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Abstract. The Boundary  Element  Method  (BEM)  has  been  extensively  used  in  dynamic  
problems in structural engineering. The method is computationally intensive and traditionally  
depends on raw computer processing power to solve larger structures. However, advances on  
processor speed have stagnated due to  physical  limits.  Instead,  processing power is  now  
based on parallel  computing.  The BEM can benefit  from parallel  computing,  in  dynamic  
problems in the Laplace transform domain, as the computation for each (complex) frequency  
is independent to each other, and can be executed concurrently by a different core or pro-
cessor. The volume, in bytes, of the outcome of each frequency computation is small, so that it  
can be sent through a network with negligible overhead. Thus, the method does not need spe-
cial hardware and it can be executed equally well by an ordinary, off-the-shelf, multi-core  
and/or multiprocessor computer, as well as by a typical computer cluster of low bandwidth.  
The method is implemented using coarrays as described in the upcoming Fortran 2008 stand-
ard. The biggest advantage of Fortran 2008 is that remote memory is referred to directly, like  
an array with the instance identity as index, instead of having to call a subroutine for loading  
and storing data. A small but sufficient set of easily learned  statements and constructs are  
defined, which make the program much clearer.  The method is tested with typical dynamic  
problems and shows promising results.



INTRODUCTION

After the invention of the Boundary Element Method (BEM) more than three decades ago, 
BEM has been used extensively for structural analysis and especially for dynamic problems. 
BEM is computationally intensive and despite the tremendous advancement of computer sys-
tems since its invention, it can still saturate the resources of the typical contemporary com-
puter. BEM software, typically written in FORTRAN, traditionally depends on the raw pro-
cessing power of single processors, the faster the better.  However, advances on processor 
speed have stagnated due to physical limits. Recent advances on processors now focus on the 
proliferation of the number of cores per processor. A processing core works almost independ-
ently to other cores, and it is inexpensive enough to make parallel computing possible for the 
individual researcher, and indeed for the casual user. Parallel computing is a form of compu-
tation in which many computations are carried out simultaneously operating on the principle 
that large problems can be divided into smaller independent segments. Each segment is then 
computed by a different processing core concurrently. Parallel computing may also use differ-
ent  processors  on the  same physical  computer  (symmetric  multiprocessing),  or  even pro-
cessors on different physical computers (distributed computing). Parallel computing is much 
harder than traditional sequential computing, since the segments are rarely fully independent. 
Some form of communication and synchronization must happen between the cores, which 
may lead to race conditions [1]. Various primitives have been developed to aid parallel com-
puting, such as semaphores, condition variables, message passing and RPCs [2], but it is easy 
to use them inappropriately and produce race conditions, deadlocks and other forms of unpre-
dictable and irreproducible behavior [2]. To make parallel computing easier special libraries 
and frameworks such as lapack and OPENMP [3] have been developed to hide the underlying 
use of the parallel primitives. For example [4] used OPENMP to parallelize the integration of 
the static BEM kernels for each node. The framework, while better than using the raw syn-
chronization primitives, is still awkward to use, it works only with shared memory and it re-
quires to link the appropriate libraries for the specific processor, architecture and Operating 
System (platform), if they exist. A better solution is to let the compiler handle the primitives 
and  present the user with a few robust high level constructs, conveniently integrated to the 
syntax of the computer language. This concept, developed  in the last century [5], is intro-
duced to  the  upcoming  standard  of  the  FORTRAN language,  FORTRAN2008 [6].  FOR-
TRAN2008 introduces  a  small  number  parallel  statements/constructs which are integrated 
smoothly with the rest of the language, and accomplish an elegant, platform independent way 
to develop parallel software for both shared-memory processors and computer clusters (com-
puters  linked  by  not  necessarily  high-speed  network).The  present  paper  exploits  FOR-
TRAN2008 to develop a portable,  platform  independent  method for parallelizing dynamic 
BEM suited for inexpensive networks of existing computers, and inexpensive, run of the mill 
contemporary multi-core computers, or combination of them. To the knowledge of the author, 
no previous research on parallelizing BEM with FORTRAN2008 exists, although it is an act-
ive field of research in other disciplines [7].

