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Abstract
This work investigates the performances of several State-Dependent Riccati Equation algorithms for the
estimation and control of attitude and attitude rates of a rigid-body spacecraft. The estimators are designed
to process line-of-sight and gyros measurements corruptedby white noises and potentially drifting biases.
The case of gyroless estimation is also addressed. The vector measurements are linear-in-quaternion with
state-dependent white noises. The controllers implement single-loop and dual-loop approaches. Under
equivalent conditions, the single-loop controller outperforms the dual-loop controller wether by requiring
less control energy or by having a quicker pointing transient. The dual-loop approach however requires
less computations and shows a less aggressive control transient. Estimation performances are the limiting
factor in the proposed partial information closed-loop attitude and rate controllers. With angular devia-
tions in the vector observations of 0.5 deg, with or without gyros, and neglecting perturbations, pointing
performance levels of typically 0.1 deg are demonstrated via numerical simulations.

1. Introduction

In any spacecraft mission, the task of attitude determination and control is critical for success [1]. Among the many
methodologies from the realm of nonlinear optimal filteringand control, the State-Dependent Riccati Equation (SDRE)
method has received increased attention [2, 3], in particular due to its application to the field of spacecraft attitude esti-
mation and control. Reference [4] shows that SDRE control techniques provide effective performances for spacecraft
(S/C) orientation stability using reaction wheel torques and modeling the S/C momentum, the wheels momentum, the
angular rates and the quaternion as states. In [5] the SDRE approach was applied to a control problem for relative
attitude and attitude rate, augmented with relative position and velocity, between a tumbling target S/C and a chaser
S/C. The results show desirable responses for a wide range oftarget attitude motions. The scope of these works
however were limited to full state information. An application of SDRE filtering to rate estimation, and a variation
called pseudolinear Kalman filter (PSELIKA), was presentedin [6] based on the differentiation of line-of-sight (LOS)
measurements. The proposed filters were successfully applied to real data yet under the assumption of perfect atti-
tude information and with no biases in the measurements. These results were extended to the problem of attitude and
attitude rate estimation with measurements biases in [7]. Line-of-sight vector and full quaternion measurement were
considered along with the two parameterizations, quaternion and the rotation matrix, when developing the SDRE filters.
The underlying assumption to obtain a linear quaternion measurement was the availability of a star tracker on-board.
Reference [8] introduces an integrated attitude determination and control algorithm based on magnetic measurements
and actuation. The quaternion and the rates are controlled via a modified SDRE controller using estimated values.
The filter is designed to estimate a magnetic dipole residualand a drag coefficient in addition to the attitude and rates.
The simulated results demonstrate satisfactory estimation and pointing accuracy. Within the scope of [8] however, the
LOS measurements did not include biases, the filter was a standard extended Kalman filter. Reference [9] includes
results showing that the PSELIKA filter [7] seems more robustthan a standard EKF to initial errors. It also introduces
an optimized SDRE technique, and applies it to enhance S/C rate control with full information, but falls short from
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combining estimation and control. Combined SDRE estimation and control is applied in [10] to the problem of orbital
and attitude control of spacecraft in formation flying. The proposed approach seems affective and emphasizes the
measurement timing strategy. However, the control architecture in [10], as in [4, 5, 8], assumes a single-loop feedback
while advantages exist in designing a multiple-loops architecture [13, 14].

This work is concerned with the development of several combined SDRE estimation and control algorithms
for S/C attitude and rates with and without gyro measurements and using vector observations. The contributions of the
work are two folds: 1) it implements a single-loop and a dual-loop architecture for the control and investigates their
relative advantages via extensive simulations, 2) the filters’ designs implement a pseudolinear quaternion measurement
model introduced previously in [11] which alleviates the need for star-tracker on-board. The investigation is system-
atically performed considering the control problem with full information, the estimation problem without control with
various measurement models, and the combined case. The sensors models include white noises and drifting biases
that are typical for S/C systems. Comparative simulations are performed showing the effectiveness of the approach
attitude estimation and stabilization. The relative loss in performance due to the dual-loop approach seems acceptable.
The major performance differences occur between the gyroless and gyro-based controllers: the former are quicker to
converge but has go a relatively noisy steady-state while the latter shows a delay in the rate estimation but settles on a
smoother steady-state regime.

Section 2 includes a background on the SDRE estimation and control approaches. Secion 3 presents the
single-loop and dual-loop controllers for attitude and rate control with full information. Section 4is concerned withthe
quaternion and rates estimation problem for various sensors’ and dynamics models. Section 5 addresses the combined
estimation and control implementation. Section 6 presentsthe conclusions.

2. Background

2.1 SDRE nonlinear control

This section follows the exposition in [2]. Consider the nonlinear dynamical system described by the following differ-
ential equations

ẋ = a(x) +B(x)u (1)

wherex ∈ Rn is the state,u ∈ Rm is the control,a(x) ∈ Cl, B(x) ∈ Cl, for l ≥ 1. It is assumed thata(0) = 0 and
B(x) 6= 0 for all x. The nonlinear regulator problem is formulated as follows:Minimize

J =
1

2

∫ ∞

0

xTQ(x)x + uTR(x)u dt (2)

whereQ(x) ≥ 0 andR(x) > 0 for all x, with respect to the controlu under the dynamical constraint (1). That
constraint can be represented by the following linear structure with state-dependent coefficients (SDC):

ẋ = A(x)x +B(x)u (3)

The SDRE approach of obtaining a suboptimal solution of problem (1)-(2) is described by the following algorithm:

AT (x)P + PA(x)− PB(x)R−1(x)BT (x)P +Q(x) = 0 7→ P (x) ≥ 0 (4)

K(x) = R−1(x)BT (x)P (x) (5)

u = −K(x)x (6)

2.2 SDRE nonlinear filtering

This section is based on [6]. Given the following nonlinear state-space plant,

ẋ = f(x) +G(x)w (7)

z
k
= h(x

k
) + Γ(x

k
)v

k
(8)
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wherex denotes the state vector at timet, w andv
k

are zero-mean white noise processes with known intensity and
covariance matrices,W and V

k
, respectively, and given their associated SDC expressions, i.e.

f(x) = F (x)x (9)

h(x
k
) = H(x

k
)x

k
(10)

then the SDRE filter is summarized as follows in a continuous-discrete form.

