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INTRODUCTION

Prediction of laminar-turbulent transition is imfort for aerothermal design of high-speed
vehicles. This motivates extensive experimentadptétical and numerical studies of transition at
high speeds. Localized surface heating or coolamgle considered as a technique for laminar flow
control. This method was used to suppress the firgstle disturbances (Tollmien-Schlichting
waves) [1-2] by local heating in the subsonic bargdayer. Theoretical and experimental studies
showed that stabilization or destabilization of theundary layer by a heating strip is feasible,
depending mainly upon the location of the heatinig.s

RESULTS
Numerical studies are carried out for supersomw fbver a cone with sharp leading edge at the
free-stream Mach number 6 and the Reynolds numtE’ §based on free-stream parameters and
cone length). The fluid is a perfect gas with tipecsfic heat ratioy =1.4 and Prandtl number

Pr =0.72. The viscosity-temperature dependence is apprdginby the Sutherland law with the
Sutherland constant 110.4 K. The free-stream siatiperature ig” = 43.90 K. The computational

domain is a rectangle with its bottom side corresiiog to the cone surface. The boundary
conditions on the cone surface are the no-slip itiondand the constant wall temperature
T =290 K. Asterisk denotes dimensional values.

The problem is solved numerically using in-houseliait second-order finite-volume method
described in [3]. Two-dimensional (axisymmetric)vMda-Stokes equations are approximated by
shock-capturing scheme that allows for modelinfaf non-uniformities in the temperature jump
vicinity. The advection terms are approximated g third-order WENO scheme to decrease the
numerical dissipation. Computational grid cons@t8001x301 nodes. The grid is clustered in the
direction normal to the cone surface so that thendary-layer region contains approximately 50%
of nodes.

At first, the steady-state solution, which satisfibe undisturbed conditions, is calculated to
provide the mean laminar flow. The threelocations of heating/cooling strip are considered.
Upstream boundary of the strip afe=0.1,0.2,0.3 respectively, and the strip length 4s;, = 0.1
(linear values are made nondimensional by conethgnghe wall temperature rise (drop) on the
heated (cooled) strip surface 87" = +200K . The heating/cooling strip is modeled by the wall
temperature distribution of a ‘*hat’ shape with jusrgis the upstream and downstream boundaries of
the strip. Figure 1 shows the pressure and temperéelds in the range af15 <z <0.35 for the
heating strip withz, =0.2.
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Figure 1. Pressure (left) and temperature (right) fields of the mean flow near the cone surface with heating strip,
z, =02,015<z<0.35.
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The growth rates and downstream amplifications afivectively unstable disturbances are
computed with the help of the in-house linear s$itgbtode. This code solves the linear stability
equations for compressible boundary-layer flow gsan 4th-order Runge-Kutta scheme and a
Gram-Schmidt orthonormalization procedure. The miglies of the discrete spectrum are
calculated with the help of a shooting/Newton-Raphprocedure. Hereafter we focused on 2D
disturbances, because the dominant instabilitgleted to the Mack second mode whose maximal
growth rates correspond to 2D waves. The transitioset points are estimated using the e
method. N-factors for the cases of wall heating emaling with 2, = 0.1 are sown in Fig. 2. The

heater (or cooler) may cause earlier or later tri@nsdepending on the choice of critical N-factor.
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Figure. 2. N-factorsfor the cases of wall heating and cooling, thered arrowsindicate the cooling region.

The &' method, which is based on the local-parallel itglsinalysis, may give incorrect results
especially in highly non-uniform regions near theater/cooler boundaries. Therefore direct
numerical simulations (DNS) are needed to clahfy lbcal heating and cooling effects.

Two-dimensional axisymmetrical DNS of cone boundager stability in the presence of a local
wall heating or cooling is carried out. To inveatig the boundary-layer instability, initial
disturbances are induced into the mean flow bycallperiodic suction-blowing in the leading-edge
vicinity [3]. The mass flow on the cone surfacgigen by
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wherees =1x10" — forcing amplitude was chosen small enough topaya numerical results with
LST; = =0.05, =, =0.064 — boundaries of the suction-blowing regionjs the circular frequency.

Pressure disturbance field is shown in Fig. 3doc¥ 400 without localized wall heating or cooling.
Wall pressure disturbance for this case is showkign4.

I1.nnE-ns

|-1 .00E-06

010 0z0 030 0.40 050 080 070 080 0.0

Figure. 3. Pressuredisturbancefield for w = 400 .



0.000005

pIW

— |||‘H‘lnlmhl.lhl.llnlhllllllhll“ll“”“lm
”Il”l”ll” i ly||lIIHIIIHII[”IIHHWH“

-0.000005

T T T T 1
0.0 0.2 0.4 X 06 0.8 1.0

Figure. 4. Wall pressuredisturbances, w = 400.

Results of DNS studies will be compared with LS3utes for the baseline flow and for the cases
with localized heating or cooling.
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