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Abstract 
In this paper, the authors propose effective steel connections to achieve high bending stiffness and 
strength for timber grid-shell structures and confirm their performance through real size mock-up 
tests. In light of the test results, the buckling strengths of 24 m-span timber grid-shell roof 
structures with and without diagonal bracing roofs are discussed. The theoretical buckling 
strength including the rotational stiffness at connections is derived using a continuum shell 
analogy and compared with the results of discrete FEM analyses. Reduction factor equations of 
buckling strength as a function of in-plane/out-of-plane bending stiffness ratio and rotational 
stiffness are proposed, and their validity is confirmed. 
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1. Introduction 
In recent years, lattice shell roofs have become popular on timber structures to create a long span 
space that is both lightweight and aesthetically pleasing. This research proposes several types of 
steel connections for timber lattice shells that will improve structural performance and 
architectural appearance. The out-of-plane flexural strength and rotational stiffness of the 
proposed connections are examined by performing full-scale experiments. Based on the test 
results, the elastic buckling strength of 24 m-span timber grid shells with and without diagonal 
bracing roofs are discussed. Their theoretical buckling strength including the rotational stiffness at 
connections are derived using a continuum shell analogy and compared with the results of discrete 
FEM analyses. Finally, the reduction factor equations of buckling strength as a function of in-
plane/out-of-plane bending stiffness ratio of the timber member and two directional rotational 
stiffness at the connection are proposed, and the validity of the equations is confirmed. 

2. Mock-up test of timber-steel connections 
The dimensions of the mock-up single-layer timber lattice shell are assumed to be 24 m × 24 m × 
3.2 m, as shown in Figure 1. In this type of single-layered grid shell, the rotational stiffness at 
connections significantly affects their buckling strength. To achieve reliable connections with 
high bending stiffness and strength, three types of hybrid connections using steel elements are 
proposed, as shown in Figure 2. In Figure 2(a), rectangular laminated timber members are fixed to 
a tee flange section with lag screws. The tee length is set to be 1.5 times the height of the timber 
member (300 mm) and is referred to as TB300. TB440 has the same configuration but uses a tee 
length of 2.0 times the height of the timber member (Figure 2(b)). A connection using an H- 
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 bracket grasping timber member between two flanges with lag screws is referred to as HB (Figure 
2(c)). These connections have resistance to out-of-plane bending moments owing to the pull-out force 
of the lag screws and bearing force between the timber members and the steel flanges. Tests on three 
specimens for each type of connection are conducted to confirm the rotational stiffness, flexural 
strength, and fracture mode with respect to out-of-plane and in-plane bending. 

Monotonic bending tests for each connection type are conducted to confirm their bending stiffness 
and strength. The test setup is shown in Figure 3. The size of the timber members and connections 
are designed assuming the 24 m grid shell shown in Figure 1, and the material used for the 
specimens are shown in Table 1(a) and (b). Laminated timber members are composed of Canadian 
pine lamina of grade E105-F300 (E=10.5 GPa, F=30 MPa). Three specimens are tested in each 
connection along the out-of-plane (strong) axis in the positive and negative directions [1] and in 
the in-plane (weak) axis [2]. The test results are summarized in Table 2. In general the stiffness is 
higher in TB440, and the strength is higher in HB. The normalized rotational spring at connection 
=Kl/EI ranges between 10 and 20, and the bending strength against the timber member 
Mmax/Mb is between 0.37 and 0.87, which is much higher than in conventional timber connections. 

 
Figure 3: Setup of bending test for connections 

3. Elastic buckling analyses of grid shell including connection stiffness 
Using the test results, the buckling strength of a 24 m × 24 m-span grid shell roof as shown in 
Figure 4 is investigated as a function of the sectional stiffness ratio Iz/Iy and the connection  
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Figure 1: Latticed shell roof with  
timber-steel hybrid connections 

     
Figure 2:  Hybrid connection types 
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Table 1 Characteristic value of constituent material 

 (a) Glued laminated timber                                                    (b) Steel connection 

  

