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Abstract. In this paper, a method for the integration of computer aided design and analysis 
(I-CAD-A) is discussed. The method is based on using a finite element formulation that em-
ploys a kinematic description that is consistent with computational geometry methods. This 
allows for the development of an efficient interface between CAD systems and finite element 
(FE) and multibody system (MBS) software using simple linear coordinate transformation. 
The finite element absolute nodal coordinate formulation (ANCF) is used to successfully 
achieve this integration. ANCF structural finite elements, such as beams, plates, and shells, 
define shapes that are invariant under arbitrary rigid body displacements. It is shown in this 
paper that B-spline geometry can always be converted to ANCF geometry. The converse, 
however, is not true. ANCF provides the flexibility of selecting the basis functions, allowing 
for the development of finite elements with less number of degrees of freedom as compared to 
the B-spline counterparts. It is also demonstrated that the B-spline representation fails to cap-
ture certain type of discontinuities. To this end, 0C  discontinuities are classified as structural 
and non-structural discontinuities. Structural discontinuities do not allow for rigid body dis-
placement between the finite elements, while non-structural discontinuities allow for such a 
rigid body displacement. Using ANCF finite elements, new FE/MBS meshes can be developed. 
These new FE meshes allow for describing mechanical joints that permit relative rigid body 
rotations using linear connectivity conditions. Furthermore, the new FE meshes have con-
stant mass matrix and zero Coriolis and centrifugal forces despite the large relative rotation 
between the finite elements of the structure. Numerical results are presented in order to dem-
onstrate the integration of CAD and FE/MBS analysis. 
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1 INTRODUCTION 

The geometry description used in many of the existing finite element (FE) formulations 
cannot be exactly converted to the geometry developed by computational geometry methods 
such as B-spline and NURBS (Non-Uniform Rational B-Splines) representations. This fact 
has motivated researchers in the mechanics community to adopt the methods of computational 
geometry as analysis tools instead of using conventional FE formulations. While the methods 
of computational geometry, such as B-spline, have several desirable analysis features; these 
methods have serious limitations when used as analysis tools. The B-spline recurrence for-
mula and the rigid definition of the knot vector make B-spline less attractive as compared to 
the absolute nodal coordinate formulation (ANCF) geometry description. While B-spline ge-
ometry can always be converted exactly to ANCF geometry [1-3], the converse is not always 
true. ANCF geometry does not restrict the order of the parameters or the number of basis 
functions used in the interpolating polynomials [4-14]. This advantage, as will be demon-
strated in this paper, allows for developing finite elements with less number of degrees of 
freedom as compared to those developed using the B-spline geometry. Another fundamental 
difference between B-spline and ANCF geometric descriptions lies in modeling discontinui-
ties. There are two types of discontinuities when chain systems are considered [15]. The first 
is structural discontinuity which does not allow rigid body displacement between two ele-
ments connected at the joint definition point. This joint allows only for deformation degrees 
of freedom. The second type of discontinuity is called non-structural discontinuity which al-
lows for rigid body displacement at the joint definition point. Figure 1 shows a chain which 
has a structural discontinuity at point C  and non-structural discontinuity at point O . At the 
junction atC , only deformation degrees of freedom are allowed, while at pointO , relative ri-
gid body rotation is permitted. Nonetheless, the degree of continuity at both points is 0C . B-
spline can be used as an analysis tool to describe the non-structural 0C  discontinuity at point 
O , but because of its rigid recurrence structure and the definition of its knot vector and knot 
multiplicity, B-spline cannot be used in the motion analysis of structural 0C  continuity at 
point C  since B-spline 0C  description leads to a rigid body mode; that is, the elimination of 
one control point by reducing the knot multiplicity by one is not sufficient for eliminating the 
modes of rigid body rotations between two B-spline segments. ANCF geometry, on the other 
hand, can be used in the analysis of both structural and non-structural discontinuities [15]. 

