Simulation of gas-bubble deformation using higher-order multicomponent approach for compressible flows

Andrzej F. Nowakowski^{*} and Franck C. G. A. Nicolleau[†]

* Sheffield Fluid Mechanics Group Department of Mechanical Engineering, University of Sheffield Mappin Street, Sheffield, S1 3JD, United Kingdom e-mail: a.f.nowakowski@sheffield.ac.uk

[†] Sheffield Fluid Mechanics Group Department of Mechanical Engineering, University of Sheffield Velocity Village, Solly Street, Sheffield, S1 4DE, United Kingdom e-mail: f.nicolleau@sheffield.ac.uk

ABSTRACT

Results of the simulations of flows in inhomogeneous media of various physical regimes leading to shock-bubble interactions will be presented using a developed numerical approach based on a multicomponent flow model. The mathematical formulation results from an averaging process of the single phase Navier-Stokes equations. It contains non-conservative equations and non-conservative terms which are necessary to capture interfaces represented by contact discontinuities. The formulation treats each component of the flow with its own equation of state. In previous work [1] the authors solved the equations using a finite volume Godunov type computational technique, equipped with an approximate Riemann solver for calculating fluxes. The approach accounted for pressure non-equilibrium and enabled the resolution of flow component interfaces. In the present contribution this approach is further developed to utilise higher-order numerical discretization techniques based on the discontinuous Galerkin method. The numerical results demonstrate the efficiency of the new approach for various initial conditions promoting a shock-bubble interaction. The results will be presented for different parameters related to the initial flow topology of the heterogeneous media, their constituents' Atwood number and shock wave Mach number.

REFERENCES

 Nowakowski, A.F., Ballil, A and Nicolleau, F.C.G.A. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation. *Phys. Rev. E*, Vol. **92**, 023028, (2015).