
Design and Modeling of a Dataflow Avionics System 
 

Prof. Peter B. Panfilov and Sergey M. Salibekyan 
National Research University – The Higher School of Ecomonics (HSE), Moscow, Russia 

 
 

Abstract 
The major challenges faced by designers of modern avionics systems (ASs) based on 
advanced parallel and distributed computing technologies (including multicore and many-core 
processor architectures for embedded systems) are discussed. While providing many benefits, 
those technologies bring along design problems, such as difficulty in providing one-to-one 
correspondence between the AS simulation model and actual AS characteristics, great waste 
of time and resources on the AS modeling and simulation in the AS life cycle (while the 
models are in most of cases abandoned after the AS completion), and the necessity of 
conducting extensive testing of complex aerospace hardware and software system in testbeds 
with actual AS equipment (which itself is heterogeneous by its nature). In this paper we 
present new strategies aiming to cope with those challenges at different design levels as well 
as some recent research results that may lead to the solution of the problems, taking into 
account their impact on area and system performance. 

A recently proposed mitigation technique is reviewed that suggests integration of 
actual AS and its simulation model in a single system so that modeling and simulation time is 
used not only for system performance evaluation but for actual AS development and test as 
well. The related research work is focused on the development of a novel distributed 
computer architecture of the AS (hardware and software system) which is called the object-
attribute (OA) architecture. The OA-architecture follows the dataflow execution paradigm and 
tackles the problems with the novel organization principles of computing process and 
software mobility (portability among hardware platforms) that allow for complete one-to-one 
correspondence between actual AS and its simulation model and for the reusability of 
simulation model features in actual AS.  

First, the main principles of the OA-architecture of distributed dataflow computer 
system are introduced with two core elements in the foundation of the architecture, namely, 
the information pair (IP) and the functional unit (FU). The information pair (attributed data) 
is a set of a data (or references to data) and a tag/attribute (a unique identifier) of a description 
of the (computational) load. The functional unit is virtual (implemented in software) or real 
(hardware) data processing unit. The FU can be considered as a set of a context (a set of 
internal registers storing intermediate data for computation) and an algorithm of the FU 
performance (realized in hardware or in software). Active elements of the computing process 
in the OA-architecture are FUs. The performance control of FU is done with milli-commands 
(mOps) which are essentially identifiers (tags) of data transmitted in the computing system. 
Unlike the von-Neumann (controlflow) architecture of a computer system, the commands for 
the FU in the OA-architecture are not external ones, and a decision on the beginning of 
computation is made by the FU itself based on arriving data. An act of information receipt in 
the FU is described with the help of following four-tuple (an algorithm, a context, a mOp, a 
reference to data), where the mOp and the reference to data constitute the IP. The IPs are 
transmitted via data-attribute bus (DABus) that connects all FUs of the computer system. The 
FU is activated upon the receipt of all needed data for the operation which corresponds to the 
dataflow execution paradigm in computer systems. 

Then we discuss some important features of the OA-architecture as it applies to the 
design of distributed AS. It is shown that application ОА-computer system can be equally 
effectively realized in hardware or in software. Software FUs are realized with the help of 



context which is described as a data structure or a record (in high-level programming 
language), and an algorithm of FU functional logic realization – in the form of a procedure 
with standard interface. Millicommand system of the OA-architecture design allows for easy 
hardware/software realization of n-operand operations (in contrast to the only zero-operand, 
single-operand or two-operand commands used in “traditional” von-Neumann-like computer 
architectures). ОА-architecture (like an object-oriented programming or OOP) is capable of 
data and software code abstraction where the capsule (a set of IPs) can be used for description 
of an object, and the use of references to different information constructions as loads in IPs 
extends abstraction capabilities even more. Mechanisms of capsules and references can be 
used to form a graph of abstractions or abstractions tree which describes objects of arbitrary 
complexity. Abstraction property facilitates significantly the design and programming, 
debugging and test of an application computer system. Mechanism of abstractions tree allows 
for easy implementation of a distributed AS: for this the FUs and the capsules are distributed 
among different computing nodes which are interconnected to a communication links that 
provide information capsule transfer from DABus of the one node to the DABus of the other 
node. 

The distributed AS in OA-basis consists of two major components: 1) the ОА-
platform (software that realizes FUs of the system) and 2) image of the OA-system (the 
description of system operation algorithm as a set of IP exchanges among FUs). Only first 
part of the OA-system is hardware dependent (and forms a middleware of the OA-
architecture), while the OA-image of the system is hardware independent (the unified 
interface of the FU hides all architectural peculiarities of the computing node). Thus the OA-
system’s “portation” to the other hardware platform would only require the OA-platform re-
programming in programming language for the specific computer hardware while the OA-
image of the system (which only works with the FUs) would run seamlessly on the new 
hardware platform without the need of reprogramming. 

The OA-system portability in combination with the IP-mechanism allows for 
autonomous (offline) debugging of the AS. Thus due to the portability feature, the OA-image 
can run both on actual (heterogeneous) computer system of the actual AS and on a 
commodity PC or workstation. The IP-mechanism permits easy substitution of the source of 
input information, that represents the stream of IPs arriving at DABus of the OA-system, 
while the FU process incoming data based on tag (attribute) attached to the data. For example, 
in an actual AS, the sensors that provide data of a control object parameters attach 
corresponding attributes to that data and then send IPs to the DABus. After the completion of 
an OA-image debugging evaluation and test, an actual AS can be realized by simply 
downloading OA-image of a system to actual computing nodes that execute the OA-platform. 
Then FUs connected to the DABus receive data stream and start abstraction synthesis and 
control signal generation process or an output data stream generation process.  

Finally, an application of the OA-approach to the design and simulation of an avionics 
system of a modern aircraft is demonstrated. Major steps include the creation of an OA-image 
of the flight control system and an aircraft simulation model. Then the OA-image of the 
onboard AS is debugged and tested offline (on a commodity PC or workstation without the 
use of actual AS equipment) in the OA-programming/simulation environment. At this stage, 
the OA-image of the onboard AS exchange IPs (sensor data and aircraft data) with the flight 
simulator of an aircraft executing simulated flight of the modeled mission. Installation of the 
debugged and tested OA-image of the AS into onboard computer system consists of the OA-
platform “tailoring” into microprocessors of the onboard computer system, and the OA-image 
download (under control of OA-platform) to computing nodes of the distributed AS. 