Table 2 Rotational stiffness and bending strength obtained by the experiment 

 

stiffness ratio Kz/Ky. The following parameters are used: 1) The roof is set as either a “Grid 
model” without diagonals or a “Braced model” with steel rod diagonals. The load is assumed to 
be evenly distributed; 2) The half subtended angle φ uses values of 20º, 30º, 40º, 50º; 3) 
Connections are modeled as either detailed model (D) or simple model (S); 4) The cross-sectional 
shape is either square (S193, Iz/Iy=1.0) or rectangular (R240, Iz/Iy =0.18) with the same Iy; 5) The 
out-of-plane rotational stiffness of the connection is varied between rigid (R), TB300(T3), TB440 

Figure 4: Model names, dimensions and properties 
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(T4), HB (HB), with =5 ( 5), =10 ( 10),=15 ( 15),=20 (20); 6) Ratio of the in-plane 
rotational stiffness of the connection to out-of-plane rotational stiffness is varied between Kz/Ky 
=1.0 (OI1.0) and Kz/Ky=0.1, 0.3, 0.5, 0.7, 0.9 (OIx, x=0.1, 0.3, 0.5, 0.7, 0.9). For T3, T4 and HB, 
the connection stiffness values shaded in Table 2 are used. The half subtended angle  is defined 
at the ridge of the roof. No initial imperfection is assumed. The properties used for the tested 
connections are shaded in Table 3. 

A push-over analysis including geometric nonlinearity under incremental arc-length method control 
is carried out, together with buckling eigenvalue analyses. Results with the simple model (S) give 
more conservative values than the detailed model (D). Parts of the obtained results are shown in 
Figure 5. When Iz/Iy is reduced (Figure 5(a)) and Kz/Ky is reduced (Figure 5(b)), the elastic buckling 
strength Pcr is reduced. From Figure 5(b), the buckling strength of tested connections (OIx) is 
estimated to be reduced to approximately half of those with a rigid connection (R). Examples of the 
buckling modes at the point of elastic buckling are shown in Figure 6. 

Table 3 Member properties of studied lattice shell 

 

      
    (a) Effect of sectional proportion Ix/Iz  (R) 

         
(b) Effect of spring ratio Kx/Kz (R, T3, T4, HB) 

Figure 5: Elastic buckling strength with different out-of-plane/in-plane stiffness (G-30-S) 

 
Figure 6: Elastic buckling modes (G,B-30-S-S193,R210-20-OI0.1) 
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Buckling strength evaluation formulae are derived using a continuum shell analogy. The stiffness of 
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the continuous shell plate can be expressed as follows. 

In-plane:
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From the balance of complementary strain energy, each component can be expressed using the 
equations in Table 4. For K1111=K2222(=K) and D1111=D2222(=D), elastic buckling strength Pc r

lin of the 
Grid model and the Braced model can be expressed by Eq. (2) ([3], [4]). 
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In the Grid model, K1122= D1122=0 and K12/K is negligible, Eq.(2) can be reduced to Eq.(3).  
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For G and torsional effects, D12/D is negligible in timber, so Eq.(3) can be further reduced to Eq. (4). 
2
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4
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In recommendations from the AIJ [4], the following buckling strength reduction factors due to the 
connection stiffness are introduced. However, the effects of Iz/Iy and Kz/Ky are not included. 

     0      ela lin
cr crP P       (5) 
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Minimum:    100.365log 0.28 (1 100 : Low and moderatestiffness)

1.0 (100 : High stiffness)
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where, 0 is a knock-down factor due to imperfection and geometric nonlinearity ( 0.5). From Eq. 
(2), the following reduction factor equations considering the effects of sectional proportion Iz/Iy are 
proposed, where, Iz/Iy=m, and Kz/Ky=n. 
 

Fig. 7 Enlarged view of Braced model 
 

Table 4 Rotational stiffness of each connections 
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    1   lin lin
i mcr crP P    (8) 

Grid model:    
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Braced model:  
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When the connection is rigid,  = ꝏ and 1/ = 0. Eq. (10) describes the Grid model and Eq. (11) the 
Braced model: 
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The values obtained from Eq. (9), (10) are compared with FEM analyses in Figure 8. In the grid 
model, Eq. (9) results in more conservative values than the numerical results. In the braced model, Eq. 
(10) overestimates for a lower Iz/Iy, but generally matches the numerical analyses results. This error is 
caused because the shear stiffness K12 of the roof panels in the Braced model is underestimated when 
neglecting axial deformations of the timber chords.  

