Introduction 00 SI: Greenland

DS: Antarctica

Summary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix

GNSS-R for studies of the cryosphere

F. Fabra¹, E. Cardellach¹, O. Nogués-Correig¹, S. Oliveras¹, S. Ribó¹, J.C. Arco¹, A. Rius¹, M. Belmonte-Rivas², M. Semmling³, G. Macelloni⁴, S. Pettinato⁴, R. Zasso⁵ and S. D'Addio⁶

> ¹ICE-CSIC/IEEC, Spain ²NCAR, CO, USA ³GFZ, Germany ⁴IFAC/CNR, Italy ⁵CVA-ARPAV, Italy ⁶ESTEC/ESA, The Netherlands

Workshop on GNSS-Reflectometry, Barcelona. Oct 22nd 2010

Introduction 00	SI: Greenland 000000	DS: Antarctica 000000000000000	Summary	Appendix
Outline				

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

1 Introduction

- GPS-SIDS project
- GOLD-RTR
- 2 SI: Greenland
 - Scenario
 - Results
- 3 DS: Antarctica
 - Scenario
 - Models
 - Methodology
 - Preliminary results

Introduction ●○	SI: Greenland 000000	DS: Antarctica 000000000000000	Summary	Appendix
GPS-SIDS project				
The frame of	f this work			

GPS Sea Ice - Dry Snow

- GOAL: to investigate the use of reflected GPS signals to study **sea ice** and **dry snow** properties from Space
- METHOD: to collect long term data sets from fixed platforms and then extrapolate the results

- CHALLENGE: experimental campaign under polar environmental conditions
- Many institutions involved: ICE-CSIC/IEEC, GFZ and IFAC/CNR (funded by ESA)

Introduction

SI: Greenland

DS: Antarctica

Summary

Appendix

GOLD-RTR

The instrument employed

Main aspects

- GNSSR dedicated hardware receiver
- GPS L1 (1575.45 MHz) C/A code
- 10 channels compute cross-correlations (waveforms) of 64 lags every millisecond
- 50 ns lagspacing $\Rightarrow \sim 15$ meters
- Scan the delay- and/or Doppler-space
- 3 radio front-ends
- One Up-looking antenna for reference signal (internal GPS receiver)
- Designed, manufactured, and tested at the ICE-CSIC/IEEC

Introduction 00 Scenario SI: Greenland ●00000 DS: Antarctica

Summary

Appendix

SEA ICE

ヨー わへの

Introduction 00	SI: Greenland 0●0000	DS: Antarctica 0000000000000000	Summary	Appendix
Scenario				
Location				
Godhavn (w	est coast in Gree	nland)		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶

æ

MINI

DS: Antarctica

Summary

Appendix

・ロ・・西・・田・・田・ 日・ シック

Introduction 00	SI: Greenland	DS: Antarctica 000000000000000	Summary	Appendix
Scenario				

Main aspects

- Long term campaign: Nov 2008 \rightarrow May 2009
- Formation, evolution and melting of sea ice confirmed from in situ Arctic Stations (DMI)
- Low elevation range due to coastline profile: 5 to 15 deg
- Presence of direct signal and near-multipath corrupts the shape of reflected waveforms

Observables

- Amplitude and phase at 1 msec during limited daily periods
- 1 second non-coherent integrated waveforms stored continuously
- Waveform shape not used, only values at lag from specular position

Introduction	
Results	

DS: Antarctica

Summary

Appendix

Phase altimetry with cm precision

- Agreement with AOTIM-5 and between polarizations (LHCP and RHCP)
- Potential determination of sea ice free-board level, linked to **thickness** (stage of development)

- nac

Introduction 00 SI: Greenland

DS: Antarctica

Summary

Appendix

Results

Characterization of sea ice

- Polarimetric ratio between co- and cross-polar components relates to permittivity
- **RMS** of the phase (coherence) relates to **roughness**

 \Rightarrow Helpful retrievals towards sea ice classification [Belmonte et al. 2009]

Ground-truth

Introd	

 Summary

Appendix

Scenario

DRY SNOW

Introduction
Scenario

DS: Antarctica

Location

Dome Concordia

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction	

Scenario

SI: Greenland

DS: Antarctica

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix

Introduction 00	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Scenario				

Main aspects

- Shorter campaign due to **stability** (DOMEX experiment, Macelloni et al. 2005) of the dry snow cover: 10th to 21st January 2010
- Clean visibility, large range of elevations (5 to 65 deg) and absence of near-multipath
- Validation area for remote sensing: availability of ancillary data
- 45 m vertical distance: overlap of direct and reflected signal for several lags
- Not a single "surface": reflected signal as a contribution from different layers

Observables

- 1 msec coherent integrated waveforms (amplitude and phase) stored continuously
- Waveform shape not used, a different approach has to be followed...

