
Certifying Network Calculus in a Proof Assistant

Etienne Mabille∗, Marc Boyer†, Löıc Fejoz∗, Stephan Merz‡

∗RealTime at Work, Nancy, France
†ONERA, Toulouse, France

‡Inria & LORIA, Nancy, France

1 Result Certification for Network Calculus

In critical embedded systems such as those used in avionics, ensuring the quality of the software
(using tests, qualification, and certification) represents a significant fraction of the overall cost of
development. Several complementary methods exist for ensuring the quality of systems, including
rigorous development processes, testing of components and systems, and the use of formal methods.
The latter have long been considered unable to scale up to industrial applications, and the cost
of full-fledged proof remains prohibitively high in most cases. Nevertheless, advances in formal
methods research have resulted in techniques that have proved practical and effective for specific
problems. The Network Calculus [5] and supporting tool sets have found widespread use for
determining bounds on message delays and for dimensioning buffers in embedded networks, such
as in the design and certification of the Airbus A380 AFDX backbone [1, 3, 4]. However, results
produced by existing tools based on the Network Calculus have to be trusted: although the
underlying theory is generally well understood, implementation errors may result in faulty network
designs, with unpredictable consequences.

For application domains subject to strict regulatory requirements, it appears mandatory to
ensure the correctness of the results computed by the tools supporting network designs. In this
contribution, we suggest a technique for certifying these results based on a “proof by instance”
approach. In a nutshell (cf. Figure 1), the tool outputs a trace of the calculations it performs, as
well as their results. The validity of the trace (both w.r.t. the applicability of the computation
steps and the numerical correctness of the result) can be established offline by a trusted checker.
For tools used at design time, we argue that this approach has several advantages over proving
the calculator correct:

• Instrumenting the calculator for outputting a trace is much easier (and hence less expen-
sive) than attempting a full-fledged correctness proof, and checking the correctness of a
computation is essentially trivial.

• The calculator is treated as a black box: it can be implemented using any software devel-
opment process, programming language, and hardware by a tool provider separate from the
checker. It can be updated without having to be requalified, as long as it still produces
certifiable computation traces.

• Proof by instance is a good match for industrial processes based on testing. Nevertheless,
a design that has been checked is guaranteed to be correct for any inputs matching the
hypotheses of the model.

Checking the trace of a Network Calculus tool is similar to checking a mathematical proof:
applying a given rule requires establishing its hypotheses, beyond pure calculation. We suggest to
implement the checker by taking advantage of the trusted kernel of a proof assistant, specifically
Isabelle/HOL [6].

In the remainder, we sketch a prototypical implementation of our proposal and illustrate its
use for a toy example in order to assess its applicability.

1



Network Calculus Theory

Books Article

Network Topology

(flows and servers)

Tool Specification

Network Calculus

Tool

Bounds

(delay and memory)

Network Calculus in Isabelle

Isabelle/HOL

Tool

OK/KO

Computation

traces

R
e
se

a
rc

h
C

u
rr

e
n

t 
p

ro
ce

ss
C

o
n

tr
ib

u
ti

o
n

Figure 1: Proof by instance process

2 Encoding Network Calculus in Isabelle

In order to develop a result certifier within Isabelle, we need to formalize the theory underlying
Network Calculus, to the extent that it underlies the algorithms whose results we intend to certify.
As a side benefit of this formalization, we obtain a rigorous development of Network Calculus,
including all possible corner cases that may be overlooked in pencil-and-paper proofs. Due to
space constraints, we only give an outline of our formal development.

The fundamental notion in Network Calculus is that of a flow, modeled as a non-decreasing
function f : R≥0 → R≥0 ∪ {∞}. We define a suitable type in Isabelle as

typedef ndf = {f :: real ⇒ ereal . (∀r ≤ 0. f r = 0) ∧mono f }
where real and ereal are pre-defined types corresponding to R and R∪{∞}, and mono f holds if f is
a weakly monotonic function.1 Note that we extended the domain of f to arbitrary real numbers,
fixing the result to be zero over negative reals, as this turned out to simplify the subsequent
definitions. Over this function type, we define operations such as +, ∗, and ≤ by pointwise
extension over the arguments, and establish basic algebraic properties: for example, the resulting
structure forms an ordered commutative monoid with 0 and 1.