2.2.1 Time propagation stage

˙̂x = f(x̂) (11)

Ṗ = F (x̂)P + PFT (x̂) +G(x̂)WGT (x̂) (12)

with initial conditionsx̂
k/k

, P
k/k

. The vector̂x denotes the estimate att given the measurements untilt
k
, where

t
k
≤ t ≤ t

k+1
, andP denotes the approximate covariance matrix of the associated estimation error.

2.2.2 Measurement update stage

S
k+1

= H(x̂
k+1/k

)P
k+1/k

HT (x̂
k+1/k

) + Γ(x̂
k+1/k

)V
k+1

ΓT (x̂
k+1/k

) (13)

K
k+1

= P
k+1/k

HT (x̂
k+1/k

)S−1

k+1
(14)

x̂
k+1/k+1

=
[
I −K

k+1
H(x̂

k+1/k
)
]
x̂

k+1/k
+K

k+1
z

k+1
(15)

P
k+1/k+1

=
[
I −K

k+1
H(x̂

k+1/k
)
]
P

k/k

[
I −K

k+1
H(x̂

k+1/k
)
]T

+K
k+1

Γ(x̂
k+1/k

)V
k+1

ΓT (x̂
k+1/k

)KT
k+1

(16)

3. Attitude control with full information

Consider a fully actuated rigid-body spacecraft (S/C) in rotation with respect to an inertial Cartesian coordinates frame
I. Let B denote a Cartesian coordinates body-frame,q denote the quaternion of rotation fromB to I, ω denote the
angular rate vector ofB with respect toI resolved inB. Neglecting non-control torques, the S/C kinematics and
dynamics are governed by the following differential equations:

ω̇= −J−1 [ω×]Jω+ J−1u (17)

q̇ =
1

2
Ξ(q)ω (18)

whereJ denotes the S/C tensor of inertia expressed inB, u is the control torque vector,Ξ(q) is defined as follows

Ξ(q) =

[
[e×] + q I

3

−eT
]

(19)

ande, q denote the vector and the scalar part ofq, respectively. The matrices[a×] in Eqs.(17) and (19) are defined as
follows for any3× 1 vectora:

[a×] =




0 −a(3) a(2)
a(3) 0 −a(1)
−a(2) a(1) 0


 (20)

3.1 Single-loop controller

3.1.1 Model and problem formulation

Since the quaternion of rotationq is constrained to be a unit-norm vector inR4, the scalar part can be expressed as a
function of the vector part, i.e.

q =
√
1−eTe (21)
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Notice that the positive square-root is chosen here withoutloss of generality since the quaternionsq and(−q) represent
the same rotation. Inserting Eq. (21) into Eq. (18) and discarding the equation inq yields the following state-dependent
coefficient (SDC) model for the augmented state(ω,e):

[
ω̇

ė

]
=

[
−J−1 [ω×]J O3

1

2
([e×] +

√
1−eTe I

3
) O3

] [
ω

e

]
+

[
J−1

O3

]
u (22)

Notice that the(21) submatrix in Eq. (22) is non-singular for anye except whene is a unit-norm vector, i.e., when the
Euler angle of rotation is180o. Since the attitude representation was reduced to three parameters, this singularity is
expected. As a result, the proposed model lacks pointwise controllability at these particular points. In this work, initial
angular deviations less than180o are considered.
The proposed single-loop SDRE attitude controller is a suboptimal solution to the following quadratic integral cost
minimization problem:

min
u

{∫ ∞

0

xTQx+ uTRu dt

}
(23)

wherex = (ω,e), subject to Eq. (22),Q is a6×6 positive semi-definite matrix andR is a3×3 positive definite matrix.

3.1.2 Algorithm summary

Givenω,e, the single-loop SDRE control is computed as follows:

A =

[
−J−1 [ω×]J O3

1

2
([e×] +

√
1−eTe I

3
) O3

]
(24)

B =

[
J−1

O3

]
(25)

ATP + PA+Q− PBR−1BTP = O6 7→ P > 0 (26)

K = R−1BTP (27)

u = −K
[
ω

e

]
(28)

Notice that the SDARE (26) that needs to be solved for the positive definite matrixP is a6 × 6 matrix equation. The
matrixP is ensured to exist except foreTe = 1. The (suboptimal) controlu from Eq. (28) is implemented in Eq. (17)
in order to drive the system to rest such thatB coincides withI.

3.2 Dual-Loop controller

The dual-loop controller approach exploits the cascaded property of the S/C dynamical equations (17)(18) whereu

drives the dynamics ofω, which itself drives the dynamics ofq. Henceforth two cascaded optimal control problems
are formulated yielding two cascaded controllers in a dual-loop configuration.

