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Abstract

This work investigates the performances of several StajgeDdent Riccati Equation algorithms for the
estimation and control of attitude and attitude rates ofj@+body spacecraft. The estimators are designed
to process line-of-sight and gyros measurements corrdgtedhite noises and potentially drifting biases.
The case of gyroless estimation is also addressed. Therveetssurements are linear-in-quaternion with
state-dependent white noises. The controllers impleniagtesloop and dual-loop approaches. Under
equivalent conditions, the single-loop controller oufpans the dual-loop controller wether by requiring
less control energy or by having a quicker pointing transidine dual-loop approach however requires
less computations and shows a less aggressive controinanSstimation performances are the limiting
factor in the proposed partial information closed-loojitadie and rate controllers. With angular devia-
tions in the vector observations of 0.5 deg, with or withoytog, and neglecting perturbations, pointing
performance levels of typically 0.1 deg are demonstratadwimerical simulations.

1. Introduction

In any spacecraft mission, the task of attitude deternonadind control is critical for success [1]. Among the many
methodologies from the realm of nonlinear optimal filterangl control, the State-Dependent Riccati Equation (SDRE)
method has received increased attention [2, 3], in padiaie to its application to the field of spacecraft attituste e
mation and control. Reference [4] shows that SDRE contabiri@gues provide effective performances for spacecraft
(S/C) orientation stability using reaction wheel torqued anodeling the S/C momentum, the wheels momentum, the
angular rates and the quaternion as states. In [5] the SDRBagh was applied to a control problem for relative
attitude and attitude rate, augmented with relative pmsigind velocity, between a tumbling target S/C and a chaser
S/C. The results show desirable responses for a wide rantgrgdt attitude motions. The scope of these works
however were limited to full state information. An applicat of SDRE filtering to rate estimation, and a variation
called pseudolinear Kalman filter (PSELIKA), was preseritelé] based on the differentiation of line-of-sight (LOS)
measurements. The proposed filters were successfullyegiptgireal data yet under the assumption of perfect atti-
tude information and with no biases in the measurementsseltesults were extended to the problem of attitude and
attitude rate estimation with measurements biases in [ifle-bf-sight vector and full quaternion measurement were
considered along with the two parameterizations, quatarand the rotation matrix, when developing the SDRE filters.
The underlying assumption to obtain a linear quaternionsmesment was the availability of a star tracker on-board.
Reference [8] introduces an integrated attitude detertioimand control algorithm based on magnetic measurements
and actuation. The quaternion and the rates are controléed modified SDRE controller using estimated values.
The filter is designed to estimate a magnetic dipole residndla drag coefficient in addition to the attitude and rates.
The simulated results demonstrate satisfactory estimatiol pointing accuracy. Within the scope of [8] however, the
LOS measurements did not include biases, the filter was @atdrextended Kalman filter. Reference [9] includes
results showing that the PSELIKA filter [7] seems more roltoah a standard EKF to initial errors. It also introduces
an optimized SDRE technique, and applies it to enhance S&Ccomtrol with full information, but falls short from

Copyright(© 2013 by Daniel Choukroun and Ozan Tekinalp. Published byeth€ ASS association with permission.



D. CHOUKROUN AND O. TEKINALP

combining estimation and control. Combined SDRE estinmadiod control is applied in [10] to the problem of orbital
and attitude control of spacecraft in formation flying. Thepgosed approach seems affective and emphasizes the
measurement timing strategy. However, the control archite in [10], as in [4, 5, 8], assumes a single-loop feedback
while advantages exist in designing a multiple-loops decliire [13, 14].

This work is concerned with the development of several coediSDRE estimation and control algorithms
for S/C attitude and rates with and without gyro measuremamd using vector observations. The contributions of the
work are two folds: 1) it implements a single-loop and a doap architecture for the control and investigates their
relative advantages via extensive simulations, 2) thedilteesigns implement a pseudolinear quaternion measunteme
model introduced previously in [11] which alleviates theddor star-tracker on-board. The investigation is system-
atically performed considering the control problem with fiaformation, the estimation problem without control tvit
various measurement models, and the combined case. Thersensdels include white noises and drifting biases
that are typical for S/C systems. Comparative simulatioespgrformed showing the effectiveness of the approach
attitude estimation and stabilization. The relative lospérformance due to the dual-loop approach seems acceptabl
The major performance differences occur between the gsg@ad gyro-based controllers: the former are quicker to
converge but has go a relatively noisy steady-state whddstier shows a delay in the rate estimation but settles on a
smoother steady-state regime.

Section 2 includes a background on the SDRE estimation anttat@approaches. Secion 3 presents the
single-loop and dual-loop controllers for attitude ane raintrol with full information. Section 4is concerned witte
guaternion and rates estimation problem for various sshand dynamics models. Section 5 addresses the combined
estimation and control implementation. Section 6 presisgtsonclusions.

