GNSS-R for Land Bio-Geophysical Parameters Monitoring: the LEiMON Project

Alejandro Egido(1), Marco Caparrini(1), Leila Guerriero(2), Nazzareno Pierdicca(2), Simonetta Paloscia(3), Marco Brogioni(3), Nicolas Floury(4)

Presentation's Outline

- Introduction
 - Motivation
 - Fundamentals
- The LEiMON project
 - Experimental campaign
 - Data Analysis
 - New Scenarios Simulations
- Outcomes/ Further work

Introduction

Motivation and fundamentals

Introduction

-Why Soil Moisture and Vegetation?-

- Soil Moisture
 - primer parameter for the surface hydrologic cycle
 - keys for understanding interaction between continental surface and atmosphere (evapotranspiration)
 - SM affects heat storage, thermal conductivity
 - SM largely determines surface runoffs after rainfall
- Vegetation
 - critical for life support of humans and animals
 - key for understanding land resource management
 - climate variable
 - carbon cycle modelling
 - greenhouse gas emission inventories (C02 sequestration)
 - desertification control

Fundamentals of Soil Moisture and Vegetation Detection with GNSS-R

- Variability of ground dielectric properties with Soil Moisture:
 - Higher soil moisture volumetric content yields higher reflectivity

- Variability of propagation properties with Vegetation:
 - Higher vegetation biomass leads to lower signal power due to attenuation

• GNSS-R waveform peaks depend on the CNR of the received signals

The LEiMON Project

Land Monitoring with Navigation Signals

The LEiMON Project

- ESA (ESTEC) funded project [from 2008 to 2010]
 - Main objective: To investigate the combined effects of soil moisture, surface roughness, and vegetation into GNSS reflections and to evaluate the prospects of GNSS-R as a consolidated technology for land remote sensing applications.
- The project tasks:
 - Long term experimental campaign
 - GNSS-R + ground truth measurements continuously recorded
 - Database preparation and browsing tool
 - Experimental campaign data processing
 - GNSS-R simulator development for land applications
 - Scattering model for GNSS signals
 - Simulator implementation
 - Simulator validation with GNSS-R experimental data
 - Simulations of other scenarios

LEiMON experimental campaign

Long Term experimental campaign

- Montespertoli Experiment, Florence, Italy (March 2009
 Sept 2009)
 - Sept 2009)
 - Test-site field separated in two sides (E/W) for maximum variability of soil parameters
 - Strong rain events
 - Different roughness conditions throughout the campaign
 - West field seeded with sunflowers (up to 7kg/m2 biomass)
- Continuous recording of GNSS-R polarimetric data, and ground-truth measurements (soil moisture probes, meteo station, surface roughness, plant height, plant water

LEiMON experimental campaign

Starlab®GNSS-R signals comparison with(ITem Composition Comparison withancillary data

StarlabGNSS-R signals comparison with(ITem Concerning and Concerning

11

StarlabGNSS-R signals comparison with(I the lineancillary data (SM probes & Rain)

Sensitivity of GNSS-R signals to SMC

- East field
 - CorrCoeff (R^2) = 0.7
 - Sensitivity = 0.18 dB/SMC
 - RMSE = 4.6 %
- West field
 - CorrCoef (R^2) = 0.77,
 - Sensitivity = 0.24 dB/SMC
 - RMSE = 3.66%

- RHCP
- East field
 - CorrCoeff (R^2) = 0.57
 - Sensitivity = 0.09 dB/SMC
 - RMSE = 6.5 %
- West field
 - CorrCoef (R^2) = 0.62,
 - Sensitivity = 0.13 dB/SMC
 - RMSE = 5.66%

- RHCP / LHCP
- East field
 - CorrCoeff (R^2) = 0.76
 - Sensitivity = 0.08 dB/SMC
 - RMSE = 3.9 %
- West field
 - CorrCoef (R^2) = 0.92,
 - Sensitivity = 0.12 dB/SMC
 - RMSE = 1.55%

