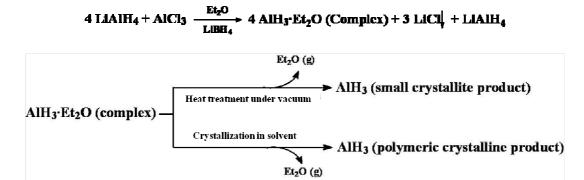
Preparation, transformation and characterization of different aluminum hydride AlH₃ phases (alanes)

W. Cong*, L. Potet*, N. Hérault*, R. Brahmi*, Y. Batonneau*, C. Kappenstein*, G. Jacob**, C. Pérut**, Y. Guélou*** and E. Labarthe***

* University of Poitiers, CNRS UMR 7285, IC2MP, 4 rue Michel Brunet, 86022 Poitiers, France

** SAFRAN-HERAKLES, Research Center Le Bouchet, 9 rue Lavoisier, 91710 Vert-le-Petit, France

***CNES, Direction des lanceurs DLA/SDT/EPM, 75612-Paris, France


Introduction

Aluminum hydride or alane AlH₃ is a very important and fascinating material that has recently attracted attention for its potential for different purposes [1, 2]: (i) as an energetic component in rocket propellants, (ii) as a reducing agent in alkali batteries and (iii) as a possible hydrogen source for low temperature fuel cells. For hydrogen storage, this material will be an excellent candidate if it could be cheaply produced. It has a density of 1.48 g cm⁻³, a volumetric hydrogen capacity of 0.148 g mL⁻¹ i.e. greater than that of liquid hydrogen (0.070 g mL⁻¹) and a hydrogen mass capacity exceeding 10 wt.-%.

There are at least seven AlH₃ solid phases found in the literature. But in fact only the most sable α -AlH₃ (H_f[°] = -11.4 kJ mol⁻¹) can be a candidate for the potential utilization. The development of safe, reliable, low toxic and low cost synthesis methods of pure polymeric crystalline α -AlH₃ attracted numerous studies and will be of high interest. Since 2005, we can see a recent and strong renewed interest for alane [3, 4]. Moreover, a better knowledge of the relationships between the formation of the polymeric network and the structure of the different final phases obtained will be a prerequisite to improve the synthesis.

Preparation of pure alane phases

The most common preparation of pure alane phases is presented in the scheme below. It uses an organometallic synthesis method in two steps: formation of an etherate complex followed by the removal of ether. The second step affords two possibilities to transform the etherate into the solid dry phase: (i) by heat treatment under vacuum or (ii) by precipitation in an organic solvent.

Results and Characterizations

The sample phases are identified by powder X-ray diffraction (Figure 1). With the heat treatment method at different temperatures, we obtained the following AlH_3 phases:

- Pure γ -AlH₃;
- Main small crystallite α -AlH₃ plus small amount of γ -AlH₃ and traces of aluminum;

With the solvent method at different crystallization temperatures, we obtain:

- Polymeric crystalline α -AlH₃ plus γ '-AlH₃ (not identified) and traces of ϵ -AlH₃;
- Main polymeric crystalline α -AlH₃ plus traces of γ '-AlH₃ (not identified) and traces of ϵ -AlH₃;
- Pure polymeric crystalline α-AlH₃.

It must be quoted that the γ '-AlH₃ phase presents the same diffraction peaks as the γ phase, but the intensity of the peaks are completely different. The possibility to have preferential orientations of the crystallites is under study.

Conclusion

The pure γ phase alane and pure polymeric crystalline α phase AlH₃ are successfully prepared using an organometallic synthesis method. The heat treatment temperature and the crystallization temperature in solution play very important roles in the pure γ and α phase alane preparation respectively.

Other methods described in the literature will be discussed

References

- [1] Zidan, R., "Aluminum Hydride (Alane)", in *Handbook of Hydrogen Storage: New Materials for Future Energy Storage*, Ed. M. Hirscher, Wiley-VCH, Verlag GmbH & Co. KGaA, Weinheim (Germany), 2010, 249-277.
- [2] Zidan, R., Garcia-Diaz, B. L., Fewox, C. S., Stowe, A. C., Gray, J. R., and Harter, A. G., "Aluminium hydride: a reversible material for hydrogen storage," *Chemical Communications*, No. 25, 2009, pp. 3717-3719.
- [3] Vest, B., Klinkhammer, K., Thierfelder, C., Lein, M., and Schwerdtfeger, P., "Kinetic and Thermodynamic Stability of the Group 13 Trihydrides," *Inorganic Chemistry*, Vol. 48, No. 16, 2009, pp. 7953-7961.
- [4] Deluca, L. T., Rossettini, L., Kappenstein, C., and Weiser, V., "Ballistic Characterization of AlH3-Based Propellants for Solid and Hybrid Rocket Propulsion," *AIAA Paper* 2009-4874.