Of particular interest are special classes of functions such as linear functions

βr ,T (t) =

{
0 if t ≤ T ,

r × (t − T ) otherwise

γr ,b(t) = (rt + b) 1>0(t) for 1>T (t) =

{
1 if t > T ,

0 otherwise

We also introduce characteristic operations on flows such as convolution, defined as

(f ⊕ g)(t) = inf {f (t − s) + g(s) : 0 ≤ s ≤ t}

and prove characteristic properties such as

lemma convol-sub-add-stable:
assumes is-sub-additive f and is-sub-additive g
shows is-sub-additive (f ⊕ g)

1Application of functions and predicates to their arguments is written by juxtaposition in Isabelle/HOL.

2



Producer -
1 MBit/s

Switch

dsw = 1µs
-

1 MBit/s
Consumer

in � γr,b

S D βr′,d
out

Figure 2: A producer and a consumer linked by a switch, and the Network Calculus representation.

Network Calculus represents a simple server as a left-total relation between (input and output)
flows such that the output flow is not larger than the input flow:

typedef server = {s :: (ndf × ndf ) set . (∀in. ∃out . (in, out) ∈ s) ∧ (∀(in, out) ∈ s. out ≤ in)}
and we define what it means for a flow to be constrained by an arrival curve α and for a server to
provide minimum service β:

f � α ≡ R ≤ R ⊕ α S D β ≡ ∀(in, out) ∈ S : in ⊕ β ≤ out .

Again, we prove results relating these constraints to bounds on delays and backlogs. For example,
the following theorem provides a bound on the delay of a simple server.

theorem d-h-bound :
assumes in � α and S D β
shows worst-delay-server in S ≤ h-dev α β

where the horizontal deviation is defined as

h-dev(α, β) = sup
t≥0

inf {d ≥ 0 : α(t) ≤ β(t + d)}.

Moreover, we define constructs such as composing servers in sequence or packetization. Finally,
these concepts are extended to multiple-input multiple-output servers that takes vectors of flows
as input and output.

3 Certifying a Simple Network Computation

In order to illustrate the use of our theories on a trivial example, let us consider the producer-
consumer setup shown in Fig. 2. The producer sends at most one frame every T = 20ms. Let us
say that the payload is of maximal size 980 bytes. Thus with an overhead of 20bytes per frames,
the maximum frame size is MFS = 8000bits. The physical links have a bandwidth of 1MBit/s,
and the switching delay is assumed to be δsw = 1µs.

The Network Calculus model appears in the right-hand side of Fig. 2. Flow in is constrained
by the arrival curve γr ,b where b equals MFS and r = MFS

T = 8000
20×103 = 4

5 .
The service curve β is given by the function βr ′,d where the bandwidth r ′ = 1bit/µs, and the

delay d equals the switching delay δsw .
We are interested in the maximal delay that frames may incur. Using the pegase Network

Calculus tool [2], we obtain a delay of 673µs, and this computation can be certified in Isabelle.
The trace shown in the appendix consists of output of pegase interleaved with Isabelle lemmas
whose assertions and proofs were automatically generated by instrumenting the tool.

4 Conclusion

We argue that the computations of tool sets used in the applications of formal methods such as
Network Calculus should be certified in order to increase the confidence in the correctness of the
designs. The work reported here attempts to evaluate the feasibility of such certification, based
on a formalization of Network Calculus in the interactive proof assistant Isabelle/HOL.

Developing a Network Calculus engine that is able to handle an AFDX configuration requires
about one or two years of implementation. The effort for developing a qualified version of such an

3



engine, using state-of-the-art techniques (documentations, testing, peer-review, etc.) is higher by
a factor of 5 or 10.

The proof-by-instance approach promises to reduce this effort while increasing the confidence
in the results produced by the software. We have so far invested less than 1 development year
for encoding the fundamental concepts of Network Calculus in Isabelle, and for instrumenting an
existing tool to produce a full formal proof of the correctness of bounds for one single switch. We
estimate that the overall effort for producing the proof for a realistic network should be between
2 and 3 years. In particular, it will be important to speed up the computations on real numbers
inside the proof assistant.

