
A non-oscillatory staggered grid algorithm for the
pressure-displacement coupling in geomechanics

Clovis R. Maliska∗, Hermı́nio T. Honório∗ and Jurandir Coelho Jr.∗
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ABSTRACT

This paper investigates a new finite volume alternative for solving coupled poromechanics by em-
ploying a staggered arrangement for pressure and displacements over an unstructured grid. By stag-
gering these variables, an improvement is obtained for the pressure-displacement coupling, which is
claimed by the authors to prevent the numerical solution from instabilities. The two-dimensional
formulation is still under development, thus, results are presented only for the one-dimensional
case. Both collocated and staggered arrangements are compared with analytical solutions and the
results are very promising, indicating that staggering the rock displacements related to the pressure
is a viable approach to confer robustness to the numerical scheme.

1 Introduction

Several engineering problems are modeled by systems of coupled partial differential equations,
many of them involving different physics. In geomechanics, in which compacting porous media is
coupled with the fluid flow, is one example. In this case, a delicate coupling between pore-pressure
and rock displacement is present, since under certain conditions, as in the very beginning of the
transient, or at the interface of two materials with different permeability, pressure wiggles appear
in the numerical solution. Those situations, which resemble an undrained condition, impose an
almost zero compressibility, which creates the condition for this pathology to appear for certain
numerical approximations. In the class of Finite Element methods, extensively used for solving
the rock mechanics in porous media, several remedies for this pathology are available, being mixed
finite element [1] and discontinuous Galerkin some of the possibilities. However, those remedies
are at a cost of considerably increasing the computer time. Alternatively, some authors have [2, 3]
proposed stabilization techniques that do not increase the computational cost and still eliminate
the instabilities, but at a cost of introducing numerical diffusion to the solution. Recently, in
the context of finite volumes, Honório and Maliska [4] have proposed a strategy for avoiding such
instabilities which can be also regarded as a stabilization technique. In spite of all these alternatives,
a numerical scheme that efficiently eliminates the pressure wiggles without introducing numerical
diffusion and increasing computational cost, while keeping the same order of accuracy for both
pressure and displacements is still pursued.

An analysis of the coupling between pressure and displacement for poroelasticity, and pressure
and velocity for Navier-Stokes flows, reveals that they are of the same nature, so it is expected
that the remedies employed in one class of problems can be applied to the other one with success.
With this in mind, the oscillatory pressure fields arising when solving incompressible Navier-Stokes
flows is known for more than four decades, and can be fully mitigated if a staggered grid approach
is employed [5]. This remedy was abandoned when unstructured grids were required for solving
fluid flows in complex geometries, due to the alleged complexity of implementation. This paper
addresses this issue, advancing a finite volume method using unstructured grids with staggered
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variables, avoiding the oscillatory pressure field in geomechanics [6].

First, we present the mathematical model for coupled poromechanics. Then, the fundamentals
of the staggered arrangement of variables is discussed and a brief analogy is established between
pressure-displacement in poromechanics and pressure-velocity in the Navier-Stokes equations. The
model equations are discretized for two-dimensions and possible alternatives are suggested. In the
sequence, a one-dimensional discretization is performed for both staggered and collocated arrange-
ments and some preliminary results are presented. Finally, a few remarks close the presentation.

2 Mathematical Model

The mechanical behavior of saturated porous media is affected by its mechanical properties and
the pressure of the fluid filling its pores. Terzaghi [7] introduced the concept of effective stress into
the equations of stress equilibrium in order to take the pore pressure into account, yielding to:

∇ · σ − α∇p = b, (1)

where ∇ is the nabla operator, σ is the effective stress tensor, α is the Biot coefficient, p is the pore
pressure and b is a source term. Moreover, considering small strains and a stress-strain relationship
represented by the constitutive matrix C (Voigt notation), the effective stress tensor can be written
in terms of the displacement vector u by the expression:

σ = C∇su, (2)

with ∇s being the symmetric nabla operator.

The closure of the model is ensured by the mass conservation equation for deformed porous media:

1

M

∂p̂

∂t
+∇ ·

(
vf + αvs

)
= q, (3)

in which 1/M is the Biot module and q is a source term. Equation (3) is conveniently written here
in terms of the fluid velocity, vf , and the solid grains velocity, vs, which are respectively given by:

vf = −k

µ
∇p, (4)

vs =
∂u

∂t
. (5)

with k being the absolute permeability tensor and µ the fluid viscosity. The gravitational term in
equation (4) has been neglected with no loss of generality.

