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To study the propagation of disturbances in three-dimensional boundary layers Wang  proposed [1-2] a 

method for the analysis of the characteristic surfaces. Further this method has been developed in [3-4], 

where it was used to study two-dimensional flows on a plate and  three-dimensional flows on a delta wing. 

In this paper this approach is used to investigate the spatial boundary-layer flow on a plane wing in the 

vicinity of the point of inflection of the leading edge. Introduction of cylindrical coordinate system allows 

parametric investigations of the influence of the sweep angles of the leading edge in a wide range, including 

forward-swept wings. The flow pattern in a three-dimensional laminar boundary layer interacting with the 

outer inviscid hypersonic flow past a body of  triangular shape is rather complicated even at zero angle of 

attack and depends considerably on the leading edge sweep and the wing surface temperature. Gas injection 

through a permeable surface is another important factor affecting the flow. A considerable increase in  the 

injection rate may lead to the boundary layer being pushed away from  the body surface with the formation 

of an inviscid flow region between them [7]. The pressure distribution is affected by the additional, 

injection-induced displacement thickness, which itself depends on the pressure. Suction through the surface 

leads to decrease in pressure and boundary layer thickness. 

We consider the flat semi-infinite wing with a point of inflection of leading edge in the hypersonic 

viscous flow at zero angle of attack with mass transfer. The gas is assumed to be perfect with a constant 

specific heat ratio /p VC C  . The flow is considered in the regime of strong viscous-inviscid interaction 

under the conditions: M  , 1M   , where M   is a free-stream Mach number and   is the 

dimensionless boundary layer thickness. The temperature of the surface of the wing is assumed to be 

constant and is given as the temperature factor. In accordance with the hypersonic theory of strong 

interaction the domain of a flow can be divided into two subregions: the boundary layer and  inviscid shock 

layer. Mass transfer through the surface of the wing is defined by normal velocity wV , which is order of V    

and does not lead to the formation of local inviscid flow near the surface. The distribution of the induced 

pressure in the shock layer is determined by the "tangent wedge" formula generalized to the nonstationary 

case [3]. Viscous subregion is studied using the unsteady three-dimensional equations of a laminar boundary 

layer. The form of the wing is defined by the following parameters: β - the angle between the external flow 

and the bisector of the angle at the inflection point,  - the angle between the bisector and the leading edge. 

For the numerical solution the dimensionless variables are introduced [5-7], which allows to take into 

account character of the flow functions in the vicinity of the point of inflection and leading edges. These 

transformations for the boundary layer equations on a semi-infinite wing allow reducing the problem to a 

self-similar one [7]. 

The characteristic surface ( , , )f f r t  in the boundary layer, associated with the function 

( , , )p p r t  of the induced pressure, is a surface on which the derivative /p f    is not defined. Condition 

for the existence of the characteristic surface in the boundary layer and the method of its determination is 

presented in [3] for a semi-infinite plate and in [4] for spatial flow around a delta wing. In this paper, by 

introducing the variables, where one of the independent variables is the unknown surface f , the ordinary 

differential equation is obtained from the system of boundary layer equations. The solution of this equation 

makes it possible to express the derivative of pressure normal to the characteristic surface. Then the position 

of the characteristic surface can be determined from the condition of uncertainty of the derivative /p f  .  

We introduce the velocity of disturbance propagation in the following form: 
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The condition for the characteristic surface is the following integral equation in cylindrical coordinates: 
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where H is the total specific enthalpy, u and w are velocity components along the coordinates r and  

respectively,  is the angle between the direction of disturbance propagation and the external flow,  - 

coordinate normal to the surface of the wing. This equation allows to determine the average velocity of 

disturbance propagation, if the velocity and enthalpy profiles are known. 

On the basis of self-similar solutions for the boundary layer near the point of inflection of leading edge 

of a flat wing [6] the propagation of perturbations is studied numerically at different sweep angles of leading 

edges, surface temperature and various normal velocities for the Prandtl number Pr = 0.72 and the specific 

heat ratio 1.4  . The results show that the increase of temperature factor from 0.1wH   to 0.9 increases 

the rate of propagation upstream in ten times [8]. The relative sizes of the regions of subsonic and 

supersonic flow in the boundary layer are determined, which allows to explain the observed changes in the 

upstream velocity of disturbance propagation. Intensive suction through the surface leads to decrease of 

upstream velocity of disturbance propagation on delta wing ( 45 , 0    ) (Fig. 1). For dimensionless 

surface temperature 0.5wH   suction with velocity 4wV V    “blocks” completely upstream propagation. 

For 0.1wH   it occurs at velocity 0.2wV V   . The influence of suction with wV V    at different parts 

of the wing with surface temperature 0.5wH   is shown on fig. 2. Four cases are presented: 1) without mass 

transfer ( 0wV  ); 2) suction at the edges of the wing 1   ; 3) suction at 1 0.9, 0.9 1      ; 4) 

suction in central part of the wing at 0,5....0,5   . The most influence on the flow is made by mass tranfer 

near the edges. 
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Fig. 1. Upstream velocity of disturbance propagation on delta wing ( 45 , 0    ) with mass transfer. 
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Fig. 2. Upstream velocity of disturbance propagation with suction at different parts of delta wing 
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