
Saving the Software Specification by Converting the old SA/RT Models into UML

Thomas Weyrath
Elektroniksystem- und Logistik-GmbH

Email: Thomas.Weyrath@eurocopter.com

Herbert Schreyer
Eurocopter Deutschland GmbH
Email: Herbert.Schreyer@eurocopter.com

Abstract

The avionic software of the both military helicopters
Tiger and NH90 was developed during the 1990s. Their
specifications based on Structured Analysis / Real Time
(SA/RT), a methodology that was state-of-the art in the
1980s. But nowadays the tools for modeling SA/RT are
no longer supported and the knowledge to understand
and maintain the models is going to diminish over time.
Hence, ways must be found to keep the expertise on the
specifications, models and software for future work. In this
paper, we describe with the example of software design
models, how we want to convert our software models from
SA/RT to UML.

Topic: Avionics
Keywords: Model-based system engineering, UML, SA/RT

1 Introduction

The System Support Centre NH90/Tiger (SSC) is a co-
operative organisation of German Federal Armed Forces,
Eurocopter, ESG, Cassidian and MBDA. It comprises a
team of 200 engineers. Its main task is the avionic soft-
ware maintenance and modification of the military heli-
copters NH90 and UH Tiger. The maintenance comprises
more than 12.000.000 lines of code in 16 avionic comput-
ers, including the ground support system. Additionally, the
documentation of the development is immense. It contains
over 500 documents of specifications and design descrip-
tions. Most of them have hundreds of pages, some of them
over a thousand. In view of the fact that the helicopters have
a life cycle of more than 40 years, the software maintenance
and modification is a challenge, but it has to be done.

1.1 Rationales behind our work

Over the years the helicopter software will be changed
due to modifications in the software environment, new cus-
tomer requirements or simply by fixing errors. Even an
extensive facelift towards modern technologies cannot be
ruled out. Some points are important:

• The software changes will have to be done efficiently
and reliably. This includes that all state of the art
processes and methodologies of software maintenance
and modification have to be well known.

• Human expertise of the past and present must be main-
tained as long as our helicopters exist. The software
development of both helicopters started in the 1990s.
A lot of engineers of this time has gone into retirement
or will be retiring in the next ten years. Their valuable
knowledge must not be lost.

• Specifications must be improved continously. Most of
them are either text-based or use Structured Analysis
/ Real Time (SA/RT). And, what is worse, the NH90
used the Harel whereas Tiger used the Hatley und Pirb-
hai approach.

• Without changing the methods and specifications
future obsolescence problems occurring with tools,
databases and formats are unavoidable.

• And - last but not least - when we change the speci-
fication we want to introduce well-accepted software
concepts, like modularization, structuring and abstrac-
tion to improve the readability and understandability.

1.2 What have we done?

With the help of external consultants, the SSC has es-
tablished a customized UML methodology for software re-
quirements analysis and software design, which refines an
EADS guideline for using UML (see [3]). This methodol-
ogy is described for the part of the requirements analysis in
[4].

After this, those consultants have trained SSC employ-
ees in both UML and UML methodology. In addition, the
methodology has been successfully applied in the context
of a redesign of an embedded avionic computer. Further-
more, it has been applied in several software projects of the
SSC that aim at improving the testing environment of the
airborne computers.



Figure 1. Meta model of the software use case modelling.

2 Software Requirements Analysis

2.1 Software Use Case Modeling

For the requirements analysis the functional aspects of
the software under development are most important. There-
fore we focus on a functional approach (instead of an
object-oriented analysis). This is closer to the used devel-
opment standards, DOD- 2167A and DO178-B [2].

The methodology is use case driven and defines the fol-
lowing steps:

1. Decompose the software system into high level func-
tions to handle the complexity of the model.

2. Perform a use case analysis for each high level func-
tion.

3. Refine the use cases with use case descriptions and fur-
ther natural language requirements and model the use
case behavior with an activity diagram.

4. Model the activity that triggers the use cases. That can
be function calls, e.g. from an external interface, or an
user interaction event.

Figure 1 shows the summary of the key concepts used in
the software use case modeling. Key concepts are the use
cases, use case diagrams, actions and activity diagrams that
specifies the high-level requirements expressed by a speci-
fication model.

2.2 Software Domain Analysis Modeling

The software domain analysis modeling refines the re-
sults use case modeling and defines the domain model con-
sisting of actors, terms and data types.

2.3 External Interface Modeling

The external interface modeling addresses how the soft-
ware interact with people, the systems hardware, other hard-
ware, and other software [1]. The interface modeling is lim-
ited to the software interfaces that describe the data inputs
and outputs between the software system itself and its ex-
ternal software systems.

3 Software Design Modeling

3.1 Software Architectural Design

The goal of Software Architectural Design is to estab-
lish the structure of the software. It defines software parti-
tions, identifies software components, their interfaces (pro-
vided/used) and defines protocols that are required to com-
municate with the environment of the software.

The architecture design ist subdevided in five steps:

1. Create the Black Box View to identify the services of
the system and its external systems (actors) to establish
the system boundary.

2. Create the Decompostion View to show the hierarchi-
cal structure of the software.

2



Figure 2. Meta model of the decomposition view.

3. Create the Functional View to elaborate how the use
cases specified in the requirements analysis are imple-
mented using the software modules.

4. Create the Process View to describe the dynamic as-
pect of the software system.

5. Create the Deployment view to show how the artefacts
are distributed among the involved hardware compo-
nents.

Figure 2 shows the summary of the key concepts used in
the decomposition view. It consists of a set of component
diagrams that shows the hierarchical structure of the soft-
ware in form of layers, software groups and software mod-
ules. This view allows software developers and maintainers
to identify the major design constituents of the design sub-
ject and to localize and allocate functionality, responsibili-
ties, or other design roles to these constituents.

3.2 Software Detailed Design

The Detailed Design View changed the viewpoint from
the software system consisting of software modules to the
individual software modules. The topic of this view is the
structure and connection of the individual software module
as well as the collaboration of its structure to implement the
functionality of this module.

4 Traceability from the Software Design to
the Software Requirements

The customized UML methodology identified and de-
limit the requirements contained in the model. Based on
this information, we establish the traceability between high-
level requirements of software requirements process and
low-level requirements of software design process.

References

[1] IEEE Recommended Practice for Software Requirements
Specifications, IEEE-830-1998.

[2] DO-178B. Software Considerations in Airborne Systems and
Equipment Certification, December 1992.

[3] P. Gast and O. Bender. EADS GUIDELINE – using UML for
software analysis and design. EADS internal paper, 2009.

[4] T. Weyrath, B. Schinnerl, F. Schoettl, and H. Schreyer. A new
uml tool-based methodology for the software requirements
analysis. In European Congress Embedded Real Time Soft-
ware (ERTS), Toulouse, France, 2012.

Author’s Biography

Thomas Weyrath is project manager in the department
for Integrated Systems in the Business Area Aviation
at ESG. Since 2009, he has been working in the SSC
and manages the process improvement project UML.
Previously, he worked in the Automotive Area at ESG as
software engineer and project manager for 9 years.

Herbert Schreyer works on the aviation system devel-
opment of the Tiger and NH90 helicopters since 1995. 2005
he joined the SSC where he took over the role of a system
architect. Since several years he is charge of evaluation and
introduction of new methods of avionic definition.

3