3 Staggered Arrangement

One of the major challenges faced by the numerical schemes developed to solve equations (1)
and (3) is how to avoid pressure wiggles that can appear under undrained consolidation. In this
situation the consolidation process takes place in a much smaller time scale than the fluid motion
(vs >> vf ), which yields to the following mass conservation equation:

1

M

∂p

∂t
+ α∇ · vs = q. (6)

Equation (6) is very similar to the mass conservation equation that appears when solving the Navier-
Stokes equations for compressible flows. It is well known that properly satisfying this equation is
of utmost importance to avoid the checkerboard pressure problem [8]. Recalling equation (5), the
problem here resides on how to determine a displacement field that fully satisfy both mass and
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Figure 1: Geometrical entities: (a) computer mesh composed by triangular and quadrilateral elements; (b)
control volume for mass conservation with pi stored at its centroid; and (c) control volume built around
displacement vector uj for momentum equilibrium.

momentum equations. For the Navier-Stokes equations the problem is exactly the same, except
that the unknown variable is the velocity field instead of displacement.

Ensuring mass and momentum conservation is not a trivial task to be accomplished. The first
solution to this problem was proposed by Harlow and Welch [5], in the context of finite differences,
where they staggered the positions of pressure and velocities. In this manner, these two variables are
directly available where they are required during the discretization of the differential equations. This
technique is recognized to completely mitigate pressure wiggles for the Navier-Stokes equations.
Due to the similarity of equation (6), stated in the previous paragraph, a staggered arrangement
between pressure and displacement might have good chances to show a good performance for
geomechanics as well.

4 Finite Volume Formulation

The traditional procedure for obtaining the approximate equations by the finite volume method
starts by simply integrating the differential equations over each control volume of the grid. Since
we propose a staggered arrangement of control volumes for u and p, a clear definition of these
geometrical entities is now of interest. In this work, we follow the methodology presented by Peters
and Maliska [9] for building staggered control volumes on unstructured grids.

In figure (1a) it is shown the base mesh provided by the grid generator. As depicted in figure (1b)
for pi, the control volumes for mass conservation, Ωp, coincides with the elements of the base mesh.
For the momentum equilibrium, however, the control volumes, Ωu, are built around the edges of the
elements by connecting the vertices of the edge with the centroids of the two adjacent elements. A
control volume Ωu is represented in figure (1c) and the position of uj is at the midpoint of the edge.
The key point of this configuration is that the displacements are located at the faces of the control
volume Ωp (figure (1b)), which will have a direct impact on the volumetric strain computation over
Ωp, as shown later. Now we proceed with the discretization of the differential equations.

4.1 Mass conservation equation

Equation (3) is first integrated over a time step, ∆t, along with an implicit first-order backward
Euler scheme. The remaining equation is then integrated over the control volume Ωp

i , and the
divergence theorem is applied to obtain the surface integrals. By the midpoint rule, the semi-
discretized form of equation (3) is:

∆Ωp
i

M

pi
∆t

+
∑
ip∈Γp

i

[
(vf + αvs) · s

]
ip

= qi∆Ωp
i +

∆Ωp
i

M

poi
∆t

, (7)
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Figure 2: Integration points belonging to the control surfaces (a) Γp
i and (b) Γu

j associated to Ωp
i and Ωu

j ,
respectively.

in which the variables evaluated at the previous time level take the superscript o, and no superscript
is used otherwise. Each control volume Ωp is bounded by a set of faces (or edges) and at the
midpoint of each face is located an integration point ip. The set of integration points surrounding
Ωp
i is denoted by Γp

i , as highlighted in figure (2). Each integration point has an area vector, sip,
pointing outwards the control volume. In addition, the volume of Ωp is represented by ∆Ωp.

Recalling equation (5), the mass fluxes crossing the faces of Ωp due to the rock deformation and
fluid motion are respectively given by:

ws
ip = (vs · s)ip =

(uip − uo
ip)

∆t
· sip, ∀ip ∈ Γp

i , (8)

wf
ip = (vf · s)ip = − 1

µ
(k∇p)ip · sip, ∀ip ∈ Γp

i . (9)

The main advantage of staggering Ωp and Ωu is made clear in equation (8) by noting that the
displacement vectors uip and uo

ip are directly available at the integration points of Γp
i (see figure

(2)), dispensing any kind of interpolation. The benefits of this feature is of particular importance
during undrained consolidation (equation (6)), where the mass fluxes through the control volume’s
faces is entirely given by ws. This is precisely the point we claim to be key for avoiding the pressure
instabilities.

The next step is to decide how to reconstruct the pressure gradient of equation (9) at the integration
points belonging to Γp. Cerbato et al. [10] present an extensive analysis of several techniques for
gradient reconstruction specifically applied to reservoir simulation, which could be readily applied
here to approximate equation (9). Alternatively, the mass fluxes wf could be also evaluated by
a Multi-Point Flux Approximation (MPFA), as proposed by Aavastmark et al. [11], which would
be of particular interest since this methodology is already employed by most of the commercial
reservoir simulators.