Sensitivity of GNSS-R signals to PWC

- LHCP
 - West field
 - CorrCoef (R^2) = 0.9,
 - Sensitivity = 0.14 dB/(Kg/m2)
 - RMSE = 1.16 Kg/m2

- RHCP
- West field
 - CorrCoef (R^2) = 0.9,
 - Sensitivity = 0.13 dB/(Kg/m2)
 - RMSE = 1.2 Kg/m2

-0.5 -1 -1.5 -2 -2.5 -3 -3.5 -4 -4.5 -5 0 1 2 3 4 5 6 7 Sunflower Plant Water content [Kg/m2]

RHCP over LHCP vs Sunflower PWC

- RHCP / LHCP
 - West field

0

- CorrCoef (R^2) = 0.71,
- Sensitivity = 0.02 dB/(Kg/m2)
- RMSE = 2.4 Kg/m2

GNSS-R Data Analysis Outcomes

- The general trends in the data match the behaviour predicted by theoretical models
 - LHCP and RHCP reflected signal components sensitive to Soil Moisture and Roughness
 - \uparrow Soil Moisture \leftrightarrow \uparrow RHCP (~1dB/10% SMC), \uparrow LHCP (~2dB/10% SMC)
 - \uparrow Soil Roughness \leftrightarrow \downarrow RHCP, \downarrow LHCP
 - RHCP over LHCP ratio sensitive to soil moisture
 - \uparrow Soil Moisture $\leftrightarrow \downarrow$ RHCP/LHCP (~1dB/10% SMC)
 - RHCP over LHCP ratio quite insensitive to soil roughness
 - LHCP and RHCP signals little sensitive to vegetation
 - \uparrow Vegetation $\leftrightarrow \downarrow$ LHCP, \downarrow RHCP (~0.1dB/(kg/m2))
 - GNSS-R signals sensitive to light rain events that soil moisture FDR probes do not detect

Moving towards space

- Simulations performed with developed software to determine the sensitivity of GNSS-R signals to soil parameters from airborne/spaceborne platforms
- Model validated with GNSS-R experimental data
- Several land conditions selected in order to perform the analysis for several scenarios

Soil Moisture Conditions	#	1	2	3
	State	Dry	Mid	Wet
	Value (VSM)	5.00%	20.00%	40.00%
Roughness Conditions	#	1	2	3
	State	Smooth	Mid	Rough
	Value (s_Z)	0.5cm	1.5cm	2.5cm
Vegetation Conditions	#	1	2	3
	State	Bare	Mid	Developed
	Value (H)	0cm	60cm	150cm

Scenario	SoilMoisture	Roughness	Vegetation
1	2	1	1
2	1	2	1
3	2	2	1
4	3	2	1
5	2	3	1
6	2	2	2
7	2	2	3
8	3	2	3

Selected plaforms characteristics:

Airborne

Parameter	Value
Platform Height	5000m
Platform Speed	200m/s
Antenna HPBW	40°
Integration Time	1 ms

Spaceborne

Parameter	Value
Platform Height	750Km
Platform Speed	7Km/s
Antenna HPBW	20°
Integration Time	1 ms

-Soil Moisture Sensitivity-

Varying Soil Moisture, s_z = 1.5cm, No Vegetation

LHCP and RHCP coherent and incoherent scattering components

• Good sensitivity in LHCP polarization; over 6dB between dry and wet case

-Soil Moisture Sensitivity-

Varying Soil Moisture, s_z = 1.5cm, No Vegetation

LHCP over RHCP coherent components ratio and complete fields ratio

- Incoherent component is almost negligible
- Good sensitivity to soil moisture; 4dB difference among dry to wet soil condition

-Vegetation development Sensitivity-

Varying Vegetation, SMC= 20%, s_z = 1.5cm

LHCP and RHCP coherent and incoherent scattering components

- Good sensitivity for LHCP, and RHCP coherent components at low incidence angles; 5dB difference from bare to fully developed vegetation
- RHCP incoherent component; big increase with vegetation development

