PAU-SARA: a L1-GPS Band Radiometer and Reflectometer with Digital Beamforming and **Polarization Synthesis**

X. Bosch-Lluis, N. Rodríguez-Álvarez, A. Camps,

E. Valencia, I. Ramos-Perez, H. Park.

Remote Sensing Lab, Dept. Teoria del Senyal i Comunicacions,

Universitat Politècnica de Catalunya

and IEEC-CRAE/UPC

Tel. +34 93 405 46 64, E-08034 Barcelona, Spain.

E-mail: xavier.bosch@tsc.upc.edu

UNIVERSITAT POLITÈCNICA DE CATALUNYA

0. Outline

- 1. Introduction
- 2. PAU-SARA
- 3. SMIGOL Reflectometer
- 4. Conducted Field Experiment
 - 1. Pointing to the Horizon (IP-Reflectometer)
 - 2. Pointing to $\theta_i = 45^{\circ}$ (Radiometer)
- 5. Conclusions

2/18

Departament de Teoria

del Senval i Comunicacions

1. PAU-SARA instrument

- 1. <u>Passive</u> <u>Advanced</u> <u>Unit with</u> <u>Synthetic</u> <u>Aperture</u> and <u>Real</u> <u>Aperture</u>
- 2. **REAL TIME Digital Beam Forming (DBF)** 4x4 elements: triangular-squared array at L1-GPS band

¢G

1. PAU-SARA Main Characteristics

Architecture based on new kind of correlation radiometer.

Topology suitable for :

Departament de Teoria

- Radiometric applications (output ~ Dicke radiometer)
- 2. Reflectometer applications (input signal not chopped \implies Tracking GPS)

2.PAU-SARA Performance

Synthesized beams as Real Aperture Radiometer measured at the UPC anechoic chamber.

UNIVERSITAT POLITÈCNICA DE CATALUNYA

2. PAU-SARA performance for 0° steering beam (1/2)

2. PAU-SARA performance for all steering beams

Main Beam Efficiency Summary (Always >91%)

Polarization	Н	V
Beam steering		
-20°	92.5 %	91.8 %
-15°	93.2 %	92.6 %
-10°	93.2 %	92.7 %
-5°	93.3 %	92.9 %
0 °	94.8 %	93.4 %
5°	92.9 %	92.5 %
10°	92.8 %	91.9 %
15°	92.7 %	91.7 %
20°	92.3 %	91.2 %

Beamwidth Summary (Always <24.6°)

Polarization	Н	V
Beam steering		
-20°	24.6 °	24.2 °
-15°	25.0 °	24.8 °
-10°	24.1 °	24.0 °
-5°	23.7 °	23.1 °
0 °	22.8 °	22.4 °
5°	23.7 °	23.3 °
10°	24.6 °	24.2 °
15°	23.8 °	23.5 °
20°	24.2 °	24.1 °

¢,

3. SMIGOL Reflectometer

The <u>Soil</u> <u>Moisture</u> <u>I</u>nterference-pattern <u>G</u>NSS <u>O</u>bservations at <u>L</u>-band (SMIGOL) Reflectometer is the instrument implementing the IPT.

1. Working frequency = 1.57542 GHz (GPS L1)

2. Measures the interference between direct and reflected signals during all the satellite passages.

3. The IPT and the SMIGOL-Reflectometer can also be used to retrieve topography, soil moisture over vegetation-covered soils, and vegetation height as it has been tested in [1]

You can find more information about SMIGOL-Reflectometer and the IPT in the poster session, where a summary of their applications is shown.

LAND RETRIEVALS: - THE SMIGOL-REFLECTOMETER AND THE INTERFERENCE PATTERN TECHNIQUE

[1] Rodriguez-Alvarez, N., Camps, A., Vall-Llossera, M., Bosch-Lluis, X., Monerrris, A., Ramos-Perez, I., Valencia, E., Marchan-Hernandez, J.F., Martinez-Fernandez, J., Baroncini-Turricchia, G., Pérez-Gutiérrez C., Sánchez, N., "Land Geophysical Parameters Retrieval Using The Interference Pattern GNSS-R Technique" *IEEE Transactions on Geoscience and Remote Sensing*, DOI: 10.1109/TGRS.2010.2049023

æ

3. Fundamentals of the Interference Pattern **Technique** Power received from loarny soil (1 m)

[1] Rodriguez-Alvarez, N., Bosch-Lluis, X., Camps, A., Vall-Ilossera, M., Valencia, E., Marchan-Hernandez, J.F., Ramos-Perez, I.; "Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47 (11), pp. 245-248, November 2009.

Departament de Teoria

del Senyal i Comunicacions

¢

PAU-SARA: a L1-GPS Band Radiometer and Reflectometer with Digital Beamforming and Polarization Synthesis

4. Field experiment, Test Site

TEST Site: Palau d'Anglesola, in an intensive agricultural environment

© 2010 Tele Atlas Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Lat. 41°39'57"N Lon. 0°52'43"E

DATE: October the 5th 2010

4. Field experiment, Deployed Instruments

- 1. SMIGOL,
- 2. PAU-SARA,
- 3. InfraRed termometer,

Ground truth measurement

- 4. Decagon ECH2O Soil Moisture probes, and
- 5. Thermometers

4.1. Field experiment, IP-REFLECTOMETER mode

IP-Reflectometer mode:

1. Does not use a PRN code replica to correlate the input signal,

Æ,

2. Measures the fluctuation of the antenna input power,

Beam shape spatial filter, Azimuth : from 70° to 110° Elevation: from 0° to 20°

GPS no significant impact when signal attenuated >15 dB then Tb<0.3k

12/18

4.1. Field experiment, REFLECTOMETER mode

del Senyal i Comunicacions UNIVERSITAT POLITÈCNICA DE CATALUNYA

¢

4.2. Field experiment, Set UP

4.2. Field experiment, Radiometer mode Results

Data-Sets without presence of GPS in the main beam

UNIVERSITAT POLITÈCNICA DE CATALUNYA

4.2. Field experiment, Radiometer mode Results

5. Conclusions

- 1. A radiometer with DBF at GPS-L1 band has successfully developed and tested for radiometric applications, (it is possible to neglect the GPS impact with $\theta = 45$ and a narrow beam, ~ 0.3 K of impact when entering from the side lobes),
- 2. it is recommended to have a GPS receiver to ensure that there is no GPS satellite presence corrupting the measurements. If possible, pointing the instrument to the North(no Satellites),
- 3. when the GPS signal is corrupting a measurement, RFI techniques can be applied to nitigate the GPS effect on the radiometric data,
- 4. with the PAU-SARA antenna, when looking to the horizon the GPS can increase the measured power 300 K, without correlating it with any PRN code,
- 5. PAU-SARA can also successfully work as a IP-Reflectometer despite it only measures power, really convenient to make SM maps (better using a high bandwitdh antenna), and
- 6. Keep on working on collected data sets to retrieve SM information from collected data sets.

THANK YOU!

F

B1. PAU-SARA real and synthetic imager equivalence

Sample of PAU-SARA measurements at the UPC anechoic chamber.

(a) PAU-RAD DBF measured results, normalized array factor for multiple measured beams in the H polarization scanning the zenith range, (b) reconstructed synthetic images for different point sources at different zenith angles, using a triangular window.

UNIVERSITAT POLITÈCNICA DE CATALUNYA