3.2.1 Model and problem formulation

For convenience, the dynamical equation fore is rewritten as follows:

ė =
1

2

(
[e×] +

√
1−eTe I

3

)
ω (29)

Equation (29) appears as an SDC model equation for the statee with the angular rate vector as input and a state-
dependent input gain matrix. The solution of the associatedSDRE regulator problem, which is expressed as

min
ω

{∫ ∞

0

eTQoe+ ω
TRo ωdt

}
(30)

subject to Eq. (29), whereQo ≥ O3, Ro > O3 (subscripto stands for ‘outer-loop’), will thus provide a command
trajectory for the angular rate vector. Letωc denote the command (desired) trajectory forω generated by the SDRE
solution of problem (30). The second control problem is thena tracking problem formulated as follows:

min
u

{∫ ∞

0

(ω− ωc)
TQi(ω− ωc) + uTRiu dt

}
(31)
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subject to the dynamical equation forω, i.e.,

ω̇= −
(
J−1 [ω×] J

)
ω+ J−1u (32)

whereQi ≥ O3, Ri > O3, (subscripti stands for ‘inner-loop’). Clearly, Eq. (32) provides an SDCmodel equation for
the dynamics ofω, and the SDRE solution is readily obtained from the linear quadratic tracking theory.

3.2.2 Algorithm summary

Givenω,e, compute:

Bo =
1

2

(
[e×] +

√
1−eTe I

3

)
(33)

Qo − PoBoR
−1

o BT
o Po = O3 7→ Po > 0 (34)

Ko = R−1

o BT
o Po (35)

ωc = −Koe (36)

Ai = −J−1 [ω×] J (37)

Bi = J−1 (38)

AT
i Pi + PiAi +Qi − PiBiR

−1

i BT
i Pi = O3 7→ Pi > 0 (39)

Ki = R−1

i BT
i Pi (40)

Li = −R−1

i BT
i (Ai −BiKi)

−TQi (41)

u = −Kiω+ Liωc (42)

Notice that the expression foru in Eq. (42) has been augmented with a term involving the command trajectoryωc.
Inserting Eq. (36) into Eq. (42) yields

u = −
[
Ki LiKo

] [ω
e

]
(43)

which features the same structure as the SDRE single-loop controller from Eq. (28). Yet, since the overall closed-loop
system is expected to followωc after some transient, the dual-loop controller performances are expected to be poorer
than those of the single-loop controller. Also notice that the dual-loop SDRE controller involves the sequential solution
of two 3 × 3 SDARE (34)(39), which represents significant computational savings with respect to solving the6 × 6
SDARE of the single-loop controller.

3.3 Numerical simulation

Numerical simulations were run in order to compare the performances of the single-loop and dual-loop attitude con-
trollers. The simulation equations consist of Eqs. (17),(18), where the control inputu is computed using Eqs. (24)-(28)
(single-loop) or Eqs. (33)-(42) (dual-loop). The S/C body-frame is assumed to have the following tensor of inertiaJ

[kg-m2] expressed in the body-frameB:

J =



10 −1 −2
−1 10 −1
−2 −1 15


 (44)

which is characteristic of a cubic-shape microsatellite. Each simulation runs over 100 seconds. The initial conditions
and the values of the weight matrices are provided in Tables 1and 2, respectively. Several measures of control per-
formance are considered. CP1 [deg] is the Euclidean norm of the three mean angular errors in steady-state. The three
means are time averages over the second-half of the simulation laps. The angular errors result from a 3-2-1 transfor-
mation from the quaternionq to Euler angles. CP2 [deg] is the norm of the three associatedstandard deviations. CP3
[rad/sec] and CP4 [rad/sec] are similar to CP1 and CP2 but arecomputed using the angular rates. CP1 to CP4 thus relate
to the steady-state control performances. CP5 [N-m] is the maximum over time of the Euclidean norm of the control
torque vectoru. CP6 [deg] and CP7 [rad/sec] are the maxima of the absolute values of the angular deviations and rates,
respectively, over time and for all three axes. CP5, CP6, CP7thus relate to the transient control performances. CP8
[N-m], CP9 [deg], and CP10 [rad/sec] are thel2 norms of the sequences of control torques,3-axes angular deviations,
and3-axes angular rates, respectively. The latter three “integral” measures of performances thus relate to both transient
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and steady-state. Notice that the cost indexes of the optimal control problems were not used for the sake of comparison
because the weight matrices are significantly different in the single-loop and dual-loop controllers. The performance
measures CP8, CP9, and CP10 provide however a meaningful wayto compare single-loop and dual-loop controllers
and are themselves quadratic integral costs.
The comparison methodology is based on the following approach. First, weights for the single-loop controller (A in
Table 1) are chosen in order to yield nominal performances insteady-state (both tracking error and settling time) and
in control effort. Then the weights for the dual-loop controller are picked such as to guarantee similar steady-state
performances as for controller A (B.a in Table 1). The key criteria is CP1, i.e. the angular tracking error. In addition,
a different set of weights for the dual-loop controller was chosen in order to guarantee similar control effort as in con-
troller A (B.b in Table 1). The key criteria are CP8 and CP9.
The results are summarized in Tables 3 and 4. Consider the results in CP1 for controllers A and B.a. Both controllers
converge to zero and show similar settling times. Yet the controller B.a is slightly slower, inducing residual ripples in
the angular tracking errors and thus higher value for the performance measure CP1. However, the essential difference
resides in the control effort, as shown in the values for CP8.Controller A requires a torque of0.87 [N-m] (l2 norm)
against2.07 [N-m] for controller B.a.
The control weightRi in controller B.b is15 times higher than in controller B.a. This results in very close values
for CP8 in controllers A and B.b, i.e.0.87 [N-m] and0.86 [N-m], respectively. Hence, the single-loop and dual-loop
controllers require the same control energy. Comparing thevalues of CP1 and CP9 shows the performances gap. The
angular tracking error CP1 in B.b is108 [mdeg] against0.1 [mdeg] in A. Further, the integral performance index CP9 is
83 [deg] in B.b against73 [deg] in A. These drops in performances are direct consequences of a convergence slowdown
in the system controlled by B.b, as a result of the increase ofRi. Notice that trials in correcting this gap by changing the
outer-loop weights, i.e. by increasingQo in order to more penalize the angular tracking error, only created more ripples
in the dynamics and in fact increased the integral cost CP9. Figures 1-f3 depict the time variations of the angular rates,
the Euler angles, and the control torques. It is easy to see that the single-loop controller A compares advantageously
with respect to either dual-loop controller B-a, which shows similar state transients but requires more control, or to
dual-loop controller B-b, which applies similar control efforts but achieves slower and more oscilllatory transients.
As a concluding remark, both single-loop and dual-loop controllers can be designed to produce acceptable perfor-
mances. The dual-loop controller exploits the cascaded structure of the S/C dynamics-kinematics equations. It features
solutions of two3 × 3 SDARE against a6 × 6 SDARE for the single-loop controller. This represents substantial
savings in the computational burden as full matrix productsrequireO(n3) operations (flops) andO(n2) memory size
for continuous or discrete ARE solving [12]. This beneficialeffect should be traded against the loss in performances
induced by the two-loop approach.