2. Background
2.1 SDRE nonlinear control

This section follows the exposition in [2]. Consider the lioear dynamical system described by the following differ-
ential equations

X = a(x) + B(x)u 1)

wherex € R" is the staten € R™ is the controla(x) € C!, B(x) € C!, forl > 1. Itis assumed that(0) = 0 and
B(x) # 0 for all x. The nonlinear regulator problem is formulated as folloMimimize

J= 3 /0 xTQ(x)x + u' R(x)udt 2

where@(x) > 0 and R(x) > 0 for all x, with respect to the contrak under the dynamical constraint (1). That
constraint can be represented by the following linear stineowith state-dependent coefficients (SDC):

x = A(x)x + B(x)u 3)

The SDRE approach of obtaining a suboptimal solution of j[gml(1)-(2) is described by the following algorithm:

AT(x)P + PA(x) — PB(x)R"'(x)BT (x)P + Q(x) =0 — P(x) >0 (4)
K(x) = R (x)B" (x)P(x) (5)
u=—-K(x)x (6)

2.2 SDRE nonlinear filtering

This section is based on [6]. Given the following nonlingates-space plant,

x=f(x)+Gx)w 7
zZ, = h(xk) + P(xk )Vk (8)
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wherex denotes the state vector at timew andv, are zero-mean white noise processes with known intensity an
covariance matrice$}” and V, , respectively, and given their associated SDC expressiens

f(x) = F(x)x 9)

h(xk) = H(xk )xk (10)

then the SDRE filter is summarized as follows in a continudissrete form.

2.2.1 Time propagation stage

X =f(X) (11)
P=FXP+PFT'(X) + GR)WGT(X) (12)

with initial conditionsx, ., P, . The vectorx denotes the estimate agiven the measurements until, where
t, <t < t,.,,andP denotes the approximate covariance matrix of the assdostémation error.

2.2.2 Measurement update stage

Sen =H& ) Py H (%) +TE ) VT (X 0) (13)
K= P, H X.,,,.)S. (14)
§xc+1/lc+1 = [I - leH(ikﬂ/kﬂ §xc+1/lc + K120 (15)
Pk+1/k+1 = [I - Kk+1H(§k+1/k)] Pk/k [I - Kk+1H(§k+1/k)]T + Kk+1F(§k+1/k) %+1FT(§k+1/k)KI;T+1 (16)

3. Attitude control with full information

Consider a fully actuated rigid-body spacecraft (S/C) tation with respect to an inertial Cartesian coordinatesf

Z. Let B denote a Cartesian coordinates body-framdgnote the quaternion of rotation frofhto Z, w denote the
angular rate vector oB with respect tdZ resolved inB. Neglecting non-control torques, the S/C kinematics and
dynamics are governed by the following differential eqoiasi

w=—J wx] Jw+ J u (17)

q= ;E(quw (18)

where.J denotes the S/C tensor of inertia expressefi,in is the control torque vectog(q) is defined as follows

== | PIEh (19

ande, ¢ denote the vector and the scalar partjpfespectively. The matricdax|] in Eqgs.(17) and (19) are defined as
follows for any3 x 1 vectora:

2)
lax]= | a3 0 —a(l) (20)

3.1 Single-loop controller

3.1.1 Model and problem formulation

Since the quaternion of rotatiapis constrained to be a unit-norm vector, the scalar part can be expressed as a
function of the vector part, i.e.

= V1o (21)
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Notice that the positive square-root is chosen here witlosstof generality since the quaterniepand(—q) represent
the same rotation. Inserting Eq. (21) into Eq. (18) and ddiog the equation ig yields the following state-dependent
coefficient (SDC) model for the augmented state:):

w| —J Hwx] J O3] |w 4 Jt u 22)
el |i(ex]+V1—eTel,) Os] |e 05
Notice that thg21) submatrix in Eq. (22) is non-singular for amgxcept whee is a unit-norm vector, i.e., when the
Euler angle of rotation i880°. Since the attitude representation was reduced to threengders, this singularity is
expected. As a result, the proposed model lacks pointwisgaltability at these particular points. In this work, tiai
angular deviations less thag0¢° are considered.
The proposed single-loop SDRE attitude controller is a ptibwl solution to the following quadratic integral cost
minimization problem:

min {/OO xTQx + u’ Ru dt} (23)
0

u

wherex = (w,e), subject to Eq. (22)9 is a6 x 6 positive semi-definite matrix anfl is a3 x 3 positive definite matrix.

3.1.2 Algorithm summary

Givenw,e, the single-loop SDRE control is computed as follows:

B —J Hwx]J o)
4= [% (ex] +v1—elel,) oz] (24)
Jfl
B= {03] (25)
ATP+ PA+Q—-PBR 'BTP=05+— P >0 (26)
K =R 'BTp (27)
ne [2’] (28)

Notice that the SDARE (26) that needs to be solved for thetipesiefinite matrixP is a6 x 6 matrix equation. The
matrix P is ensured to exist except fefe = 1. The (suboptimal) contrak from Eqg. (28) is implemented in Eq. (17)
in order to drive the system to rest such tBatoincides withZ.

3.2 Dual-Loop controller

The dual-loop controller approach exploits the cascadeggrty of the S/C dynamical equations (17)(18) where
drives the dynamics afy, which itself drives the dynamics ef. Henceforth two cascaded optimal control problems
are formulated yielding two cascaded controllers in a doap configuration.