4.2 Momentum equilibrium equations

Equation (1) is integrated over the control volume Ωu
j , as depicted in figure (1c), and the divergence

theorem is applied to the divergent operator yielding to:∑
ip∈Γu

j

(σ · s̄)ip − α
∫

Ωu
j

∇p dΩu
j = bj∆Ωu

j , (10)

where Γu
j is the set of integration points surrounding Ωu

j , as shown in figure (2b), and s̄ is an
appropriate arrangement of the area vector components, which for the two-dimensional case is:

s̄ =

sx 0
0 sy
sy sx

 . (11)
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Figure 3: Staggered control volumes associated to a one-dimensional grid with unitary cross section area.
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Figure 4: Collocated control volumes associated to a one-dimensional grid with unitary cross section area.
Obs: Ωi indicates that Ωp

i = Ωu
i

The volumetric integral of the pressure gradient in equation (10) is approximated by the Green
Gauss theorem: ∫

Ωu
j

∇p dΩu
j ≈ ∇pj∆Ωu

j . (12)

Now, it is important to notice that ∇pj is exactly the same as the pressure gradient required by
equation (9), since a displacement position j always coincide with an integration point belonging
to Γp

i , as it can be observed in figure (2). Therefore, the methodology chosen to evaluate equation
(9) can be the same used to compute equation (12).

The remaining term in equation (10) to be evaluated is the stress tensor, σip, at the integration point
belonging to Γu

j . This is done by equation (2), but the point is how to compute the displacement
derivatives, ∇su, at the integration points of Γu

j . In [9] it is presented the procedure to compute
velocity derivatives at these positions, which will be also applied here for computing ∇su.

5 One-Dimensional Formulation

In this work we present some preliminary results of the above formulation applied to the particular
case of one-dimensional consolidation, where the grid shown in figure (3) can be employed. The
results are compared with the traditional collocated arrangement of variables, as the grid depicted
in figure (4). Both strategies are briefly described below.

5.1 Staggered formulation

Integrating equations (3) and (1) over Ωp
i and Ωu

j of figure (3), respectively, results in:

∆Ωp
i

M

pi
∆t
− k

µ

(
∂p

∂x

∣∣∣∣
j+1

− ∂p

∂x

∣∣∣∣
j

)
+

α

∆t
(uj+1 − uj) =

∆Ωp
i

M

poi
∆t
− α

∆t

(
uoj+1 − uoj

)
, (13)

σi − σi−1 − α (pi − pi−1) = 0, (14)
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with the following approximations at the integration points,

∂p

∂x

∣∣∣∣
j+1

≈ pi+1 − pi
∆x

, (15)

∂p

∂x

∣∣∣∣
j

≈ pi − pi−1

∆x
, (16)

σi ≈
E

∆x
(uj+1 − uj) , (17)

σi−1 ≈ E

∆x
(uj − uj−1) . (18)

The set of equations (13) and (14), along with the approximations (15-18), composes a linear system
of equations that is solved in a monolithic fashion. The results of these equations are presented in
the next section.

5.2 Collocated formulation

The discretization of the equations for a collocated grid is basically the same as the previous case,
except that the integration is performed over the same control volume Ωi. In this manner, the
resultant equations are:

∆Ωi

M

pi
∆t
− k

µ

(
∂p

∂x

∣∣∣∣
i+ 1

2

− ∂p

∂x

∣∣∣∣
i− 1

2

)
+

α

∆t

(
ui+ 1

2
− ui− 1

2

)
=

∆Ωp
i

M

poi
∆t
− α

∆t

(
uo
i+ 1

2

− uo
i− 1

2

)
, (19)

σi+ 1
2
− σi− 1

2
− α

(
pi+ 1

2
− pi− 1

2

)
= 0, (20)

The usual approximations at the integration points still hold:

∂p

∂x

∣∣∣∣
i+ 1

2

≈ pi+1 − pi
∆x

, (21)

∂p

∂x

∣∣∣∣
i− 1

2

≈ pi − pi−1

∆x
, (22)

σi+ 1
2
≈ E

∆x
(ui+1 − ui) , (23)

σi− 1
2
≈ E

∆x
(ui − ui−1) . (24)

In addition, the pressure and displacement are required at positions xi− 1
2

and xi+ 1
2
, where they are

not available. In this case, we use a second-order approximation, so,

pi+ 1
2
≈ pi+1 − pi

2
, (25)

pi− 1
2
≈ pi − pi−1

2
, (26)

ui+ 1
2
≈ ui+1 − ui

2
, (27)

ui− 1
2
≈ ui − ui−1

2
. (28)

6 Preliminary Results

In this section, a one-dimensional consolidation problem is solved. As depicted in figure (5), the
domain has its bottom boundary fixed and impermeable and the top boundary fully-permeable
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σtop = 10 kPa

Ptop = 0 kPa
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Layer3 

m
3 

m

Figure 5: Geometry and boundary conditions for the one-dimensional consolidation problem.

