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I. INTRODUCTION 

HE gradient-based optimization strategy, combined with 
accurate flow simulations and the use of the adjoint 

formulation to efficiently calculate the gradients, has been 
proved a promising approach for the improvement of the 
aerodynamic performance or aircraft designs [1]. However, the 
deployment of this technology in an industrial environment 
still faces practical limitations.  
 
 One of the main practical issues faced by the optimization 
process is to recover the geometric description after the 
optimization, in order to easily couple with additional tools 
and for post-processing. This geometric description usually 
comes from Computer Aided Design (CAD) software, such as 
IGES file format, which usually employs Non-Uniform 
Rational B-Splines (NURBS) to represent the surface skin of 
the geometry. In this context, there are two approaches: the so 
called CAD optimization techniques that involve the CAD 
geometric description throughout the whole optimization loop, 
and CAD-free techniques that recover the CAD format from 
the optimized grid as a post-processing. The main shortcoming 
for this second approach are dealing with intersections 
between different components of the geometry [2] and 
numerical errors induced during the CAD reconstruction. 
  
 Another main practical issue is to link the design variables 
to the sensitivities provided by the adjoint solution. Some 
approaches are specific for one particular aircraft component 
that may implicitly contains restrictions of the design or 
represent physical properties. For example, in the PARSEC 
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parameterization introduced by Sobieczky [3], the shape of an 
airfoil is described by geometric parameters related to physical 
properties, such as leading edge radius, thickness ratio or 
trailing edge angle, among others. Other design variables 
employs generic geometric descriptions, such as b-splines [4], 
which allow off-the-book designs, but ignore any engineering 
information and therefore are not intuitive for the designer. 
Kulfan [5] suggested a technique that combines a class 
function and a shape function, defined by Bernstein 
polynomials; however, while it fulfils the four Samareh 
conditions [6], it is not able to efficiently cope with local 
changes. In addition, the selection of appropriated design 
variables for optimization is still an open issue. However, a 
link between the computational grid and the CAD geometric 
description with the chosen design variables is required, which 
may involve complex mathematical equations or are simply 
inaccessible data buried in closed source binaries.  
 
 This paper proposes a generic methodology to link any 
design variable with both the CAD geometric description and 
the computational grid through an innovative concept: the 
control box.  

II. CALCULATION OF THE GRADIENTS 

 
The use of the adjoint methodology has been introduced 

during the last decade as an efficient method for calculating 
the gradients involving a large number of design variables; as 
it requires a single adjoint solution for each cost function (e.g. 
drag, lift, and momentum).  

For aerodynamic drag and lift optimization problems, the 
functional is defined as [7]:  
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where CP is the pressure coefficient, n is the normal to the 
boundary surface S, and d is the force direction vector defined 
by the angle of attack α and the sideslip angle β. By 
considering the local surface sensitivity δj in the local normal 
direction, obtained from the adjoint solution and the geometric 
sensitivities δx, the gradients of the functional with respect to 
design variables are calculated as [7]:  
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The above formulation considers tangential deformations of 

the surface negligible. However, edges and strong changes of 
the curvature in the geometry could require a special treatment 
that includes the tangential derivatives [8].  

 
In this paper, the key terms are the geometric sensitivities 

δx. From a mathematical perspective, if D is a function that 
represents a design space, the sensitivities are calculated as the 
derivative of the vertex coordinates upon variations of the 
design parametric coordinates λi. 
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Therefore, in order to obtain the geometric sensitivities, the 

parametric coordinates λi are required for all surface vertices 
of the computational grid: λi = D-1(x), which are not always 
easy to obtain. Some design variables are specifically chosen 
to deal with this problem; by employing Free Form 
Deformation [9], the parametric coordinates of the Bernstein 
polynomials can be directly obtained from the Cartesian 
coordinates by a linear transformation.  

III.  CONTROL BOX 

In this approach, if the CAD is also involved, the chain rule 
is applied to the geometric sensitivities. The geometry is 
represented by a NURBS surface, defined by a grid of control 
points S. 
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The first term requires the sensitivities of the surface 

NURBS control points with respect the design variables, 
which could be a challenging task. The second term is exactly 
the basis function of the NURBS, which requires to know the 
parametric coordinates {ξ, η} for each surface vertex of the 
computational grid, but efficient algorithms have been 
developed [4] for the so called "point inversion problem". 

 
In this formulation, the geometric sensitivities strongly 

depend on the chosen design variables. The solution is just a 
mathematical trick consisting in including a new term C that 

can be easily controlled. 
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 The functional chosen for this new term is a Volumetric 
Uniform Non-Rational B-Spline formulation. We prefer to 
refer it as a Control Box. To understand better how the control 
box works lets see Fig. 1. There are three distinctive layers: 
The skin layer, usually generated by the design variables; the 
outer layer (b), which is required because the control box is a 
volumetric NURBS, and optional segmentation layers (c) can 
be set to make the gradient calculation independent from 
different sections of the geometry, e.g. the upper part of a wing 
profile from the lower side. 
 

 
Fig. 1 Concept of the control box where three distinctive 

layers are shown: The skin layer (a), the outer box (b), and the 
segmentation layer (c).  

 
 Gradients are usually calculated on the skin layer from the 
adjoint solution using the chain rule. From the perspective of 
the design variables, they only see the control box, effectively 
hiding all the geometric issues underneath; notice where the 
brackets are set in (5).  

IV. TEST CASES 

A. Comparison of the geometric sensitivities. 
In this test case, the control box is directly employed as 

design variables. The objective is to compare the geometric 
sensitivities in three configurations. The baseline is a 
NACA0012 represented by two NURBS with 30 and 9 control 
points respectively and the computational grid alone.  



 

 

 
Fig. 2 Comparison of the geometric sensitivities calculated at the 

control point marked by an arrow in three configurations. 
 
Notice that as the number of surface control points 

increases, the geometric sensitivities become closer to those 
that are obtained directly from the computational grid. The 
main conclusion for this test case is that NURBS are invariant 
to linear transformations, such as translation and rotation, but 
it is wrong to perform the same non-linear deformations 
applied to the computational grid to the NURBS geometric 
description, for example, Free Form Deformation techniques. 

 
B. Optimization of a NACA0012 airfoil. 
The optimization is applied to a NACA0012 airfoil at 

M=0.8, AoA=1.25º, by employing a bump function in the 
form: 
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 The baseline y0 is the NACA0012 and k=6. An inviscid 
optimization is performed on the profile for the same three 
configurations employed in the previous case: the optimization 
of two CAD geometries, represented by two NURBS of 30 and 
9 control points respectively, and the optimization of the 
computational grid (CAD-free optimization). The design 
variables are the polynomial coefficients in (6). 
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Fig 3. Optimization of a NACA0012 at M=0.8, AoA=1.25º for 

three representations: CAD-free method, a CAD of 30 control points 
and a CAD of 9 control points. 
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Fig. 4. Optimized profiles from the original NACA0012 at M=0.8, 

AoA=1.25º for three representations: CAD-free method, a CAD of 30 
control points and a CAD of 9 control points. 

 
 If the computational grid is a discretization of the geometry, 
the geometric description, represented by NURBS, is a 
discretization of the design space, which means that with 
different geometric representations, different optimal solutions 
would be obtained.  
 
 In this case there is a easy link between the parametric 
coordinate and the space coordinate, but sometimes this 
relationship is not as simple to obtain. The final paper will 
show an optimization employing Sobieczky design variables, 
and a relevant three-dimensional case.   
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