3.2.1 Model and problem formulation

For convenience, the dynamical equationd@s rewritten as follows:
1
é= 3 (Eax]—l— l—eTeIS)w (29)

Equation (29) appears as an SDC model equation for theestaith the angular rate vector as input and a state-
dependent input gain matrix. The solution of the associ&®RRE regulator problem, which is expressed as

min { / OOeTQOe + 'R, wdt} (30)
« 0

subject to Eqg. (29), wher@, > O3, R, > O3 (subscript, stands for ‘outer-loop’), will thus provide a command

trajectory for the angular rate vector. Let denote the command (desired) trajectory dogenerated by the SDRE
solution of problem (30). The second control problem is tah¢racking problem formulated as follows:

min{ [ @ @) Q- w) + T R} (31)

u
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subject to the dynamical equation fori.e.,
w=—(J "wx]J)w+ J 'u (32)

where@®; > Os, R; > O3, (subscript stands for ‘inner-loop’). Clearly, Eq. (32) provides an SB/@del equation for
the dynamics of, and the SDRE solution is readily obtained from the lineadyatic tracking theory.

3.2.2 Algorithm summary

Givenw,e, compute:

B, = % (bx]—l—\/l—eTeIa) (33)

Qo — P,B,R,;'BT'P, =03+ P, >0 (34)
K,=R;'BI'P, (35)
w. = —K,e (36)
A= —J Hwx]J (37)
Bi=J"! (38)
AP+ PA; +Q; — P.B;R;'BI'P, =03~ P, >0 (39)
K, = R;'BFP, (40)
L;=—-R;'Bl (A; — B;K;)""Q; (41)
u=-K;w+ L;w,. (42)

Notice that the expression far in Eq. (42) has been augmented with a term involving the conthigajectoryw,.
Inserting Eq. (36) into Eq. (42) yields

u=—[Ki LiK,)] [‘;’] (43)

which features the same structure as the SDRE single-laapadter from Eq. (28). Yet, since the overall closed-loop
system is expected to follow, after some transient, the dual-loop controller perfornearare expected to be poorer
than those of the single-loop controller. Also notice tha&tdual-loop SDRE controller involves the sequential $ofut
of two 3 x 3 SDARE (34)(39), which represents significant computatieasings with respect to solving thiex 6
SDARE of the single-loop controller.

3.3 Numerical simulation

Numerical simulations were run in order to compare the perémces of the single-loop and dual-loop attitude con-
trollers. The simulation equations consist of Egs. (1B),(vhere the control input is computed using Egs. (24)-(28)
(single-loop) or Egs. (33)-(42) (dual-loop). The S/C bddyme is assumed to have the following tensor of ineftia
[kg-m?] expressed in the body-frani®

10 -1 -2
J=1]-1 10 -1 (44)
-2 —1 15

which is characteristic of a cubic-shape microsatellitaclEsimulation runs over 100 seconds. The initial condstion
and the values of the weight matrices are provided in Tablasdl2, respectively. Several measures of control per-
formance are considered. CP1 [deqg] is the Euclidean nortimeatiiree mean angular errors in steady-state. The three
means are time averages over the second-half of the sionlais. The angular errors result from a 3-2-1 transfor-
mation from the quaterniog to Euler angles. CP2 [deg] is the norm of the three assocstediard deviations. CP3
[rad/sec] and CP4 [rad/sec] are similar to CP1 and CP2 buitanguted using the angular rates. CP1 to CP4 thus relate
to the steady-state control performances. CP5 [N-m] is thgimmum over time of the Euclidean norm of the control
torque vecton. CP6 [deg] and CP7 [rad/sec] are the maxima of the absolliewvaf the angular deviations and rates,
respectively, over time and for all three axes. CP5, CP6, {8B3 relate to the transient control performances. CP8
[N-m], CP9 [deg], and CP10 [rad/sec] are thaorms of the sequences of control torquaxes angular deviations,
and3-axes angular rates, respectively. The latter three “nafégeasures of performances thus relate to both transient
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and steady-state. Notice that the cost indexes of the optinmérol problems were not used for the sake of comparison
because the weight matrices are significantly differenhagingle-loop and dual-loop controllers. The performance
measures CP8, CP9, and CP10 provide however a meaningfubvwaympare single-loop and dual-loop controllers
and are themselves quadratic integral costs.

The comparison methodology is based on the following apyro&irst, weights for the single-loop controller (A in
Table 1) are chosen in order to yield nominal performancesdady-state (both tracking error and settling time) and
in control effort. Then the weights for the dual-loop cofiznare picked such as to guarantee similar steady-state
performances as for controller A (B.a in Table 1). The ketetia is CP1, i.e. the angular tracking error. In addition,
a different set of weights for the dual-loop controller wassen in order to guarantee similar control effort as in con-
troller A (B.b in Table 1). The key criteria are CP8 and CP9.

The results are summarized in Tables 3 and 4. Consider thiés@s CP1 for controllers A and B.a. Both controllers
converge to zero and show similar settling times. Yet thdrotlar B.a is slightly slower, inducing residual ripples i

the angular tracking errors and thus higher value for théopmance measure CP1. However, the essential difference
resides in the control effort, as shown in the values for CB@ntroller A requires a torque 0£87 [N-m] (l2 norm)
against.07 [N-m] for controller B.a.