(ptop =0 kPa) and subjected to a compressive load of σtop =10 kPa. The structure is initially
undeformed and the initial pore-pressure equals to zero. The fluid phase properties is taken as
those of water at 20oC, that is, ρ = 998.2 kg/m3, µ = 1.002 × 10−3 Pa·s and cf = 4.59 × 10−4

MPa−1. The solid phase can be composed either by two different materials, as indicated in figure
(5), or only one material. The geomechanical properties of the materials considered in this work
are summarized in table (1), where K stands for the hydraulic conductivity.

Table 1: Solid phase properties.

Sand Silty Clay

K (m/s) 1× 10−4 5× 10−9

E (MPa) 4.503 2.129
cs (MPa−1) 0.0 0.0
φ 0.3 0.3
α 1.0 1.0

6.1 Verification

In order to verify the correct implementation of the algorithms, it is considered the case in which
the column is composed by sand only. This problem presents analytical solution for both pressure
and displacement fields, which allows us to have a visual comparison of the results obtained by
the proposed staggered arrangement as well as the collocated one. With a fixed time step of 0.1
second, the pressure and displacement profiles along the vertical direction are plotted in figures
(6a) and (6b) for four time levels. As it can be seen, both formulations are in good agreement with
the analytical solutions.

6.2 Convergence Analysis

Now, we consider a set of progressively refined grids and take the pressure and displacement pro-
files at t = 700 seconds, as shown in figure (6). We compare these profiles with the analytical
solution and compute the Euclidean norm (L2-norm) of the error vector for each one of the grids
and for three different time steps. By this procedure we can evaluate the order of convergence of
each variable. The results obtained are shown in figures (7) and (8) for the staggered and collo-
cated formulations,respectively. These figures show second-order accuracy for both pressure and
displacement for both formulations.
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Figure 6: Staggered control volumes associated to a one-dimensional grid. Obs: the cross section area is
considered to be the unity.
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Figure 7: Convergence analysis of (a) pressure and (b) displacement fields for the staggered arrangement
of variables.

6.3 Pressure Instabilities

Up to now, the results showed quite similar behaviour for both formulations. However, if we induce
an undrained consolidation, pressure instabilities are expected to appear in the numerical solution.
One way of obtaining this situation is by reducing the time step enough to violate the minimum
time step criteria postulated by Vermeer and Verruijt [12]. Basically, this criteria depends on the
poromechanical properties and the grid spacing. This means that any pressure instability can be
removed by simply refining the grid, but this can often compromise computational performance for
real applications.

Considering the same problem as before and reducing the time step to 0.001 second, the pressure
profiles obtained at t = 1.0 second by the collocated and the staggered formulations are shown
in figures (9a) and (9b) for a grid composed by 8 and 16 nodes of pressure, respectively. It can
be seen in figure (9a) that the pressure instabilities spread through the entire domain, while they
are more concentrated at the top boundary as the grid is refined (figure (9b)), suggesting that the
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Figure 8: Convergence analysis of (a) pressure and (b) displacement fields for the collocated arrangement
of variables.

instabilities indeed tends to vanish as the grid is refined. On the other hand, the same figure (9)
shows no instabilities at all for the pressure profiles obtained by staggered formulation, irrespective
to the grid refinement.
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Figure 9: Pressure profiles under undrained consolidation.

Another way of inducing undrained consolidation is by considering the column composed by two
materials with different permeabilities. In this case, the top and bottom layers of figure (5) are
considered to be sand and silty-clay, respectively. This problem has analytical solution for the
pressure profile and its comparison with the collocated and staggered formulations are shown in
figure (10). The time step used is of 0.1 second and the solution was taken at t = 500 seconds
for a 20 nodes grid. In this case, pronounced pressure oscillations appear along the bottom layer
for the collocated arrangement, which seems to also have an impact at the pressure profile along
the upper layer. Again, notorious agreement with the analytical solution can be verified for the
staggered arrangement, even near the interface between the two regions.
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Figure 10: Pressure profiles for the upper and bottom layers of the column composed by sand and silty-clay,
respectively.

7 Final Remarks

In this work, a two-dimensional finite volume formulation has been presented for discretizing the
coupled poromechanics equations in staggered grids. Preliminary results for the one-dimensional
case have shown that the staggered arrangement completely removed the pressure instabilities
without introducing any numerical diffusion to the solution. At the same time, second order
accuracy has been verified for both pressure and displacement. This leads to believe that the
proposed staggered arrangement for unstructured grids is a promising strategy for solving coupled
poromechanics in two and three-dimensions.
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