1 PARALLEL COMPUTING

1.1 The emergence of parallel computing

During the last decade the rate of making faster microprocessors has almost halted due to 
fundamental physical limits such as the speed of light and uncontrolled induction in high fre-
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quencies. However the size of the electronic circuits is still becoming smaller and smaller, fol-
lowing the Moore's law [8], which states that the number of transistor in a processor doubles 
every 18 months. The consequence was to cram many processing units, or cores, in the same 
die or microprocessor, as substitute to raw processing power. This essentially moved the bur-
den of making faster programs from the processors to the programmers. In theory, the more 
processing cores the faster a computation will be done. Ideally, if a program needed time t to 
complete in a single core, and Npr cores were available, then the expected time would be t/Npr. 
In theory, it would be possible to split the work of the program in separate segments and to 
run each segment on a different processor at the same time, in parallel. In practice, parallel 
computing has proved to be very difficult [1]. Computer time t/Npr is very seldom true in prac-
tical  problems. Some programs simply can not be “parallelized”,  either because they do a 
single computation such as a simple word processor, or the computations they do are strictly 
sequential, like the time steps in a transient dynamic analysis software, which means that a 
time step must be completed in order to compute the next one.

If P is the proportion (with respect to time of execution) of the program which can be par-
allelized, the improved execution time of the program is given by Amdahl's law [9]:

tMP=t⋅[1−P P
N pr ]

where (1-P) is the proportion of the program that remains sequential.  Again, in practice P is 
not independent to Npr, as P is in the form of discrete packets, and there is delay due to syn-
chronization and communication which is proportional to the number of cores. Thus, experi-
mental results are necessary to evaluate the utilization of the parallel process. Amdahl's law 
limits the speed enhancement that a program can achieve through parallel-computing, even 
with infinite processors. Worse, as the number of processors grows to very high values  the 
speed enhancement dwindles to imperceptibility (Figure 1).
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Figure 1. Theoretical and actual relative speed due to P=0.05 and synchronization delays.
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1.2 Realization of parallel computing 

Many attempts with various degrees of success have been used to produce parallel archi-
tectures. Usually they depend to Symmetric  Multiprocessing, or SMP, which is a multipro-
cessor computer architecture where two or more identical processors are connected to a single 
shared main memory. Most common multiprocessor systems today use an SMP architecture. 
In case of multi-core processors, the SMP architecture applies to the cores, treating them as 
separate processors. The advantage of this approach is that the various program segments, 
called threads [2], which run in parallel, can communicate rapidly via the shared memory, and 
they can synchronize themselves. The disadvantage is that it  does not scale well as a pro-
cessor locks the memory when it updates it. In contrast Non Uniform Memory Architecture 
(NUMA) multiprocessors and computer networks, or clusters, do not share the same memory 
and they are linked via a comparatively much slower network. This means that the traffic 
between the processes must be minimized in order to achieve speed. There are 2 more or less 
practical ways to achieve parallelizing [1]. One is to instruct each processor core to execute 
the same operation but to different data (single instruction multiple data – SIMD). Example of 
this is the WHERE and FORALL constructs in FORTRAN95 [3]. The other is to instruct each 
processor to execute independent to another, the same or other code (multiple instruction mul-
tiple data – MIMD), on the different data. Examples of this  are frameworks like OPENMP 
and PVM [3], and parallel FORTRAN2008 [10].  In order to develop new parallel software, 
very careful analysis and design must precede the coding and the method [11], and very often 
compromises must be made.

1.3 Parallel Computing with FORTRAN

FORTRAN95  and  FORTRAN2003  has  support  for  Single  Instruction  Multiple  Data 
(SIMD) [1] through the WHERE and FORALL constructs [3] which are useful for array oper-
ations. These are very important as they provide for a platform independent way to implement 
parallelization with almost no effort, and they are useful in many numerical cases. But they 
are not suitable for computer clusters and they can not provide for different execution on each 
processor.

The upcoming  FOTRAN2008 [10]  standard  provides  for  Multiple  Instruction  Multiple 
Data (MIMD) [1], or rather for a special case of it, Single Program Multiple Data, as the in-
structions are executed from a single FORTRAN program [12]. Many instances (or images) 
of the same program are run by different processors either in the same computer or in differ-
ent computers connected to a, not necessarily high-speed, network. Each image is aware of its  
identity (an integer count) and can follow different execution path according to its identity.In 
most but the simplest cases, there has to be some means of communications or synchroniza-
tion among the images, which typically involves calling subroutines of special, often platform 
dependent, libraries. FORTRAN2008 uses the concept of coarrays [6] which are a solution 
along these lines, with the difference being much tighter integration with the Fortran language 
itself, and therefore platform independence. The biggest advantage is that remote memory is 
referred to directly like an array with the instance identity as index, instead of having to call a 
subroutine for loading and storing data. These subroutines are still called “under the hood”, 
but coarrays are designed with legibility in mind. A small but sufficient set of easily learned 
statements and constructs are defined, which make the program much clearer. A program that 
runs over several processors is inherently more complicated than a single-threaded program 
so that clear and well understood statements are extremely important. Apart from the coarray 
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references, the statement SYNC ALL prevents any image for executing any further statements 
until all instances reach this  statement, thus making sure that all the previous computations 
have been done by all images. The function NUM_IMAGES() returns the number of parallel 
instances which run simultaneously, and the function THIS_IMAGE() returns the identity of 
the current instance, an integer between 1 and NUM_IMAGES().  The construct CRITICAL 
… END CRITICAL achieves mutual exclusion of images. It is guaranteed that only one im-
age at a time executes the statements between CRITICAL and END CRITICAL. All images 
are created at the start of the program and they begin execution at the same time. An image 
can not be created dynamically at the middle of the program, though it can  exit without af-
fecting the remaining images.