The control weightR; in controller B.b is15 times higher than in controller B.a. This results in veryselosalues

for CP8 in controllers A and B.b, i.€).87 [N-m] and0.86 [N-m], respectively. Hence, the single-loop and dual-loop
controllers require the same control energy. Comparing#hges of CP1 and CP9 shows the performances gap. The
angular tracking error CP1 in B.b 198 [mdeg] against.1 [mdeg] in A. Further, the integral performance index CP9 is
83 [deg]in B.b against3 [deg] in A. These drops in performances are direct consempsanf a convergence slowdown

in the system controlled by B.b, as a result of the increage oNotice that trials in correcting this gap by changing the
outer-loop weights, i.e. by increasingg, in order to more penalize the angular tracking error, ondated more ripples

in the dynamics and in fact increased the integral cost CR@ur&s 1-f3 depict the time variations of the angular rates,
the Euler angles, and the control torques. It is easy to sahh single-loop controller A compares advantageously
with respect to either dual-loop controller B-a, which skasimilar state transients but requires more control, or to
dual-loop controller B-b, which applies similar controlaets but achieves slower and more oscilllatory transients

As a concluding remark, both single-loop and dual-loop aglgrs can be designed to produce acceptable perfor-
mances. The dual-loop controller exploits the cascadedtsire of the S/C dynamics-kinematics equations. It festur
solutions of two3 x 3 SDARE against & x 6 SDARE for the single-loop controller. This represents saigal
savings in the computational burden as full matrix produetmiire O(n?) operations (flops) and(n?) memory size

for continuous or discrete ARE solving [12]. This benefigéfect should be traded against the loss in performances
induced by the two-loop approach.

4. Attitude estimation without control

4.1 Preliminaries

Consider the angular velocity vectorand the quaterniog, it is straightforward to prove the following identity:

E@w=wq (45)
where=(q) is defined in Eq. (19), i.e.:
== | 5 (49)
and((w) is defined as follows:
=[5 4 2

Let band r denote the projections of a unit vector along the fralieend R, respectively. They satisfy the
following relation:

b= Ar (48)

where A denotes the rotation matrix frofR to 5. Using Eg. (48) and the known relation betwedrand q, the
following relation can be developed:

Hq=0 (49)
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where
Lib+r)x] L(b-r)
— 2 2
HB = |20 gt 2 (50)
For any two vectord,, by, the following identity is easily shown:
1_
H(br + ) =H(b)g + 5 E(a)by (51)

whereZ=(q) is defined in Eq. (46).
4.2 Model M2

In this case, the spacecraft is equipped with a triad of rgtesgopes measuring with a zero-mean additive white
noise, €, which intensity parameter is of order1 [deg/hour], which is typical for MEMS rate gyroscopes. Line
of-sight (LOS) measurements are acquired at a frequenay @ifiz] with additive zero-mean white noises. Their
equivalent angular standard deviatienis of orderl [deg], which is typical for magnetometers. The SDRE filter,
denoted F2, aims at estimating the quaternion. The modeitiems for the kinematics and the gyro measurement are
as follows:

d= 5 2S)a (52)

w=u + € (53)

Using Eq. (53) in Eq. (52), and applying the identity (45klgis the design process equation:

) 1
q= 3 Qw—€)q
— S 0Wa- =) (54)
T W 5 =lde
The LOS measurement equation is as follows:

Using Eq. (55) in Eq. (49), and applying Eq. (51), yields tbioiving design measurement equation:

= (bk)qk P E(qk)vk (56)

E(q)e (57)
1

Z, = H(bk)qk - ia(qk )Vk (58)

wherez, is the zero vector. Tables 8 and 9 provides the characteristihe model M2 required in order to implement
the associated SDRE filter F2. The expression for the cavegiaatrixR of the measurement error stems from the
unit-norm property of the LOS measureménfcite]

4.3 Model M3

This case is identical to case 2 except for the angular ratesarement error, which includes gyro drifts in the three
axes. The gyro drift vectoy ;, is modeled as a Brownian motion. Hence:

w=u +p, + € (59)
p’g = Vg (60)
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wherey, is a zero-mean white noise process with intensity paramgterThe values for the initial driftys(0), and
ong @ppearin Table 1 and 5, respectively. Combining Egs. (58), @nd (60) yields

A= [ &

| _ :%Q(waug)q N [—%E(q)e} (62)
L g

_ :%331“’) —%053(00] [SJ+[— 1O§4<q> 0143] H (63)

Equation (45) was used successively in order to derive E2). §6d Eq. (63). The first term in the right-hand-side
(RHS) of Eq. (62) provides the deterministic part of the moedir model and its SDC expression appears in Eq. (63).
The measurement model equation is identical to that of mid@etxcept for the expression of the SDC measurement
matrix. The SDC measurement equation for M3 is thus as fallow

1_
z, = [H(bk) 043] |:)u’j(kk):| - E‘Z(qk)vk (64)
1 —
In order to illustrate the non-uniqueness of the SDC modslssider the following matrix{ 2 Q(g Ho) %43 ;
34 3

which is a valid SDC dynamics matrix that can be used in Eq). (8&t, it is obvious that such a choice would yields a
pointwise unobservable system, where the drift can not imated.