4. Attitude estimation without control

4.1 Preliminaries

Consider the angular velocity vectorωand the quaternionq, it is straightforward to prove the following identity:

Ξ(q)ω= Ω(ω)q (45)

whereΞ(q) is defined in Eq. (19), i.e.:

Ξ(q) =

[
[e×] + q I

3

−eT
]

(46)

andΩ(ω) is defined as follows:

Ω(ω) =

[
− [ω×] ω

−ω
T 0

]
(47)

Let b and r denote the projections of a unit vector along the framesB andR, respectively. They satisfy the
following relation:

b= A r (48)

whereA denotes the rotation matrix fromR to B. Using Eq. (48) and the known relation betweenA andq, the
following relation can be developed:

Hq = 0 (49)
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where

H(b) =

[
1

2
[(b+ r)×] 1

2
(b− r)

− 1

2
(b− r)T 0

]
(50)

For any two vectorsb1,b2, the following identity is easily shown:

H(b1 + b2)q = H(b1)q+
1

2
Ξ(q)b2 (51)

whereΞ(q) is defined in Eq. (46).

4.2 Model M2

In this case, the spacecraft is equipped with a triad of rate gyroscopes measuringωwith a zero-mean additive white
noise, ǫ, which intensity parameterσ

ǫ
is of order1 [deg/hour], which is typical for MEMS rate gyroscopes. Line-

of-sight (LOS) measurements are acquired at a frequency of10 [Hz] with additive zero-mean white noises. Their
equivalent angular standard deviationσ

b
is of order1 [deg], which is typical for magnetometers. The SDRE filter,

denoted F2, aims at estimating the quaternion. The model equations for the kinematics and the gyro measurement are
as follows:

q̇ =
1

2
Ω(ωo)q (52)

ω= ω
o + ǫ (53)

Using Eq. (53) in Eq. (52), and applying the identity (45), yields the design process equation:

q̇ =
1

2
Ω(ω− ǫ)q

=
1

2
Ω(ω)q− 1

2
Ξ(q) ǫ (54)

The LOS measurement equation is as follows:

b
k
= A(q

k
)r

k
+ v

k
(55)

Using Eq. (55) in Eq. (49), and applying Eq. (51), yields the following design measurement equation:

0 = H(b
k
− v

k
)q

k

= H(b
k
)q

k
− 1

2
Ξ(q

k
)v

k
(56)

The state-dependent coefficient (SDC) model M2 is summarized as follows:

q̇ =
1

2
Ω(ω)q− 1

2
Ξ(q) ǫ (57)

z
k
= H(b

k
)q

k
− 1

2
Ξ(q

k
)v

k
(58)

wherez
k

is the zero vector. Tables 8 and 9 provides the characteristics of the model M2 required in order to implement
the associated SDRE filter F2. The expression for the covariance matrixR of the measurement error stems from the
unit-norm property of the LOS measurementb. [cite]

4.3 Model M3

This case is identical to case 2 except for the angular rate measurement error, which includes gyro drifts in the three
axes. The gyro drift vector,µg, is modeled as a Brownian motion. Hence:

ω= ω
o + µg + ǫ (59)

µ̇g = νg (60)
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whereνg is a zero-mean white noise process with intensity parameterσng. The values for the initial drift,µg(0), and
σng appear in Table 1 and 5, respectively. Combining Eqs. (52), (59), and (60) yields

[
q̇

µ̇g

]
=

[
1

2
Ω(ω− µg − ǫ)q

νg

]
(61)

=

[
1

2
Ω(ω− µg)q

0

]
+

[
− 1

2
Ξ(q) ǫ
νg

]
(62)

=

[
1

2
Ω(ω) − 1

2
Ξ(q)

O34 O3

] [
q

µg

]
+

[
− 1

2
Ξ(q) O43

O34 I
3

] [
ǫ

νg

]
(63)

Equation (45) was used successively in order to derive Eq. (62) and Eq. (63). The first term in the right-hand-side
(RHS) of Eq. (62) provides the deterministic part of the nonlinear model and its SDC expression appears in Eq. (63).
The measurement model equation is identical to that of modelM2 except for the expression of the SDC measurement
matrix. The SDC measurement equation for M3 is thus as follows:

z
k
=

[
H(b

k
) O43

] [ q
k

µg(k)

]
− 1

2
Ξ(q

k
)v

k
(64)

In order to illustrate the non-uniqueness of the SDC models,consider the following matrix,

[
1

2
Ω(ω− µg) O43

O34 O3

]
,

which is a valid SDC dynamics matrix that can be used in Eq. (63). Yet, it is obvious that such a choice would yields a
pointwise unobservable system, where the drift can not be estimated.