-Vegetation development Sensitivity-

Varying Vegetation, SMC= 20%, s_z = 1.5cm

LHCP over RHCP coherent components ratio; complete fields ratio

Good sensitivity both for coherent component and complete field at low incidences

-The effect of Surface Roughness-

Varying Roughness, SMC= 20%, No Vegetation

LHCP and RHCP coherent and incoherent scattering components

- Rapid decrease of LHCP and RHCP coherent scattering components with roughness, and increase of the incoherent component
- Surface roughness main parameter driving coherency in the scattering process

-The effect of Surface Roughness-

Varying Roughness, SMC= 20%, No Vegetation

LHCP over RHCP coherent components ratio and complete fields ratio

- Ratio LHCP over RHCP, of both coherent scattering components and complete fields is not sensitive to roughness. (result observed in experimental campaign data)
- This makes this parameter an optimum observable for soil moisture measurements over bare soil.

Summary

Summary of outcomes

- Long Term Experimental campaign performed
 - 6 months continuous acquisition of GNSS-R data + ancillary data
 - High variability of soil bio-geophysical parameters
- Experimental campaign data processing
 - Signals correlate to events on the field (rain, roughness, vegetation)
 - GNSS-R signals sensitive to soil parameters
 - Good sensitivity(>0.2dB/m_v) and high correlation(>0.8) with soil moisture
 - Low sensitivity to vegetation (~0.14dB/(kg/m2))
- Space scenario simulations
 - GNSS-R signals show good sensitivity to soil moisture and vegetation parameters from airborne and spaceborne platforms (Coherent scattering predominant)
 - LHCP/RHCP ratio confirms to be a good candidate to measure SM on bare soil

Further work

Towards a GNSS-R spaceborne mission for land remote sensing applications:

- Changes in the local incidence and scattering angles to be considered by the simulator
- Diffraction effects on coherent reflections due to topography variation within the first Fresnel zone
- Precise SNR budget to be included
- Mixed pixel effect

• . .

Thank you

-The effect of Surface Roughness-

Varying Roughness, SMC= 20%, No Vegetation

• LHCP coherent over incoherent scattering components ratio

- Ratio decreases both in LHCP and RHCP polarizations
- Over 15dB difference between smooth and rough surfaces

-Soil Moisture Sensitivity-

Varying Soil Moisture, $s_z = 1.5$ cm, No Vegetation

Figure 14: a) LR, and b) RR, ratio of coherent and incoherent scattering components for three different soil moisture situations; In blue Soil Moisture = 5%, in green 20%, and in red 40%.

-Vegetation development Sensitivity-

Varying Vegetation, SMC= 20%, s_z = 1.5cm

Figure 17: a) LR, and b) RR, ratio of coherent and incoherent scattering components for three different vegetation development stages; In blue no vegetation, in green partially developed vegetation, and in red fully developed vegetation.

1st Fresnel zone vs 1st chip zone

Figure 3: Dimensions of the First Fresnel zone (on the left) and of the first equidelay ellipse (on the right) corresponding to the C/A chip length of 300m, for a receiver at 25m height

RHCP and LHCP reflected signals components power

Figure 4: Percentage of LHC and RHC polarization components in the reflected signal; a) dry soil, $\varepsilon_r = 3.2-0.33i$, b) moist soil, $\varepsilon_r = 9.5-1.8i$, c) wet soil, $\varepsilon_r = 20.8-3.75i$

Soil's reflectivity for 3 different soil moisture conditions

Figure 7: Soil's reflectivity for 3 different soil moisture conditions

Spaceborne Platform -Resolution Calculation-

• Antenna Rx Pattern (Left); Iso-Delay and Iso-Doppler lines (right)

- Antenna Half Power Beam Width > First chip zone
- Resolution Cell from space platform CA-code ~ 40Km