Coarrays  are  part  of the upcoming FORTRAN2008 standard.  The original  proposal  of 
Numrich and Reid [6] was recently scaled back in the draft. A forward implementation of the 
core features, which were left in the draft, has been introduced in the G95 Fortran compiler 
[13], available for the x86/Linux, IA64/Linux and x86-64/Linux platforms.

2 STRATEGY OF PARALLEL COMPUTING IN BEM

As stated above, the transient  BEM  dynamic analysis is inherently a sequential process. 
The displacements and tractions of the boundary nodes must be known in a previous time step 
in order to compute the displacements and tractions at the next time step. However, if the gov-
erning equations are transformed with the Laplace transform, they do not depend on time, but 
on the complex frequency s of the Laplace transform [14]:

c ijuij x =∫ t n i y  U ij  y , x , sdS−∫ ui y  T ij  y , x , sdS

It turns out that for a given complex frequency s, the equations do not depend on any other 
complex frequency. Thus the computation of each frequency step is completely independent 
to one another, and can be done in parallel, by different processing cores, or by different pro-
cessors in different computers.

In theory, any of the loops of the typical dynamic Boundary Element Method program may 
be made parallel. The typical process of the computations is given in Figure  2.  If the inner 
loops were made parallel, then intermediate results should be sent via the network to an accu-
mulator process, which would probably be more time consuming than the computations. The 
second outer loop, for each node, could be made parallel, in shared-memory computers but it 
would probably be time consuming in a network. Furthermore, the solution of the system of 
equations  should also be run in shared-memory computer.  This leaves the outer loop which 
can be parallelized without affecting the bulk of the code of the BEM program. Furthermore, 
the results of each frequency step (transformed displacements and tractions) are far smaller in 
gigabytes  than the whole matrices.  In fact  they are so small  that  they can be  transferred 
through the network with  little  delay,  and thus it is suitable for both shared memory multi-
core computers and computer clusters.

A typical transient dynamic BEM program computes 50 frequency steps, which means that 
up to 50 processors may be used. This exceeds by far the number of cores (typically 4-16) in 
contemporary processors of inexpensive modern computers. Also, it is enough to keep busy 
the Local Area Network (LAN) of a standard department in a university or a corporation, 
when it is used as cluster. The method certainly does not scale well in supercomputers with 
thousands of processors. However the high cost of supercomputers as well as Amdahl's law 

5



(Figure 1) justify the development of relatively easy parallel method suitable for inexpensive 
hardware. It must be noted that if the parallelizing is done on multi-core shared memory com-
puter, substantial memory, enough to hold the matrices [A] and [B] of the system of equations 
for each parallel process, is needed. It is fortunate that huge memory (4GB) is available in 
modern computers, and that the number of cores is still too small to exhaust it.

START
Read data.
For each complex frequency step S:
    Zero matrices [A] and [B].
    For each node J:                             (* Create equation for the node *)
        For each element E:                      (* Integrate over all the boundary *)
            For each integration parameter xi1:  (* Numerically integrate over element *) 
                For each integration parameter xi2:
                    Evaluate kernels.
                    Multiply by weights and add to sums.
                End For.
            End For.
        End For.
        Add the equation coefficients to matrices [A] and [B].
    End For.
    Solve the system of equations [A] [x] = [B].
End For.
Invert Laplace transform for the results.
Print results.
END.

Figure 2. Typical algorithm of a dynamic BEM program.

3 IMPLEMENTATION OF PARALLEL COMPUTING IN BEM

In order to maximize the parallelization gain the following rules must hold:
1 The volume of data transferred between images, or coarrays references, creates (relatively 

slow) network traffic and it must be as little as possible.
2 The process synchronization delay the images and the synchronization signals between 

images creates network traffic. The number of synchronization statements must be as little 
as possible.

3 Each process must do as much computational work as possible, unless this breaks the first 
or second rule.  In this  case a  trade off  between the competing rules must  be reached 
through experimentation. 