4.4 Model M4

The model M4 includes all assumptions of M3 and in addition assumes that the LOS measurement is corrupted by
a three-axes bias,µb. This process is modeled as a Brownian motion driven by a zero-mean white noise,νb, with
intensity parameterσnb. Hence,

µ̇b = νb (65)

The values ofµb(0) andσnb are provided in Tables 1 and 5, respectively. Appending Eq. (65) to Eq. (61), and using
similar steps than for Eqs. (62)-(63) yields



q̇

µ̇g

µ̇b


 =




1

2
Ω(ω− µg)q

0

0


+



− 1

2
Ξ(q) ǫ
νg

νb


 (66)

=




1

2
Ω(ω) − 1

2
Ξ(q) O43

O34 O3 O3

O34 O3 O3





q

µg

µb


+



− 1

2
Ξ(q) O43 O43

O34 I
3

O3

O3 O3 I
3





ǫ

νg

νb


 (67)

The LOS measurement is modeled as follows:

b
k
= A(q

k
)r

k
+ µb(k) + v

k
(68)

Using Eq. (68) in Eq. (49) and using Eq. (51) twice yields the following equations:

z
k
= H(b

k
− µb(k)− v

k
)q

k

= H(b
k
− µb(k))qk

− 1

2
Ξ(q

k
)v

k
(69)

=
[
H(b

k
) O43 − 1

2
Ξ(q

k
)
]



q
k

µg(k)
µb(k)


− 1

2
Ξ(q

k
)v

k
(70)

wherez
k
= 0. The deterministic parts of the nonlinear process and measurement equations appear in the first terms

of the RHS of Eqs. (66) and (69), respectively. Equations (67) and (70) feature the SDC model for M4 on which the
SDRE filter F4 is applied.
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4.5 Model M5

In this case, the LOS measurements are corrupted with white noises only, like in the model M2, and there are no
available measurements of the angular rates. The process equations consist thus of Eqs. (17),(18), with no control, i.e.

[
ω̇

q̇

]
=

[
−J−1 [ω×]Jω

1

2
Ω(ω)q

]
+

[
nω

O43

]
(71)

=

[
−J−1 [ω×]J O34

1

2
Ξ(q) O4

] [
ω

q

]
+

[
I
3

O43

]
nω (72)

wherenω represents modeling errors in the rigid-body dynamics. This process is modeled as a zero-mean white
noise with intensity parameterσω , which was chosen via trial and errors as10−9 [rad/sec3/2]. Extensive simulations
of the filter F5 showed that no process noise needed to be addedto the design process equation of the quaternion.
Equation (71) features the deterministic part of the nonlinear process model and Eq. (72) shows the proposed SDC
model M5. The measurement is identical to M2 with a modified SDC measurement matrix, as follows:

z
k
=

[
O43 H(b

k
)
] [ω

k

qk

]
− 1

2
Ξ(q

k
)v

k
(73)

In order to illustrate the non-uniquenessof SDC modeling, it is noticed that the dynamics matrix

[
−J−1 [ω×] J O34

O43
1

2
Ω(ω)

]

is a valid SDC matrix in Eq. (72), but provides, together withthe measurement model, a pointwise unobservable system
for the angular rate vector.

4.6 Model M6

The LOS measurements incorporate a bias, like in M4, and there are no rate gyroscopes, like in M5. The model M6
is thus a combination of the kinematics and dynamics as modeled in M5, and of the measurement equation of M4.
Henceforth, the process equations are written as follows:



ω̇

q̇

µ̇b


 =



−J−1 [ω×]Jω

1

2
Ω(ω)q
0


+



nω

0

νb


 (74)

=



−J−1 [ω×]J O34 O3

1

2
Ξ(q) O4 O43

O3 O34 O3





ω

q

νb


+



I
3

O3

O43 O43

O3 I
3




[
nω

nb

]
(75)

The SDC matrices are identified from Equation (75). The SDC measurement matrix is identified from the following
measurement equation:

z
k
= H(b

k
− µb(k))qk

− 1

2
Ξ(q

k
)v

k
(76)

=
[
O43 H(b

k
) − 1

2
Ξ(q

k
)
]



ω
k

q
k

µb(k)


− 1

2
Ξ(q

k
)v

k
(77)

wherez
k

is the null vector.

4.7 Filters implementation

The previous subsections presented the developments of fivevarious state-space models, M2-M6, where the determin-
istic parts and the SDC matrices could be identified. Theses quantities correspond to the functions and matricesf(x),
h(x), F (x), G(x), H(x), Γ(x), that are required in order to implement the associated SDREfilters F2-F6. All these
quantities are summarized in Tables 8 and 9 for each model.

Measurement update stage Since the measurement vector in Eq. (15) is identically zero, the measurement update
stage equation is simplified to:

x̂
k+1/k+1

=
[
I −K

k+1
H(x̂

k+1/k
)
]
x̂

k+1/k
(78)
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Notice that for the sake of maintaining the norm of the estimated quaternion unity, the estimated quaternion is normal-
ized after each measurement update by dividing it with its Euclidean norm. No tuning was needed in filters F2 and F3.
In filters F4, F5, and F6, the filter value ofσ

b
was increased by a factor10. In filters F5 and F6, the intensity parameter

σω = 10−9 [rad/sec3/2]. The covariance matricesΓRΓT are rank deficient. Yet, due to the constantly changing values
of the LOS measurements, and thus of the measurement matrices, the covariance matricesS

k+1
are not singular, and

the filters covariance computations are numerically well-behaved.