4.4 Model M4

The model M4 includes all assumptions of M3 and in additiosuages that the LOS measurement is corrupted by
a three-axes biag,. This process is modeled as a Brownian motion driven by a-zexan white noiseys, with
intensity parameter,,;,. Hence,

By =t (65)

The values ofu,(0) ando,,;, are provided in Tables 1 and 5, respectively. Appending &8) {0 Eq. (61), and using
similar steps than for Egs. (62)-(63) yields

q] [iQw-py)d] [-1E(q)e€]
ﬂg = 0 + Vy (66)
7 L 0 v
[3Q(w) —3E(q) O] [q] —3Z2(q) Oss Ous €
= 34 Os3 3| |Mg| + | Osa I, Os| |y (67)
O34 O3 O3 | | ] O3 O3 I 12
The LOS measurement is modeled as follows:
bk = A(qk )rk + lj’b(k) + Vi (68)
Using Eq. (68) in Eq. (49) and using Eq. (51) twice yields thiéofving equations:
z, = H(bk - Hb(k) - Vk) q,
1
= H(bk - p’b(k))qk - 5 ‘:‘(qk)vk (69)
q, 1
= [H( bk) Os3 — % E(qk )] ;Lq(k) - 5 E(qk)vk (70)
(k)

wherez, = 0. The deterministic parts of the nonlinear process and mea®nt equations appear in the first terms
of the RHS of Egs. (66) and (69), respectively. Equation$ &id (70) feature the SDC model for M4 on which the
SDRE filter F4 is applied.
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4.5 Model M5

In this case, the LOS measurements are corrupted with whites only, like in the model M2, and there are no
available measurements of the angular rates. The proceasi@us consist thus of Egs. (17),(18), with no control, i.e

[Tﬂ N [_Jélﬂ[ﬁyw] * [SZJ (71)
- {_Jézﬁgi]J %iﬂ [ﬁ]‘%{cﬁJ n. (72)

wheren,, represents modeling errors in the rigid-body dynamics.sThbcess is modeled as a zero-mean white
noise with intensity parametet,, which was chosen via trial and errorsids ¥ [rad/seé/?]. Extensive simulations

of the filter F5 showed that no process noise needed to be dddbe design process equation of the quaternion.
Equation (71) features the deterministic part of the n@dmprocess model and Eq. (72) shows the proposed SDC
model M5. The measurement is identical to M2 with a modifie€CSeasurement matrix, as follows:

w, 1_
|- 5=t @©

z, =[Oz H(b,)] [Qk

J1 [w X] J 034

043 % Q(w)
is avalid SDC matrix in Eq. (72), but provides, together with measurement model, a pointwise unobservable system
for the angular rate vector.

In order to illustrate the non-uniqueness of SDC modelirig fioticed that the dynamics matrﬁf

4.6 Model M6

The LOS measurements incorporate a bias, like in M4, ane ther no rate gyroscopes, like in M5. The model M6
is thus a combination of the kinematics and dynamics as reddal M5, and of the measurement equation of M4.
Henceforth, the process equations are written as follows:

w [—J 7! [wx] Jw n,
q| = % Qw) q + 10 (74)
I L 0 1<
[—J—1 [OJX]J O34 O3 w Ig O3
= 2 5(q) Os Og| |a| + [Os3 Ous []:lw] (75)
O3 O34 O3] |w Os 1, b

The SDC matrices are identified from Equation (75). The SD@sueement matrix is identified from the following
measurement equation:

z, = H(bk - ,"’b(k))qk - %E(qk)vk (76)
O.’k 1
= [043 H(bk) _%E(qkﬂ q, - EE(qk)Vk (77)
p (k)

wherez, is the null vector.
4.7 Filters implementation

The previous subsections presented the developments offilaus state-space models, M2-M6, where the determin-
istic parts and the SDC matrices could be identified. Thesestijies correspond to the functions and matrites),
h(x), F(x), G(x), H(x), I'(x), that are required in order to implement the associated SIMRES F2-F6. All these
guantities are summarized in Tables 8 and 9 for each model.

Measurement update stage Since the measurement vector in Eq. (15) is identically z&® measurement update
stage equation is simplified to:

§ =[-K, HEx

k+1/k+1

% (78)

k+1/k)} k+1/k
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Notice that for the sake of maintaining the norm of the estad@uaternion unity, the estimated quaternion is normal-
ized after each measurement update by dividing it with itsliBaan norm. No tuning was needed in filters F2 and F3.
In filters F4, F5, and F6, the filter value of was increased by a fact®6. In filters F5 and F6, the intensity parameter
0., = 1079 [rad/seé’?]. The covariance matricdSRT'” are rank deficient. Yet, due to the constantly changing galue
of the LOS measurements, and thus of the measurement nsatheecovariance matriceS, , , are not singular, and
the filters covariance computations are numerically weltdved.