Introduction 00	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Models				

Existing Model, (Wiehl et al. 2003): sub-surface contribution essentially given by volumetric scattering

- But we consider **volume scattering negligible** compared to absorption loss
- Motivation: data shows clear interference fringes, better explained by multiple-layer reflections

 \Rightarrow Need to develop our own model

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ э

Introduction 00	SI: Greenland	DS: Antarctica	Summary	Appendix
Methodology				

Input of the forward model (MLSR)

- Depths and permittivity of the dry snow layers are needed
- Retrieved from in situ measurements of snow density

Introduction
Methodology

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Complex waveform generated

- Incident signal at surface with A=1
- Direct signal set to lag 22 (RHCP to LHCP leakage with A=0.1)
- Frequency of direct signal as a reference

Introduction
Methodology

DS: Antarctica

amplitude of complex 9.00 9.01

0.82

10

28

Summary

Appendix

Complex waveform generated

- Incident signal at surface with A=1
- Direct signal set to lag 22 (RHCP to LHCP leakage with A=0.1)
- Frequency of direct signal as a reference

Example: elevation from 44.884 to 44.955 deg (128 samples)

Lags (15 m inter-lag delay)

(日) (雪) (川) (1) (1)

68

ntroduction	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
/lethodology				

\Rightarrow Interferometric frequency relates to depth of the layer

Introduction 00	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Methodology				
How do v	ve retrieve informatior	1?		

- FFT to each of the lag-time series \rightarrow elevation domain (cycles/deg)
- Several bands of main contributions below the surface level appear, corresponding to depths with stronger gradients of snow density/permittivity
- \Rightarrow Proper inversion might determine dominant layers of L-band reflections

Introd 00		SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Metho	odology				
	How do w FFT Seve corre	e retrieve information to each of the lag-terral bands of main conservation esponding to depths ity/permittivity	on? time series → elevation do ontributions below the surf with stronger gradients of	main ace level appear snow	,

 \Rightarrow Proper inversion might determine dominant layers of L-band reflections

Introduction 00	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Preliminary results				

Results obtained with real data and comparison with the model

Introduction 00	SI: Greenland 000000	DS: Antarctica	Summary	Appendix
Preliminary results				

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

00	000000
Introduction	SI: Greenland

DS: Antarctica

Summary

ъ

э

Appendix

Comparison between lag-holograms

Introduction	SI: Greenland	DS: Antarctica
		000000000000000000000000000000000000000
Preliminary results		

Comparison between lag-holograms

Introd	

SUMMARY

SEA ICE

- Phase altimetry with cm precision at two polarizations
- ⇒ Potential determination of the ice thickness (related to free-board level)
- Polarimetric and RMS-phase measurements matches with ice percentage
- ullet \Rightarrow **Permittivity** and **roughness** can be used for sea ice classification

DRY SNOW

- A model with multiple layers has been tested
- Lag by lag FFT series separates information from different contributions and enables to remove other effects with symmetrical interferometric frequency
- Preliminary results show good agreement
- Proper inversion could determine **dominant layers** of the dry snow profile at L-band

Introduction	

DS: Antarctica

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Appendix

Thank you for your attention

Introduction 00	SI: Greenland 000000	DS: Antarctica 0000000000000000	Summary	Appendix
Phase Altim	etrv			

$$H_v = rac{1}{2}rac{\partial
ho}{\partial\sin(e)} = rac{m}{2}$$

Introd	

DS: Antarctica

Summary

Appendix

문 🛌 문

Polarimetric ratio

Radar equation [Zavorotny and Voronovich, 2000]

$$\begin{split} \chi_{\text{scat}}(\tau_r, mss) &= \iint \frac{\sigma^0(\vec{r}; \Re_{\text{RL}}, mss)\chi\left[\tau_r - \tau(\vec{r})\right]}{4\pi R^2(\vec{r})} d^2r \\ \sigma^0(\vec{r}; \Re_{\text{RL}}, mss) &= |\Re_{\text{RL}}|^2 \frac{(q/q_s)^4}{2 \ mss} e^{-\frac{(a_s/a_s)^2}{2 \ mss}} \end{split}$$