4.8 Numerical simulation

The spacecraft is assumed to rotate around its center of masswithout external torque. The initial conditions for the
states, the estimation errors, and the associated covariance matrices are provided in Tables 1, 6, and 7. The values of
the sensors intensity parameters appear in Table 5. In orderto compare the performances of the various filters, eight
Estimation Performance criteria, EP1-8, were computed. The measures EP1 [deg] and EP2 [deg] are the time average
and standard deviation of the angular estimation error in steady-state, i.e. over the last 50 seconds (half of the simula-
tion laps). The measures EP3 [rad/sec] and EP4 [rad/sec] consist of similar indexes calculated from the history of the
Euclidean norm of the angular velocity estimation error vector. The latter is computed using as the difference between
the true and the estimated rate vector. The estimated rate vector is simply the measured rate vector in F2, it is the
measured rate corrected with the estimated gyro biases in F3-F4, and it is a filter output in F5-F6. The measures EP5-6
[rad/sec] and EP7-8 [rad] are computed similarly to EP3-4 using the Euclidean norms of the gyro drift and line-of-sight
bias estimation error vectors, respectively. Table 10 summarizes the results for the SDRE filters F2 to F6. The table
shows that the filters using gyro measurements, F2-4 providesimilar EP1 results for the average angular error, appr.
70 [mdeg]. Comparing this value to the LOS measurement angular error of 500 [mdeg] (σ

b
= 10−2 [rad]) shows the

effectiveness of the filtering. It appears clearly that the dispersion EP2 is higher when the filters incorporate additional
states like gyro drifts and LOS biases. In addition, the filters estimating the angular velocity, F5,F6, reach a slightlyde-
graded angular error performance level, about 80-90 [mdeg], and similar standard deviations as the gyro-based filters.
The averages EP3 in the angular rates are also higher in the gyroless filters (110-125 [microrad/sec]) than in the gyro-
based ones (50-70 [microrad/sec]). On the other hand, the dispersions EP4 in the angular rates error are significantly
lower in the gyroless filters (115-126 [microrad/sec] versus 545-551 [microrad/sec]) thanks to the filtering effect and
the absence of gyro measurement white noise in the estimation errors. It is not surprising that the performance indexes
EP5 and EP6 are slightly degraded between filters F3 and F4, due to additional states in the estimator F4. Interestingly,
the measures EP7 and EP8 are very similar in the gyro-based filter F4 and the gyroless filter F6, yielding averages of 7
and 6 [mrad] and standard deviations of 790 and 776 [microrad], respectively.
Further comparison between the gyro-based and gyroless filters are obtained by plotting the time-histories of the esti-
mation errors in the angular rates, the angular error, the quaternion components, the angular rates, the gyro drifts, and
the LOS biases. The plots of these errors appear in Figs. 4-8,respectively, for filters F2, F4, and F6. Filters F4 and F6
are the most elaborated in the current study and allow for comparison of the gyro-based and gyroless approach under
realistic noise modeling. Filter F2 is provided for comparison, as it is based on the simplest and thus most ideal case
for the attitude error. Figure 4 shows that the gyroless filter F6 features less noisy performances than the gyro-based
filters F2, F4. The error in F2 is merely the gyro measurement white noise. It appears that the error in F6 converges
to the same level of error. Both gyro-based filters have shorter transients (10 [sec]) than the gyroless filter F6 (20
[sec]). Figure 5 shows that filters F4 and F6 perform similarly with respect to the angular estimation point of view.
From Fig. 6 it is seen that the errors in the quaternion in F4 are noisier than in filter F6, as a result of the gyro drift
estimation. The performance in the estimation of the drift in F4 are depicted in Fig. 7 for each component. The single
run plots reveal unbiasedness and steady-state levels around 10−4 [rad/sec], which are acceptable for the given gyro
drifts (similar values after 100 seconds). Figure 8 shows that the estimation errors in the LOS biases are biased around
2-5 [mrad] for each component and that the errors are slightly smoother in F6. The LOS biases, which values are 10
[mrad], were thus partially estimated.

5. Combined SDRE estimation and control

This section presents numerical results on the performances of the single-loop and dual-loop controllers, A and B.a,
developed in sections 3, but with partial information. The feedback loop implements a linear feedback of the estimated
rate and quaternion that are provided by the filters developed in section 4. For the sake of brevity, the following three
filters are implemented: filter F2, where only the quaternionis estimated, filter F4, where the quaternion, the gyro
drifts, and the LOS biases are estimated, and filter F6, wherethe quaternion, the angular rates, and the LOS biases are
estimated. The combined SDRE filter-based controllers are denoted using the single/dual loop symbol and the filter
symbol, e.g. AF2.
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Tables 11 and 12 summarize the findings about the impact of theestimation on the control performances. Ta-
ble 11 shows the control performances measures, CP1-CP7, for the cases A, AF2, AF4, and AF6. When implementing
the gyro-based filters (AF2-4) the performances degrade in CP1 and in CP3, the steady-state performances in angle
and rate, but they are similar in CP5-7, i.e. transients. On the other hand, estimating the angular velocity (AF6) instead
of measuring/correcting it (AF2/Af4) brings better steady-state performances for the rates averages and deviations
(CP3-4) and for the angular deviations (CP2). The steady-state of the controller signals seems smoother using a rate
estimator. On the other hand, the transients are lower when using the gyro in the controller, as seen from CP5-7 between
AF4 and AF6. Table 12 summarizes the results for the dual-loop controller with partial information. Here again, as
seen from CP3-4 between the controller BaF4 and BaF6, using arate estimator provides smoother transients than using
a gyro. In particular, the performances degrade dramatically from BaF2 to BaF4. This shows how the estimation of the
LOS bias is critical to the overall control performances. Asseen from CP1, there is a consistent degradation in angle
performances from A to AF6. Further, the maxima, CP5-7, seeminsensitive to the filter choice, when using the gyro,
but they increase when using a rate estimator. Figure 9 depicts the variations of the controlled rates with controllers A,
AF2, AF4, and AF6. The plots show that the controller AF2 performs similarly to the full information case, A. The
noisiest controller is AF4 and the slowest is AF6. On the other hand, it appears clearly that AF6 is smoother than AF4.
Figure 10 zooms on the steady-state of the angles for the various controllers. It appears that AF2 follows well the ideal
trajectory of A, and that the other controllers show some biases in their performances, of order 0.2 [deg]. Figure 11
shows the time variations of the control torques, and clearly depict the noisiness of the gyro-based controllers, with
deviations of order 0.005 N-m, and the relative smoothness (and delay) of the rate-estimator based controller.

