Computing the vibrations of polygonal panels under distributed
random excitation using the image source method
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Flexural vibrations are responsible for noise radiation and damage in the airframe of aircraft. The
most commonly used methods in academia and industry for predicting such vibrations are finite ele-
ment analysis (FEA) and statistical energy analysis (SEA). Owing to their underlying hypotheses and
numerical constraints, these methods are respectively limited to low and high frequencies. However,
the so-called mid-frequency range is characterised by interactions between short- and long-wavelength
phenomena and thus requires the development of approaches that do not rely on purely deterministic
or statistical hypotheses [1].

This paper presents a method for computing the vibrations of polygonal plates subjected to a
spatially-distributed random excitation. The method is developed within the scope of assessing the
vibratory impact of turbulent flow on the airframe of aircraft in the mid-frequency range. The image
source method consists in representing wave reflection on a given boundary of a structure by means
of the mirror image of the source and the reflection properties of the boundary. Thus, the position of
the image source is obtained by mirror symmetry of the original source with respect to the boundary.
In the case of a finite structure such as a polygonal plate, an infinite number of reflections successively
occur at the different boundaries [2, 3]. The response of the polygonal plate to a given source of
vibrations can thus be represented as a superposition of the contributions from an infinite number of
image sources. The latter are obtained by performing successive symmetries of the original source and
consecutively applying the reflection properties of the boundaries at each reflection. Figure 1 shows a
point-driven polygonal plate and the first image sources.

Figure 1: First image sources for a polygonal plate excited by a point source.



The Green’s function of the plate for a source at rg and an observation point at r can be written
as
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where G, is the Green’s function of an infinite plate with the same material properties, G5 are the
image source contributions with r, the image source positions and &y is the flexural wavenumber. The
out-of-plane displacement of a polygonal plate subjected to an arbitrary source can be written as

w(r,ro; k) = wo(ro; ky) * Ga(r,ro; ky), (2)

where wq is the displacement of the source and * denotes convolution product on variable rg. The
source term wg contains all the information on the excitation, while the Green’s function Gq entirely
characterises the structure. Using this formulation, the response of the plate can be simulated for an
arbitrary spatially-distributed source. In the present study, the excitation is considered over the entire
plate or over a finite region, as can be the case for a turbulent boundary layer [4]. Furthermore, the
randomness in the excitation can be modelled by means of a probability density function.

Outline

First, the theory of the image source method is developed for a point source and then a spatially-
distributed source. Then, the reciprocity of the Green’s function is employed in order to obtain the
response to a spatially-distributed random excitation. The domain of applicability of the method is
determined and it is then applied to practical cases. Several spatial distributions of the excitation are
examined and the effect of the probability density function of the excitation is studied.
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