of Itinerary: Ground Team 16

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Busy night, tonight!!!
Ground Measurements
Summary of Ground Measurements

• 20 measuring teams with itineraries defined with 35-38 measuring points (40 to 80 m² each), each team using a 4-wheel drive car

• Approximately 20 x 35 = 700 measuring plots. Around 400 soil texture samples from these measuring plots obtained during the definition of the itineraries

• 4 volumetric SM cylinder samples at each measuring point. Total number of actual cylinder samples = 10,425 samples

• 7 Delta-T Theta Probe measurements at each measuring point (with 3 repetitions each). Total approximate number of measurements:

 20 teams x 35 measuring sites x 7 measurements x 4 nights = 19,600 measurements (58,800 measurements considering the 3 repetitions of each measurement)

Note 1: 4 out of the 7 Theta probe measurements at each measuring point were taken within < 50 cm distance of the volumetric SM cylinder sample in order to be able to correlate both SM measurements and for Delta-T Theta probe calibration purposes

Note 2: All SM measurements are properly geo-referenced

2010 Workshop on GNSS Reflectometry (GNSS-R‘10), Barcelona, Spain, 21-22 October 2010
Firstly we show the comparison between ground and airborne data for the wettest (22/04/2008) and the driest day (02/5/2008) to analyze the signal variation.

Variation of amplitude from a wet to a dry day.
The footprint was approximately 30 m and rarely fully coincided with *in situ* data, so we established a 100-m diameter threshold.

Buffer between *in situ* and airborne data (22/04/2008)
Dense Sampling Over the Environmental Unit Distribution

2010 Workshop on GNSS Reflectometry (GNSS-R'10), Barcelona, Spain, 21-22 October 2010
Environmental Unit #54 was selected for being notably homogeneous (predominantly dedicated to vineyards) and gathering a significant number of sampling points.
Ground vs Airborne Data (Unit #54)

Airborne data vs in situ data for Unit 54 (R = 0.69).

Relationship between airborne data and in situ data in Unit 54.
2010 Workshop on GNSS Reflectometry (GNSS-R'10), Barcelona, Spain, 21-22 October 2010
Ground vs Airborne Data for Central Flight-lines

Central flight-lines where footprints are more homogeneous
Significant influence of the elevation angle
Parameterize as a function of elevation angle

Amplitude vs Soil Moisture for different elevation angles.

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Geostatistical VS Airborne Data

Why use geostatistical modeling of the ground data?

The basic idea is to get a continuous map of the soil moisture area in order to be able to use the largest number of aircraft data observations.

Universal kriging map, *In situ* and airborne data for 22/04/2008

2010 Workshop on GNSS Reflectometry (GNSS-R*10), Barcelona, Spain, 21-22 October 2010
Geostatistics is a branch of statistics focusing on spatial or spatio-temporal datasets. Developed originally to predict probability distributions of ore grades for mining operations, it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology,

Kriging is a group of geostatistical techniques to interpolate the value of a random field at an unobserved location from observations of its value at nearby locations.

Universal kriging can handle a large number of parameters at the same time.
Geostatistical vs Airborne Data

With universal kriging we included clay and sand content as additional information (covariates) obviously associated with soil moisture content.

Multilayer sampling point composed of: grid, soil moisture sand content, clay content, and enviornamental units

Universal kriging map obtained

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
332 Soil Texture Samples
Soil Texture, % Clay

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Geostatistical vs Airborne Data

Model cross-validation
R (between observed and predicted values) = 0.56
- Mainly due to the low sampling density that exists in some areas
- In other areas sampling was sufficiently large so that the variance was very low (diagonal flight-line)
Select an area of low variance to make this comparison (mainly areas on the diagonal flight-line).