Further simulations were run in order to investigate the impact of the controllers on the estimation perfor-
mances. Figure 12 summarizes the results. Figure 12-a presents the angular estimation error as a function of time
for the control-free estimator F2, and the controlled cases, AF2 and BaF2. Clearly, the control-free case has better
transient and steady-state levels than the controlled cases. This is an illustration of the conflicting tasks of estimation
and control, where somepersistency of the signals is required in order to provide enough observability. Notice that the
two controllers have similar performances in steady-state. Figure 12-b, on the other hand, shows that all three cases
with filter F4 have similar performances. Figure 12-c depictthe angular estimation errors for the three cases with the
filter F6. The control-free case has got better performancesin steady-state, and both controllers have similar transients
and identical steady-state levels.

6. Conclusion

This work presented the development of several State-Dependent Riccati Equation filters and controllers for attitude
determination and control of a rigid-body spacecraft. The development was systematic by designing single-loop and
dual-loop controllers, where filters estimated the attitude quaternion, the attitude rates, and sensors biases. With the
given mid-grade gyros and the line-of-sight accuracy of 0.5deg, the angular estimation error average is around 0.1
deg. It appears that the gyroless estimation performances are smoother and more accurate in steady-state, but the gyro-
based estimation performances have better convergence properties. Estimation performances turn to be enhanced in the
control-free case, whether or not gyros are used. This effectively illustrates the antagonistic natures of estimationand
control. Both single-loop and dual-loop controllers provide satisfactory results with estimators in the loop. Overall,
the pointing control performance is almost entirely dictated by the estimators performance. The dual-loop approach
requires less computations but suffers a loss in pointing performance relative to the single-loop. For similar pointing
performances, in the averages and standard deviations of the angles and rates, the required control is twice as large, for
the maxima and the integral criteria. For similar values of the control energy, the dual-loop responses in angles and
rates are significantly slower than with the single-loop. However, the maximum control value is slightly lower; this is
characteristics to multiple-loops controllers which tendto show smoother responses than the corresponding single-loop
controller. Future works will address the actuation modeling, in particular the potential saturation, the external torques
modeling, additional investigation on the performances loss due to the cascaded approach and on the dual effect of
control and estimation.
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Table 1: Initial values for the angular rates, the Euler angles, the gyro drift and the line-of-sight bias

ω(0) [rad/sec] (φ, θ, ψ)(0) [deg] µg(0) [rad/sec] µb(0) [rad]

(10−2, 10−2, 10−2) (25, 25, 25) (10−5, 10−5, 10−5) (10−2, 10−2, 10−2)

Table 2: Values of the weight matrices in the cost functions for single-loop and dual-loop controllers

Controller Loop State Weight Control Weight

A Single-loop Q = diag( I
3
, 50 I

3
) R = 10 I

3

B.a Dual-loop Qi = 30 I
3
,Qo = I

3
Ri = I

3
, Ro = I

3

B.b Dual-loop Qi = 30 I
3
,Qo = I

3
Ri = 15 I

3
, Ro = I

3

Table 3: Control performances of single-loop and dual-loopcontrollers. CP1-CP7: Steady-state and Transient

Controller 103×CP1 103×CP2 106×CP3 106×CP4 102×CP5 CP6 103×CP7
[deg] [deg] [rad/sec] [rad/sec] [N-m] [deg] [rad/sec]

A 0.10 0.29 0.43 0.91 46 27 68
B.a 0.12 0.70 1.12 3.96 106 27 120
B.b 108.00 554.00 445.00 2624.00 30 27 82

Table 4: Control performances of single-loop and dual-loopcontrollers. CP8-CP10: Integral

Controller 102×CP8 CP9 102×CP10
[N-m] [deg] [rad/sec]

A 87 73 24
B.a 207 60 34
B.b 86 83 33
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Table 5: Intensity parameters of the white noises in the gyros and the line-of-sight (LOS) measurement errors

Gyro Noise Gyro Drift LOS Noise LOS Bias
σǫ [

rad√
sec

] σng [ rad
sec3/2

] σ
b
[rad] σnb [

rad√
sec

]

10−4 10−5 10−2 10−4

Table 6: Initial estimation errors in the rates, the Euler angles, the gyro drift and the line-of-sight bias

ω̃(0) [rad/sec] (φ̃, θ, ψ)(0) [deg] µ̃g(0) [rad/sec] µ̃b(0) [rad]

(0.2, 0.2, 0.2) (25, 25, 25) (10−4, 10−4, 10−4) (0.5, 0.5, 0.5)

Table 7: Initial values of the estimation error covariance matrices for the various filters

