NANO-SIZED BIMETALLIC ALUMINUM-COPPER POWDERS IN HTPB-BASED FUELS

G. Vadalà¹, P. Leoni¹, C. Paravan¹, L.T. DeLuca¹, A.B. Vorozhtsov²,

N.G. Rodkevich³, and M.I. Lerner³

¹Politecnico di Milano, Aerospace Engineering Dept., SPLab, 34 Via La Masa, 20156 Milan, Italy

² Tomsk State University, Technical Physics Dept., 36 Lenina pr., 634050, Tomsk, Russia

³Institute of Strength Physics and Material Science SB RAS, 2/4 Akademicheskiy st., 634021, Tomsk, Russia

This work is focused on production, characterization and test of nano-sized, dual-metal Aluminum-Copper (Al-Cu) powders used as additives in solid HTPB-based fuels for hybrid propulsion.

The Al-Cu composites were produced by EEW (Electric Explosion of Wire) and passivated in a dry gaseous stream of (Ar + 1% vol. Air). Seven different powders were produced. The nano-sized Al-Cu composites differ because of the relative content of Al and Cu. Tested additives have nominal mass Al contents ranging from 100% (ALEXTM) to 0% (Cu powder).

The Al-Cu composites were characterized in terms of active aluminum content and DSC/TGA (Differential Scanning Calorimetry/Thermogravimetric Analysis). Reactivity parameters for powder non-isothermal oxidation tests were identified according to [1]. While ALEXTM presents an oxidation onset temperature of 856 K, dual-metal Al-Cu powders presents a general decrease of this parameter for increasing Cu mass fraction. On the other hand, Al-Cu powders exhibit a lower heat release in the first oxidation peak with respect to ALEXTM. The produced nano-sized powders were tested as additives in HTPB-based solid fuel formulations. Tests were performed in a 2D radial micro-burner; data were reduced by the SPLab proprietary time-resolved technique [2]. Operating conditions were characterized by a quasi-steady chamber pressure of 1.0 MPa and an initial oxidizer mass flux $G_{ox} \sim 380 \text{ kg/(m^2s)}$. The relative ballistic grading of the tested fuels was performed considering HTPB as baseline formulation. The HTPB-based formulations loaded with Al-Cu powders containing 74% and 15% Aluminum exhibit regression rate enhancements with respect to baseline and ALEXTM loaded fuels for 150 kg/(m²s) $\leq G_{ox} \leq 350$ kg/(m²s). The percent regression rate increases with respect to ALEXTM of these fuels is higher than 15% with $G_{ox} = 350$ kg/(m²s) and slightly increase for decreasing oxidizer mass flux, reaching 23% at 150 kg/(m²s). The possible performance enhancement of these fuel formulations is higher when mass burning rate increase is considered, thanks to the higher density of Al-Cu composites with respect to standard ALEXTM. In spite of this, no monotonic trend was identified between Al (or Cu) additive mass fraction and the resulting performance enhancement, though increasing powder Cu mass fraction yields a reduced sensitivity of regression rate to G_{ox}.

References

- Ilyin, A.P., Gromov, A.A., An, V., Faubert, F., de Izarra, C., Espagnacq, A., Brunet, L. (2002), Characterization of Aluminum Powders I. Parameters of Reactivity of Aluminum Powders. *Propellants, Explosives, Pyrotechnics*, 27 (6), 361-364.
- [2] Paravan, C., Reina, A., Sossi, A., Manzoni, M., Massini, G., Rambaldi, G., Duranti, E., Adami, A., Seletti, E., DeLuca, L.T. (2013) Time-resolved Regression Rate of Innovative Solid Fuel Formulations, in: *Advances in Propulsion Physics, Vol. 4* (eds. L.T. DeLuca, C. Bonnal, O. Haidn, S. Frolov), Torus Press, Moscow.