Environmental Unit #54, under bare soil conditions with almost no interference from other sources.
Geostatistical vs Airborne Data (Env. Unit #54)

R = 0.84

Relationship between geo-statistical model and airborne data for Environmental Unit #54

2010 Workshop on GNSS Reflectometry (GNSS-R*10), Barcelona, Spain, 21-22 October 2010
Regression Models Applied

4 regression methods have been tried, namely
• multiple linear regression (MLR)
• regularized linear regression (RIR)
• kernel ridge regression (KRR)
• neural network regression (NNR)

Inputs for each day
• GPS signal amplitude
• elevation angle
• soil texture as clay, sand and silt contents

Output
• soil moisture
Regression Models Applied

- multiple linear regression
- regularized linear regression
- neural network regression
- kernel ridge regression

2010 Workshop on GNSS Reflectometry (GNSS-R'10), Barcelona, Spain, 21-22 October 2010
Regression Models Applied. Results

<table>
<thead>
<tr>
<th>Day</th>
<th>R</th>
<th>RMSE</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/05/2008 (100-m threshold)</td>
<td>0.71</td>
<td>2.74</td>
<td>KRR</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>3.86</td>
<td>NNR</td>
</tr>
<tr>
<td>02/05/2008 (200-m threshold)</td>
<td>0.24</td>
<td>5.12</td>
<td>KRR</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>3.67</td>
<td>NNR</td>
</tr>
</tbody>
</table>
Regression Models Applied. Results

100-m threshold

<table>
<thead>
<tr>
<th>Day</th>
<th>R</th>
<th>RMSE</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/04/2008</td>
<td>0.65</td>
<td>2.7</td>
<td>KRR</td>
</tr>
<tr>
<td>24/04/2008</td>
<td>0.77</td>
<td>1.9</td>
<td>KRR</td>
</tr>
<tr>
<td>28/04/2008</td>
<td>0.76</td>
<td>2.68</td>
<td>KRR</td>
</tr>
<tr>
<td>02/05/2008</td>
<td>0.71</td>
<td>2.74</td>
<td>KRR</td>
</tr>
</tbody>
</table>
Conclusions

- For the studied area of the Valencia Anchor Station, the amplitude of the waveform is closely related to soil moisture, but with a strong dependence on the elevation angle. We found that the best results corresponded to bare soil areas.

- The geostatistical model (universal kriging) used for the prediction of soil moisture from the measuring sampling points is not as satisfactory as expected (R = 0.56), although the results could be used in areas where the sampling density is relatively high.

- Thus, by comparing model ground (kriging) to airborne data we get good relationships for the conditions above mentioned, namely, bare soil, high sampling density and a specific elevation angle, always above 60 deg.
Conclusions

- KRR and NNR regressions are acceptable result set (for a few data is better kernel ridge regression). To improve the prediction we would need many more data.
Ideas for Future Work

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010
Acknowledgments

- Spanish Research Programme on Space, Ministry for Science and Education
- Directorate General for Climate Change, Regional Ministry for Environment, Water, Urban Planning and Housing, Generalitat Valenciana
- European Space Agency (ESA)
- Servicio de Licencias a Operadores Aéreos y Servicios Aeroportuarios, Agencia Estatal de Seguridad Aérea (AESA)
- Aeropuertos Españoles y Navegación Aérea (AENA)
- Valenciana de Aprovechamiento Energético de Residuos S.A. (VAERSA)
- Agencia Estatal de Meteorología (AEMet)
- Servicio de Tecnología del Riego, Instituto Valenciano de Investigaciones Agrarias (IVIA). Regional Ministry for Agriculture, Fishing and Food, Generalitat Valenciana.
- Jucar River Basin Authority. Hydrological Planning Office and Automatic Service for Hydrological Planning (SAIH)
- Excmo. Ayuntamiento de Utiel. Concejalía de Medio Ambiente
- Excmo. Ayuntamiento de Caudete de las Fuentes
- Bodegas IRANZO, Caudete de las Fuentes (cellars)
- Bodegas y Viñedos de Utiel (cellars)
- Bodega La Cubera, Utiel (cellars)
- Nicolás Guaita, Caudete de las Fuentes

2010 Workshop on GNSS Reflectometry (GNSS-R’10), Barcelona, Spain, 21-22 October 2010