F2 F3 F4 F5 F6

ω 0.5 I
3

0.5 I
3

q 10−1 I
4

10−1 I
4

10−1 I
4

10−4 I
4

10−4 I
4

µg 10−4 I
3

10−4 I
3

µb I
3

I
3
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Table 8: Process - Nonlinear state-space models and their related state-dependent coefficients.Ω is defined in Eq. (47).
Ξ is defined in Eq. (46).

x f(x) F (x) G(x) W

M2 q 1

2
Ω(ω)q 1

2
Ω(ω) − 1

2
Ξ(q) σ2

ǫ
I
3

M3

[
q

µg

] [
1

2
Ω(ω− µg)q

0

] [
1

2
Ω(ω) − 1

2
Ξ(q)

O34 O3

] [
− 1

2
Ξ(q) O43

O34 I
3

] [
σ2

ǫ
I
3

O3

O3 σ2

ng I3

]

M4



q

µg

µb







1

2
Ω(ω− µg)q

0

0







1

2
Ω(ω) − 1

2
Ξ(q) O43

O34 O3 O3

O34 O3 O3






− 1

2
Ξ(q) O43 O43

O3 I
3

O3

O3 O3 I
3






σ2

ǫ
I
3

O3 O3

O3 σ2

ng I3 O3

O3 O3 σ2

nb I3




M5

[
ω

q

] [
−J−1 [ω×] Jω

1

2
Ω(ω)q

] [
−J−1 [ω×]J O34

1

2
Ξ(q) O4

] [
I
3

O43

]
σ2
ω I3

M6



ω

q

µb






−J−1 [ω×]Jω

1

2
Ω(ω)q
0






−J−1 [ω×] J O34 O3

1

2
Ξ(q) O4 O43

O3 O34 O3






I
3

O3

O43 O43

O3 I
3




[
σ2

ω I3 O3

O3 σ2

nb I3

]

Table 9: Measurement - Nonlinear state-space models and their related state-dependent coefficients.H is defined in
Eq. (50).Ξ is defined in Eq. (46).

x h(x) H(x) Γ(x) R

M2 q H(b)q H(b) − 1

2
Ξ(q) σ2

b
( I

3
− bbT )

M3
[
q µg

]
H(b)q

[
H(b) O43

]
− 1

2
Ξ(q) σ2

b
( I

3
− bbT )

M4
[
q µg µb

]
H(b− µb)q

[
H(b) O43 − 1

2
Ξ(q)

]
− 1

2
Ξ(q) σ2

b
( I

3
− bbT )

M5
[
ω q

]
H(b)q

[
O43 H(b)

]
− 1

2
Ξ(q) σ2

b
( I

3
− bbT )

M6
[
ω q µb

]
H(b− µb)q

[
O43 H(b) − 1

2
Ξ(q)

]
− 1

2
Ξ(q) σ2

b
( I

3
− bbT )
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Table 10: Estimation performances of the SDRE filters. Control-free case.

Filter 103×EP1 103×EP2 106×EP3 106×EP4 106×EP5 106×EP6 103×EP7 106×EP8
[deg] [deg] [rad/sec] [rad/sec] [rad/sec] [rad/sec] [rad] [rad]

F2 73 15 50 545 n/a n/a n/a n/a
F3 74 46 70 551 53 54 n/a n/a
F4 73 47 72 551 78 63 7 790
F5 83 40 110 115 n/a n/a n/a n/a
F6 94 40 125 126 n/a n/a 6 776

Table 11: Control performances of the single-loop controller A with various filters. Steady-state and Transient

Controller 103×CP1 103×CP2 106×CP3 106×CP4 102×CP5 CP6 103×CP7
[deg] [deg] [rad/sec] [rad/sec] [N-m] [deg] [rad/sec]

A 0.10 0.29 0.43 0.91 46 27 68
AF2 139 30 11 108 70 27 68
AF4 164 126 96 543 70 27 58
AF6 175 71 37 287 156 45 161

Table 12: Control performances of the dual-loop controllerB.a with various filters. Steady-state and Transient

Controller 103×CP1 103×CP2 106×CP3 106×CP4 102×CP5 CP6 103×CP7
[deg] [deg] [rad/sec] [rad/sec] [N-m] [deg] [rad/sec]

Ba 0.12 0.70 1.12 3.96 106 27 120
BaF2 136 34 12 148 164 27 119
BaF4 151 167 85 1006 164 27 113
BaF6 162 93 52 463 275 37 152
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Figure 1: Time histories of the angular rates using single-loop and dual-loop SDRE controller
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Figure 2: Time histories of the angular tracking errors using single-loop and dual-loop SDRE controller
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Figure 3: Time histories of the torque components using single-loop and dual-loop SDRE controller
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Figure 4: Time histories of the angular rates estimation errors for filters F2, F4, and F6. Single run. Control-free.
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Figure 5: Time histories of the angular estimation error forfilters F2, F4, and F6. Single run. Control-free.
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Figure 6: Time histories of the quaternion estimation errorcomponents for filters F2, F4, and F6. Single run. Control-
free.
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Figure 7: Time histories of the gyro drift estimation error components for filter F4. Single run. Control-free.
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Figure 8: Time histories of the line-of-sight bias estimation error components for filters F4 and F6. Single run. Control-
free.
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Figure 9: Time histories of the angular rates using the single-loop controllers with various filters.
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Figure 10: Time histories of the Euler angles using the single-loop controllers with various filters.
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Figure 11: Time histories of the control torques using the single-loop controllers with various filters.
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(a) Filter F2
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(b) Filter F4
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(c) Filter F6

Figure 12: Time histories of the angular estimation error inF2, F4, and F6, without control, with single-loop control
A, and with dual-loop control Ba.

22


