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Abstract

We have developed FTFCS for Bell-205 helicopter where

the Fault Detection and Accommodation (FDI) has been

designed using Artificial Neural Networks (ANN) and real

flight-test data [4]. The FDI system has been integrated

with an H∞ controller ([1, 2]). It was found advantageous

using µ-Synthesis rather than H∞ in terms of robustness

and performance as shown in [3].

While robust Control theory is centered around the idea

of building controllers that cope with model uncertainties,

changes that can be accommodated are limited and can not

include sensors, actuators, and system components failures.

In this paper, we will present a novel approach to extend

the robust control theory to designing of an Adaptive FT-

FCS system which is based on manipulation of Algebraic

Riccati Equations (ARE). The concept is applied to sensors

failures but it can be, as well, extended to cover actuators

and systems components failures following the same line

of thought. The system reported here, has two major ad-

vantages. The first of which is its bumpless transfer ca-

pabilities compared to many gain scheduling fault-tolerant

schemes. The second feature is low computational over-

head ([5, 6]). As will be seen, the controller has some fixed

components that do not change in case of failures while

other scattered components change only whenever a fault

occurs.

Control Scheme Formulation under Sensor

Fault

The system on which the controller is acting upon is given

by:

ẋ = Ax + Bu

y = Cx + Du (1)

In the above state space representation, all matrices are as-

sumed constant and, further, D = 0. When a sensor fault

occurs, the output changes y � yf where yf = y + ∆y

and, thus, the output matrix is perturbed by an amount

equals to ∆C. Thus, the new output matrix corresponding

to faulty case is given by:

Cf = (I + ∆)C

In this treatment, we consider the H∞ S/KS (sub) opti-

mization design as an illustrative case. The objective to be

achieved is:

∥∥∥∥∥∥ W1S

W2KS

∥∥∥∥∥∥
∞

< γ

Where S = (I + GK)−1. In order to show the idea more

clearly, we assume without loss of generality that W1 = I

and W2 = I and γ = 1. If the above plant is connected

with the controller , K, , the general interconnected plant

is given by:
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P =


A B1 B2

C1 D11 D12

C2 D21 D22


where: B1 = 0 B2 = −B C1 =

C
0

 C2 =

C

D11 =

I
0

 D12 =

0

I

 D21 = I D22 = 0

The H∞ controller is obtained by solving a set of

two Algebraic Riccati Equations and those ARE are de-

pendent on the plant matrices and among them the output

matrix C which now has in faulty case been replaced by

Cf . Definitely, the solution obtained off-line does not

hold for the new matrix and, thus, the controller will not

be able to control the plant properly. Indeed, in some

fault situations, a plant may face severe performance

degradation and stability problem if no action is taken

on time. Thus, it is desirable to get a new controller that

once the fault occurs, it takes over momentarily. As there

are various scenarios for the faulty situations, various

controller may need to be designed for those situations

with some switching mechanism. This requires great

amount of knowledge about those faults which needs to be

translated into mathematical formulation. Instead, in this

approach which is adaptive in nature, it requires solving

the new AREs that correspond to the faulty situation.

Given the general linear model, the H∞ controller is

obtained by solving the two ARE given by:

ATX∞+X∞A+CT
1 C1+X∞(γ−2B1B

T
1 −B2B

T
2 )X∞ =

0

AY∞+Y∞A
T +B1B

T
1 +Y∞(γ−2CT

1 C1−CT
2 C2)Y∞ = 0

In the S/KS case and when γ = 1, the two AREs are:

ATX∞ +X∞A+ CTC −X∞BB
TX∞ = 0 (2a)

AY∞ + Y∞A
T − Y∞C

TCY∞ = 0 (2b)

With the above AREs, a controller can be formulated.

Should a fault occurs, another controller is formulated in

view of the fault signature (single or multiple). As such,

this approach involves on-line design of controller and

switching between current controller and new controller.

The controller in the fault-free case

Knorm = F(A,B,C,D,X∞, Y∞)

where X∞ and Y∞ are the stabilizing solutions to the two

algebraic Riccati equations (AREs), eq- 2, respectively.

On the other hand, in the case of sensor failure, the

controller accordingly is given by the folowing theorem

Theorem .1 When fault occurs, the controller may be

expressed as:

Kf = F(A,B,Cf , D, X̃, Ỹ )

where Cf = (I + ∆)C, and X̃ and Ỹ are the solutions to

the following AREs,

AT X̃∞+X̃∞A+ (CT + ∆)T (C + ∆)

− X̃∞BB
T X̃∞ = 0

(3)

AỸ∞ + Ỹ∞A
T − Ỹ∞(CT + ∆)T

(C + ∆)Ỹ∞ = 0
(4)

These two new AREs can be considered as slightly per-

turbed (in the output matrix C) from the original equations.

Hence we may reasonably assume that the solutions are

closely related by “small” perturbations such as in the

forms

X̃∞ = X∞ + ∆X∞ (5)

Ỹ∞ = Y∞ + ∆Y∞ (6)

Solution Procedure and Implementation

Now let us see how the ARE solutions in such a form

can be used in the construction of the controller in the



sensor failure situation. Recall that the central controller

in the present design problem has the following state space

realization (notations in the nominal case),

Knormal =

[ Ka Kb

BTX∞ 0

]
(7)

where

Ka = A−BBTX∞ − (1 − γ−2)−1Z∞Y∞C
TC

Kb = Z∞Y∞C
T

Z∞ = (I − Y∞X∞)−1.

Define

α = (1 − γ−2)−1/2

and

C̆ = (1 − γ−2)−1/2C = αC

and substitute this into Equation 7 we get,

Knormal = α−1

[
Kaa Kbb

BTX∞ 0

]
(8)

where

Kaa = A−BBTX∞ − Z∞Y∞C̆
T C̆

Kbb = Z∞Y∞C̆
T

Such a controller can be decomposed into three cas-

caded parts, by state similarity transformations and system

state space model manipulations,

Knormal = (I +K1)−1K2(I +K3)−1 (9)

where,

K1 =

[
A B

BTX∞ 0

]
(10)

K2 =

[
A Z∞Y∞CT

BTX∞ 0

]
(11)

K3 =

[
A-BBTX∞ Z∞Y∞CT

C 0

]
(12)

Similarly, the central controller for the faulty case has the

same structure but with:

C � Cf = (I + ∆)C

X∞ � X̃∞ = X∞ + ∆X∞

Y∞ � Ỹ∞ = Y∞ + ∆Y∞

Z∞ � Z̃∞ = Z∞ + ∆Z∞

Accordingly, we have fixed components in the three

cascaded controllers and variable components in case fail-

ure happens. Those varying components are small and can

be used to update the overall controller smoothly.

We have applied this concept to Bell-205 helicopter

and the details on the distributed structure of the de-

composed controllers will be provided in the full length

paper.
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