4.8 Numerical simulation

The spacecraft is assumed to rotate around its center of witkesut external torque. The initial conditions for the
states, the estimation errors, and the associated covamaatrices are provided in Tables 1, 6, and 7. The values of
the sensors intensity parameters appear in Table 5. In toaempare the performances of the various filters, eight
Estimation Performance criteria, EP1-8, were compute@. fibasures EP1 [deg] and EP2 [deg] are the time average
and standard deviation of the angular estimation errordadst-state, i.e. over the last 50 seconds (half of the simula
tion laps). The measures EP3 [rad/sec] and EP4 [rad/sesistari similar indexes calculated from the history of the
Euclidean norm of the angular velocity estimation erroteecThe latter is computed using as the difference between
the true and the estimated rate vector. The estimated ratenie simply the measured rate vector in F2, it is the
measured rate corrected with the estimated gyro biaseskF8nd it is a filter output in F5-F6. The measures EP5-6
[rad/sec] and EP7-8 [rad] are computed similarly to EP3idgighe Euclidean norms of the gyro drift and line-of-sight
bias estimation error vectors, respectively. Table 10 sarires the results for the SDRE filters F2 to F6. The table
shows that the filters using gyro measurements, F2-4 preiditar EP1 results for the average angular error, appr.
70 [mdeg]. Comparing this value to the LOS measurement angutor of 500 [mdeg] § = 10~2 [rad]) shows the
effectiveness of the filtering. It appears clearly that tispersion EP2 is higher when the filters incorporate adutio
states like gyro drifts and LOS biases. In addition, therBlstimating the angular velocity, F5,F6, reach a sligily
graded angular error performance level, about 80-90 [mdeg] similar standard deviations as the gyro-based filters.
The averages EP3 in the angular rates are also higher in tbiegy filters (110-125 [microrad/sec]) than in the gyro-
based ones (50-70 [microrad/sec]). On the other hand, gpediions EP4 in the angular rates error are significantly
lower in the gyroless filters (115-126 [microrad/sec] vers45-551 [microrad/sec]) thanks to the filtering effect and
the absence of gyro measurement white noise in the estimatiors. It is not surprising that the performance indexes
EP5 and EP6 are slightly degraded between filters F3 and e4pddditional states in the estimator F4. Interestingly,
the measures EP7 and EP8 are very similar in the gyro-baterd# and the gyroless filter F6, yielding averages of 7
and 6 [mrad] and standard deviations of 790 and 776 [micioraspectively.

Further comparison between the gyro-based and gyrolessfidte obtained by plotting the time-histories of the esti-
mation errors in the angular rates, the angular error, tlaeguion components, the angular rates, the gyro drifts, an
the LOS biases. The plots of these errors appear in Figsresgectively, for filters F2, F4, and F6. Filters F4 and F6
are the most elaborated in the current study and allow forpawison of the gyro-based and gyroless approach under
realistic noise modeling. Filter F2 is provided for compani, as it is based on the simplest and thus most ideal case
for the attitude error. Figure 4 shows that the gyrolesg fit features less noisy performances than the gyro-based
filters F2, F4. The error in F2 is merely the gyro measuremdritteanoise. It appears that the error in F6 converges
to the same level of error. Both gyro-based filters have shdransients (10 [sec]) than the gyroless filter F6 (20
[sec]). Figure 5 shows that filters F4 and F6 perform simjlarith respect to the angular estimation point of view.
From Fig. 6 it is seen that the errors in the quaternion in B4naisier than in filter F6, as a result of the gyro drift
estimation. The performance in the estimation of the dniff4 are depicted in Fig. 7 for each component. The single
run plots reveal unbiasedness and steady-state levelacafidi* [rad/sec], which are acceptable for the given gyro
drifts (similar values after 100 seconds). Figure 8 showstte estimation errors in the LOS biases are biased around
2-5 [mrad] for each component and that the errors are sfigimloother in F6. The LOS biases, which values are 10
[mrad], were thus partially estimated.

5. Combined SDRE estimation and control

This section presents numerical results on the perfornsaoicthe single-loop and dual-loop controllers, A and B.a,
developed in sections 3, but with partial information. Teedback loop implements a linear feedback of the estimated
rate and quaternion that are provided by the filters develapeection 4. For the sake of brevity, the following three
filters are implemented: filter F2, where only the quaternfoastimated, filter F4, where the quaternion, the gyro
drifts, and the LOS biases are estimated, and filter F6, wiherquaternion, the angular rates, and the LOS biases are
estimated. The combined SDRE filter-based controllers amtéd using the single/dual loop symbol and the filter
symbol, e.g. AF2.
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Tables 11 and 12 summarize the findings about the impact efdfimation on the control performances. Ta-
ble 11 shows the control performances measures, CP1-CRligfoases A, AF2, AF4, and AF6. When implementing
the gyro-based filters (AF2-4) the performances degradePih &hd in CP3, the steady-state performances in angle
and rate, but they are similar in CP5-7, i.e. transients.H@rother hand, estimating the angular velocity (AF6) indtea
of measuring/correcting it (AF2/Af4) brings better steasigite performances for the rates averages and deviations
(CP3-4) and for the angular deviations (CP2). The steaalg sif the controller signals seems smoother using a rate
estimator. On the other hand, the transients are lower wéiag the gyro in the controller, as seen from CP5-7 between
AF4 and AF6. Table 12 summarizes the results for the duad-tmmtroller with partial information. Here again, as
seen from CP3-4 between the controller BaF4 and BaF6, usiaig &stimator provides smoother transients than using
a gyro. In particular, the performances degrade drambtitailn BaF2 to BaF4. This shows how the estimation of the
LOS bias is critical to the overall control performances.s&en from CP1, there is a consistent degradation in angle
performances from A to AF6. Further, the maxima, CP5-7, sesensitive to the filter choice, when using the gyro,
but they increase when using a rate estimator. Figure 9 tdapie variations of the controlled rates with controllers A
AF2, AF4, and AF6. The plots show that the controller AF2 parfs similarly to the full information case, A. The
noisiest controller is AF4 and the slowest is AF6. On the oltamd, it appears clearly that AF6 is smoother than AF4.
Figure 10 zooms on the steady-state of the angles for theuscontrollers. It appears that AF2 follows well the ideal
trajectory of A, and that the other controllers show somedsan their performances, of order 0.2 [deg]. Figure 11
shows the time variations of the control torques, and gledepict the noisiness of the gyro-based controllers, with
deviations of order 0.005 N-m, and the relative smoothresg (lelay) of the rate-estimator based controller.