 
(a) Grid model (κ=10) 

 
 (b) Braced model (κ=10) 

Figure 8: Reduction factor of buckling load (=30º) 

From Eq. (2), the reduction factors including the effects of Kz/Ky can be expressed as follows. 
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Eq. (16) can be also expressed as Eq. (18). 
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In the Grid model, K12/K is negligible and 1/m
2 = 0, kg = 1. Because D12/D is negligible and am = 0 and 

dg = 1 in timber, then Eq.(18) becomes; 
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The values obtained from Eq. (16), (17) are compared with FEM analyses in Figure 9. The proposed 
equations generally give more conservative results for the numerical analyses. Eq. (16), (17) are also 
compared with Eq. (6), (7) in Figure 10. In the Grid model (Figure 10 (a)), the proposed Eq. (16) gives 
values between those of Eq. (6) and (7) when m=n=1, and also provides the appropriate reduction 
values due to Kz/Ky. In the Braced model (Figure 10 (b)), the proposed Eq. (17) gives higher 
estimated values than the analyses, which is caused by overestimating K12 and neglecting axial 
deformation of the timber chord. In general, the reduction due to Kz/Ky is not significant in the 
braced model, and with Eq. (16) with m=n=1 gives conservative values for all the cases. 
 
 

 
(a) Grid model (κ=10) 

 
      (b) Braced model (κ=10) 

Figure 9: Knock-down factor (=30º) 

 

 
(a) Grid model 

 
      (b) Braced model 

Figure 10: Knock-down factor compared with AIJ recommendations 

0

0.2

0.4

0.6

0.8

1

5 10 15 20

K
no

ck
-d

ow
n 

fa
ct

or
 

 (
 

) 
(-

)

Normalized rotational stiffness  (-)

0

0.2

0.4

0.6

0.8

1

5 10 15 20

K
no

ck
-d

ow
n 

fa
ct

or
 

 (
 

) 
(-

)

Normalized rotational stiffness  (-)

K  / K =1.0 K  / K =1.0 K  / K =0.1
Analysis

ik
con( )

Iz / Iy=1.0 Iz / Iy=0.18 Iz / Iy=1.0

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Eq. (16) m=1, n=1

Eq. (16) m=1, n=0.1

Eq. (6)

Eq. (7)

K
no

ck
-d

ow
n 

fa
ct

or
 

 (
 

) 
(-

)

Normalized rotational stiffness  (-)

Eq. (16) m=0.18, n=1

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Normalized rotational stiffness  (-)

Eq. (17) m=1, n=1

Eq. (7)

Eq. (6)

Eq. (17) m=1, n=0.1

K
no

ck
-d

ow
n 

fa
ct

or
 

 (
 

) 
(-

)

Eq. (17) m=0.18, n=1

Analysis
-OI1.0 -OI0.9 -OI0.7 -OI0.5 -OI0.3 -OI0.1

ik
con( )

ik
ana( )



Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 
Form and Force  

 

 
 

8

Finally, the elastic buckling strength can be expressed as Eq. (33): 

        0 1.          ela con con lin
ik i mcr ik crP P    (33) 

The validity of the proposed method is shown in Figure 11, compared with numerical analyses. 
Generally the proposed equations give consistent values with errors of approximately ±20%. For the 
proposed connections (=10–15, Iz/Iy=0.51 and Kz/Ky=0.1–0.3), ik

con is evaluated at approximately 
0.4–0.5 for the Grid model and 0.7–0.8 for the Braced model in the case of a 24 m-span shell roof 
with =30º. 

         
         (a) Grid model (κ=10) 

          
   (b) Braced model (κ=10) 

Figure 11: Validity of proposed method against numerical analyses 

5. Conclusions 

The obtained conclusions are summarized as follows. 
(1) The proposed three steel connections for timber members gives an adequate stiffness with 

=10–20 and Mmax/M=0.37–0.87. 
(2) The elastic buckling strength is reduced, especially in the Grid model, owing to the in-plane 

member stiffness ratio Iz/Iy and the in-plane connection stiffness ratio Kz/Ky. 
(3) The buckling strength derived from the continuum shell analogy, including the effects of Iz/Iy, 

and Kz/Ky, gives values generally agreeing well with FEM analyses in grid-shell roofs.  
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