In other words, we believe that result certification could lower the overhead for developing a
trustworthy version of a Network Calculus tool to a factor of 2 or 3, while significantly improving
its quality.

References

[1] AEEC. Arinc 664p7-1 aircraft data network, part 7, avionics full-duplex switched ethernet
network. Technical report, Airlines Electronic Engineering Committee, september 2009.

[2] M. Boyer, N. Navet, X. Olive, and E. Thierry. The pegase project: Precise and scalable
temporal analysis for aerospace communication systems with network calculus. In T. Margaria
and B. Steffen, editors, 4th Intl. Symp. Leveraging Applications (ISoLA 2010), volume 6415
of LNCS, pages 122–136, Heraklion, Greece, 2010. Springer. http://www.realtimeatwork.

com/software/rtaw-pegase/.

[3] F. Frances, C. Fraboul, and J. Grieu. Using network calculus to optimize AFDX network.
In Proceeding of the 3thd European congress on Embedded Real Time Software (ERTS’06),
Toulouse, January 2006.

[4] J. Grieu. Analyse et évaluation de techniques de commutation Ethernet pour l’interconnexion
des systèmes avioniques. PhD thesis, Institut National Polytechnique de Toulouse (INPT),
Toulouse, Juin 2004.

[5] J.-Y. Le Boudec and P. Thiran. Network Calculus. Springer, 2001.

[6] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-Order
Logic. Number 2283 in Lecture Notes in Computer Science. Springer Verlag, 2002.

4



A Example Trace

1 #################################

2 # Used algorithm: SFA FIFO

3 #################################

4 # Time unit: microsecond

5 # Frame size unit: bit

6 #################################

7 delta0 := delay(0)

8 #################################

9 # Input flows

10 #################################

11 # unique_flow entering at EndSystem1>port-P1

12 lmax_unique_flow := 8000

13

14

15

16 #################################

17 # EndSystem : EndSystem1>port-P1

18 #################################

19

20

21 # Latency in transmission: ’internal delay’

22 id_unique_flow_EndSystem1portP1 := 0

23 # Packet arrival curve for unique_flow on EndSystem1->Router

24 unique_flow_EndSystem1portP1_P := star(uaf([(0,0)]](0,8000)2/5(+Infinity,+Infinity)[))

25

26

27 #################################

28 # Server : Router>port-P2

29 #################################

30 # Cumulated arrivals

31 cumA_RouterportP2 := zero

32 # unique_flow on EndSystem1->Router

33 cumA_RouterportP2 := cumA_RouterportP2 + unique_flow_EndSystem1portP1_P

34

35 assert(cumA_theRouterportP2 = uaf([(0,0)]](0,8000)2/5(+Infinity,+Infinity)[))

lemma AC_sub_add_closure: "sub_add_closure ((gamma (2/5) 8000) + (0::ndf)) = gamma (2/5) 8000"

using sub_add_closure_gamma by auto

34 # Common service

35 S_RouterportP2 := uaf([(0,0)0(1,0)]](1,0)1(+Infinity,+Infinity)[)

36 # Common delay

37 d_RouterportP2:=hDev(cumA_RouterportP2, S_RouterportP2)

38

39 assert(d_theRouterportP2 = 8001)

lemma delay_unique_server:

assumes "(R, R’) ∈ Rep_server S" and "S D beta 1 1" and "R ≺ gamma (2 / 5) 8000"

shows "worst_delay_server R S ≤ ereal(8001)" proof -

from assms d_h_bound have "worst_delay_server R S ≤ h_dev (gamma (2 / 5) 8000) (beta 1

1)" by auto

with hor_dev_beta_gamma show "worst_delay_server R S ≤ ereal (8001)" by simp

qed

40 #################################

5



41 # WCTT

42 #################################

43 # Bound for unique_flow received by EndSystem2

44 # internal delay in sending server EndSystem1>port-P1

45 b_unique_flow_EndSystem2 := 0

46 # delay induced by Router>port-P2

47 b_unique_flow_EndSystem2:= b_unique_flow_EndSystem2 + d_RouterportP2

48

49 assert(b_unique_flow_System_2 = 8001)

lemma "ereal (8001) + 0 = ereal (8001)" by auto

6