Further simulations were run in order to investigate thedoimf the controllers on the estimation perfor-
mances. Figure 12 summarizes the results. Figure 12-antsede angular estimation error as a function of time
for the control-free estimator F2, and the controlled cas&€® and BaF2. Clearly, the control-free case has better
transient and steady-state levels than the controlledscddws is an illustration of the conflicting tasks of estimat
and control, where sonpersistency of the signals is required in order to provide enough obdslitia Notice that the
two controllers have similar performances in steady-stetgure 12-b, on the other hand, shows that all three cases
with filter F4 have similar performances. Figure 12-c detlietangular estimation errors for the three cases with the
filter F6. The control-free case has got better performaimcgteady-state, and both controllers have similar tramsie
and identical steady-state levels.

6. Conclusion

This work presented the development of several State-RkgrerRiccati Equation filters and controllers for attitude
determination and control of a rigid-body spacecraft. Teeetbpment was systematic by designing single-loop and
dual-loop controllers, where filters estimated the atgtgdiaternion, the attitude rates, and sensors biases. Wéith t
given mid-grade gyros and the line-of-sight accuracy ofde§, the angular estimation error average is around 0.1
deg. It appears that the gyroless estimation performamees@other and more accurate in steady-state, but the gyro-
based estimation performances have better convergengerfies. Estimation performances turn to be enhanced in the
control-free case, whether or not gyros are used. Thistefédg illustrates the antagonistic natures of estimaton
control. Both single-loop and dual-loop controllers paeisatisfactory results with estimators in the loop. Overal
the pointing control performance is almost entirely diethby the estimators performance. The dual-loop approach
requires less computations but suffers a loss in pointimtppaance relative to the single-loop. For similar poigtin
performances, in the averages and standard deviatione afitfles and rates, the required control is twice as large, fo
the maxima and the integral criteria. For similar valueshaf tontrol energy, the dual-loop responses in angles and
rates are significantly slower than with the single-loopwdaer, the maximum control value is slightly lower; this is
characteristics to multiple-loops controllers which témghow smoother responses than the corresponding simojbe-|
controller. Future works will address the actuation madglin particular the potential saturation, the externajtes
modeling, additional investigation on the performances Idue to the cascaded approach and on the dual effect of
control and estimation.
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Table 1: Initial values for the angular rates, the Euler asgthe gyro drift and the line-of-sight bias

w(0) [rad/sec] (6,6,%)(0) [deg] 1, (0) [rad/sec] ,(0) [rad]

(1072,1072,1072) (25,25, 25) (1075,1075,107?) (1072,1072,102)

Table 2: Values of the weight matrices in the cost functiarsfngle-loop and dual-loop controllers

Controller Loop

State Weight Control Weight
A Single-loop Q =diag( 1,,501,) R=101,
B.a Dual-loop Qi=301,,Q,= 1, Ri=1,R,= 1,
B.b Dual-loop Q:=301,,Q, =1, R, =151,,R, = I,

Table 3: Control performances of single-loop and dual-looptrollers. CP1-CP7: Steady-state and Transient

Controller 103xCP1 103xCP2 10°xCP3 10°xCP4 10%2xCP5 CP6 10°xCP7

[deg] [deg] [rad/sec] [rad/sec] [N-m]  [degq] [rad/sec]
A 0.10 0.29 0.43 0.91 46 27 68
B.a 0.12 0.70 1.12 3.96 106 27 120
B.b 108.00 554.00 445.00 2624.00 30 27 82

Table 4: Control performances of single-loop and dual-locoptrollers. CP8-CP10: Integral

Controller  10°xCP8 CP9 10%2xCP10
[N-m] [deg] [rad/sec]

A 87 73 24
B.a 207 60 34
B.b 86 83 33
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Table 5: Intensity parameters of the white noises in the ggral the line-of-sight (LOS) measurement errors

Gyro Noise Gyro Drift LOS Noise LOS Bias
7 [ Ong [25L] g [rad] Oy [ 2L
10~ 107° 102 10~