Applying the rules to the case of  BEM parallelization, the following steps of the algorithm 
were concluded:

1.   The first image reads the data.
2.   Each image except 1 copies the data from image 1.
3.   Each image pre-processes the data.
4.   Process 1 keeps a counter of all the frequencies.
5.   Each image  except 1 increments the counter, computes the relevant frequency,  

and stores the result to co-arrays of image 1.
6.   Each image except 1 repeats step 5 until all frequencies have been computed and  

then dies.
7.   Image 1 does numerical inversion of the Laplace transform.
8.   Image 1 prints the results.
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There are many points to note in this algorithm:
1 In steps 2, 3 and 5 computations are done in parallel.
2 In step 2 a lot of distinct variables are transferred which cause noticeable delay in com-

puter clusters but not in shared-memory SMP.
3 In step 5 all the results are transferred through an array which cause little delay.
4 In step 2 each image performs exactly the same computations. The alternative would let 

image 1 do the computations (which would gain nothing since the other images would be 
idle waiting for image 1) and then copy them to the other images, which would be more 
time consuming.

5 Step 5 implies that a soon as an image finishes a frequency step, it gets another one to 
compute. This means that fast processors in a computer cluster, compute more frequency 
steps than slow processors. In effect, the  requirement  to distribute the computing load 
evenly to the computers according to their relative speed, is automatically satisfied.

4 APLLICATION

The method was tested with a 3D transient dynamic problem; the response of the infinite 
elastic medium containing a spherical cavity under suddenly applied internal pressure was 
considered [15].  The problem was solved with a multi-dimensional  BEM FORTRAN pro-
gram [16], which was modified to enable FORTRAN2008 parallel computing. The discretiza-
tion  of  the  problem led  to 1131  degrees  of  freedom and 1131x1131  full  non-symmetric 
matrices. The Laplace transform was used with 20 complex frequency steps.  The following 
two test runs were performed.

Table 1. Speed enhancement in a 4 core computer.

Figure 3. Speed enhancement in a 4 core computer.
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4.1 Symmetric multi-core processing

The program was run in an inexpensive computer with the Intel Core i7 processor which con-
tains 4 cores running at 1.60GHz. The program was run with 1, 2, 3 and 4 cores  under the 
SuSE Linux 11.4 SMP64 Operating System. The results are shown in Table 1.The low utiliza-
tion is probably due to conflicting access to the common memory. Each core processes data 
that is much greater than the memory cache provided to each core. Thus each core locks the 
main memory for writing, delaying the remaining cores. The results are also shown in Figure 
3.

4.2 Distributed computing in cluster

The program was run in a  cluster of 4 ordinary computers linked by 100Mbits/sec ethernet 
Local Area Network. The program was run independently in each computer. The specifica-
tions of each computer and its relative speed is shown in Table 2. Note that the computers dif-
fer.

1 2,4 1 3 698 1,0

2 2,4 1 4 673 1,0

3 3 2 1 520 1,3

4 1,6 4 4 369 1,9

Computer Processor
Frequency

(Mhz) Cores
Memory

(GB)
Operating
System

Time
(sec)

Relative
Speed

AMD Athlon64
3400+

SuSE LINUX
11.3 SMP64

AMD Athlon64
3800+

SuSE LINUX
11.3 SMP64

Intel(R) Pentium(R)
Dual CPU T3200

SuSE LINUX
11.4 SMP32

Intel core i7
SuSE LINUX
11.4 SMP64

Table 2. Computer cluster specifications.

The program was also run in the cluster using 1, 2, 3 and 4 computers.  Computers 3 and 4 
used only 1 of their cores for the computation. In order to calculate the utilization of different 
computers running in a cluster, their combined theoretical relative speed is the sum of their re-
lative speeds. The results are shown in Table 3.

Table 3. Speed enhancement in a computer cluster.
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1 698,0 1,0 1,0 100%
1+2 351,3 2,0 2,0 98%

1+2+4 205,7 3,9 3,4 86%
1+2+3+4 150,0 5,3 4,7 88%

Computers Time (sec)
Relative speed

Utilization
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The utilization is perfect for 2 computers. In the case of computers 1+2+4, one of them com-
putes 1 frequency step more than the others (20 is not divided by 3), and this can be more than 
5% of the total time,  which explains the sudden drop in utilization. In the case of 1+2+3+4 
computers this is also partially true, as the computers have different relative speeds, which ex-
plains the slight increase in the utilization. The results are also shown in Figure 4.

Figure 4. Speed enhancement in a computer cluster.

5 CONCLUSIONS

The elegant parallel framework of FORTRAN2008 was used to speed up the BEM. The 
parallelization of the  computation of  frequency steps in the Laplace transform  domain  was 
implemented. The method scales well and fully exploits a computer cluster. The method ex-
ploits the parallel  capabilities of modern multi-core computers, but the utilization is lower 
than that of a computer cluster, probably due to mutual exclusion when two or more cores try 
to write the shared memory. 

The method  can also be applied to the dynamic  Finite Element Method,  in the Laplace 
transform domain. 
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