

Simulations of Advanced Signal Processing Techniques for Remote Sensing

Stephen Lowe

Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

1

<u>Outline</u>

- Simulation Tools
- (Not So Hard)ware
- Example 1: Correlation Function
- Example 2: Sideband Splitting
- Example 3: Phase-Locked Loops
- Summary

Simulation Tools Already Exist

- Ocean Surface Scattering Monte Carlo
 - Elfouhaily wave spectrum
 - Sub-meter integration cells on surface
 - Spacecraft-altitude receiver
 - Optimized for multi-node processing (but no MPI)
 - Recently added polarization
- Software receiver
 - Easy to implement new processing algorithms
 - Test concepts on real data

Modern (Not So Hard)ware

- Many receiver functions are now reconfigurable
 - Especially true for flight receivers
 - Non-standard processing possible
 - Receiver modifications "just" a software upload

 \Rightarrow Time is right to search for creative new processing schemes

- Three Examples
 - Modified correlation function
 - Bandpass filtering
 - Phase-locked loops

Example 1: Modified correlation function

• Model is usually a close replica of the signal

Example 1: Modified correlation function

• Correlation functions can blank, or negate signal

- Novel correlation functions, but lower SNR
- Must account for finite bandpass

NASA

- Aircraft data over ocean
- GPS C/A code
- Standard processing

- Aircraft data over ocean
- GPS C/A code
- Standard processing

- Non-standard correlation function
- Narrower correlation function But lower SNR (don't win)
- Smaller surface footprint
 - Better spatial resolution
 - Coherence may be better
 - Differences between peaks

Delay

- Filter model into upper/lower sidebands
- Correlate each with unfiltered data
- Resulting waveforms at 2 different frequencies

 \Rightarrow Phase Delay = $\Delta \phi / \Delta v$

- Precision same as fitting to model waveform
- No model waveform needed

- BOC signals better
 - Power at bandpass edges

USB Phase - LSB Phase

S. Lowe, Oct 21-22, 2010, Barcelona, SP

S. Lowe, Oct 21-22, 2010, Barcelona, SP

Residual Delay

Aircraft data

S. Lowe, Oct 21-22, 2010, Barcelona, SP

- Phase-Delay observable is available
- No precision improvement over waveform fitting, but:
 - May be easier to process onboard
 - May have better accuracy (?)
 - BOC signals have power on bandpass edges

What are PPLs really? (in tracking loops)

 \Rightarrow Efficient guess at model phase based on past signal history

Assumptions

- Signal low-frequency peaked
- Stable signal amplitude
- Initiated with "acquisition"

PPL Properties

- One guess
 - A bad guess or two => loose lock, tracking stops
- Asymmetric in time
- Locally stable, globally unstable

PPL Properties

- One guess
 - A bad guess or two => loose lock, tracking stops
- Asymmetric in time
- Locally stable, globally unstable

What if acquisition is permanent!

- No PLL
- No loss of lock (no lock)
- Requires lots of hardware

Try more guesses

Look ahead

- Many guesses Time
 - => Much more likely to get it right
- Have past, current, and future results
 - => Symmetrizes time
- More stable, lower SNR threshold
- No Literature / Theory

Summary

Modern Digital Signal Processing

- Hardware capability/cost improving dramatically
- Many DSP ideas with GNSS-R applications
- Presented 3 diverse possibilities
- BOC signals ripe for ideas