Table 6: Initial estimation errors in the rates, the Eulaglas, the gyro drift and the line-of-sight bias

e~

&(0) [rad/sec] (6,0,4)(0) [deg] 7, (0) [rad/sec] 72,,(0) [rad]

(0.2,0.2,0.2) (25,25,25) (10-4,1074,1074) (0.5,0.5,0.5)

Table 7: Initial values of the estimation error covarianagnmaes for the various filters

F2 F3 F4 F5 F6
w 0.51, 051,
a 10717, 10711, 10711, 10747, 10741,
1, 10741, 10741,

My IS IS
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Table 8: Process - Nonlinear state-space models and thetiedestate-dependent coefficiertisis defined in Eq. (47).
= is defined in Eq. (46).

x f(x) F(x) G(x) W
M2 g 3 Q2wa 3 9w ~3E(q) g° I,
we 4] [E0w—u)d]  [E0W) -iZ@ 12 Ou L 0
_,ug 0 034 03 034 I,g 03 0'721,(] IS
[q [ 3 Qw—p,)dq] $Uw) —3E(q) Ous —12(q) Os3 O a*l, Os
M4 Ng 0 034 03 03 03 Ia 03 03 O’Zg Ig
_[l,b L 0 i 034 03 03 03 03 IS 03 03 072117
[w [T [wx]Jw]| [T 7! wx]J 034} [T ] 5
M5 ) 3 I
_OJ 50w 3Z(q) O4 | Os3 Tw s
[w [—J—1 [wx]Jw [—J—1 [wx]J O34 Os Ig O3 2
1 1= ) o 1y O3
M6 q 3 Q(w) 3 =(a) Os Oy Os3 Ous [ 0.0 2T ]
| L 0 O3 O34 O3 10s I 3 nb s

Table 9: Measurement - Nonlinear state-space models aird ¢teted state-dependent coefficients.is defined in
Eq. (50).= is defined in Eq. (46).

X h(x) H(x) ['(x) R
M2 q H(b) q H(b) —32(@ (L, —bh)
M3 [a ) H(b)q [H(b) Ous] —3E(@ (L, —bb")

M4 [a p, p] Hb-m)a [Hb Oi —3E(@Q] -
M5  [w q] H(b)q [Os5 H(b)] —3E(a@)  g*(1, —bbh)

M6  [w a Hb—p,)q  [Ows H(b) -
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Table 10: Estimation performances of the SDRE filters. Gu+itee case.

Filter 10°xEP1 103xEP2 105xEP3 10°xEP4 10°xEP5 10°xEP6 103xEP7 105xEP8

[deq] [deg] [rad/sec] [rad/sec] [rad/sec] [rad/sec] [rad] [rad]
F2 73 15 50 545 n/a n/a n/a n/a
F3 74 46 70 551 53 54 n/a n/a
F4 73 47 72 551 78 63 7 790
F5 83 40 110 115 n/a n/a n/a n/a
F6 94 40 125 126 n/a n/a 6 776

Table 11: Control performances of the single-loop congroll with various filters. Steady-state and Transient

Controller  103xCP1  103xCP2 10°xCP3  10°xCP4 102xCP5 CP6 103xCP7

[deq] [deq] [rad/sec] [rad/sec] [N-m]  [deq] [rad/sec]
A 0.10 0.29 0.43 0.91 46 27 68
AF2 139 30 11 108 70 27 68
AF4 164 126 96 543 70 27 58
AF6 175 71 37 287 156 45 161

Table 12: Control performances of the dual-loop contrdler with various filters. Steady-state and Transient

Controller 103xCP1 103xCP2 10°xCP3 10°xCP4 10%2xCP5 CP6 10°xCP7

[deq] [deq] [rad/sec] [rad/sec] [N-m]  [deq] [rad/sec]
Ba 0.12 0.70 1.12 3.96 106 27 120
BaF2 136 34 12 148 164 27 119
BaF4 151 167 85 1006 164 27 113
BaF6 162 93 52 463 275 37 152
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Figure 1: Time histories of the angular rates using singtgzland dual-loop SDRE controller
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Figure 2: Time histories of the angular tracking errors gsimgle-loop and dual-loop SDRE controller
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Figure 3: Time histories of the torque components usinglsttapp and dual-loop SDRE controller
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Figure 4: Time histories of the angular rates estimatioarsrior filters F2, F4, and F6. Single run. Control-free.
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Figure 5: Time histories of the angular estimation erroffilters F2, F4, and F6. Single run. Control-free.
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Figure 6: Time histories of the quaternion estimation ecamponents for filters F2, F4, and F6. Single run. Control-
free.
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Figure 8: Time histories of the line-of-sight bias estiroaterror components for filters F4 and F6. Single run. Control
free.
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Figure 9: Time histories of the angular rates using the sihgbp controllers with various filters.
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Figure 10: Time histories of the Euler angles using the silgbp controllers with various filters.
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Figure 11: Time histories of the control torques using tingl&-loop controllers with various filters.
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Figure 12: Time histories of the angular estimation errdf2y F4, and F6, without control, with single-loop control
A, and with dual-loop control Ba.
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