 

 

Figure 1 System with structural and non-structural discontinuities 
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Example of Non-structural discontinuities that characterize the motion of MBS applica-
tions is chain of links connected by pin joints as the one shown in Fig. 2. Each link is permit-
ted to undergo an independent rigid body rotation. If the links are considered to be flexible 
bodies, the relative motion between the links is a combination of rigid body and deformation 
displacements. Nonetheless, the dynamics of a simple planar rigid-link chain is governed by 
highly nonlinear equations as the result of the geometric nonlinearities due to the finite rela-
tive rotations. Existing FE algorithms and computer programs, however, do not allow for gen-
erating a FE mesh for such chains using linear connectivity conditions. One of the main goals 
of this investigation is to develop a new three-dimensional flexible-link chain model using 
fully parameterized ANCF finite elements. This chain model is based on a new FE mesh de-
fined using linear connectivity conditions. The FE mesh allows for relative rigid body rota-
tions between its elements and has a constant inertia matrix and zero Coriolis and centrifugal 
forces. In order to develop the new flexible-link chain model presented in this paper, a new 
pin joint model is introduced. At the joint definition point, different degrees of continuity are 
used with different parameters; leading to some strain components to be continuous while the 
others are discontinuous. The modes of deformation at the joint definition points are discussed 
in order to shed light on the nature of the new joint and kinematic constraints developed in 
this paper.  

 

 
Figure 2 Eight-link chain system 

 
The second main contribution of this paper is to demonstrate the fundamental differences 

between B-spline and ANCF geometries. It is shown that while B-spline geometry can always 
be converted to ANCF geometry, the converse is not true because of the rigid B-spline recur-
rence structure. It is also shown that B-spline representation can be used only in the analysis 
of one type of 0C  continuity; while such a B-spline representation cannot be used in the anal-
ysis of another type of 0C  continuity referred to as structural discontinuity. It is shown that 
ANCF finite elements which have degrees of freedom less than their B-spline counterparts 
can be developed since ANCF does not have specific requirements on the order of the param-
eterization variables or the number of basis functions used in the interpolating polynomials. 

 
2 CONSTRAINT NONLINEARITIES 

Existing FE algorithms and computer codes allow for developing meshes in which the fi-
nite elements are rigidly connected. In the case of arbitrarily large relative rigid body rotations 
between the finite elements of one mesh, an incremental solution procedure based on a co-
rotational formulation is used. This FE solution procedure leads to a highly nonlinear inertia 
matrix and due to the nature of the incremental approach used and the set of coordinates em-
ployed, existing FE algorithms and computer programs are not suited for the analysis of com-
plex multibody systems that are characterized by geometric nonlinearities that result from the 
independent rigid body rotations of the finite elements. In most formulations, including rigid 
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body dynamics formulations, such non-structural geometric discontinuities are governed by 
nonlinear algebraic constraint equations which lead to highly nonlinear inertia matrix. For 
such articulated systems, components which are not rigidly connected are treated as separate 
bodies when MBS algorithms are used. Consider, for example, the simple planar double-
pendulum example shown in Fig. 3. The pendulum consists of two rigid bodies, i  and j , 
connected by a pin (revolute) joint at point P  whose local position vector is defined in the 
two body coordinate systems by the vectors ui

P  and u j
P , respectively. The global position 

vector of this point in terms of the coordinates of bodies i  and j  are denoted as r i
P  and r j

P , 

respectively.  
 
 

 
Figure 3 Double pendulum example 

 
In this simple planar rigid body example, the kinematic constraint conditions of the pin 

joint can be written asr ri j
P P . This equation can be written more explicitly in terms of the co-

ordinates of bodies i  and j , as  

                                       R A u R A ui i i j j j
P P                                                            (1) 

where Ri  and R j  define the global position vector of the origins of the coordinates systems 
of the two bodies, and Ai  and A j  are the transformation matrices that define the orientations 
of the two bodies. In the planar analysis, the vectors and matrices that appear in Eq. 1 can be 
written as  
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 sin( )     cos( ) 
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The geometric nonlinearities of the connectivity condition of Eq.1 characterize all MBS 
formulations including the augmented and embedding techniques. Using the embedding tech-
nique, one can show that the two equations of motion of the planar rigid body double pendu-
lum shown in Fig. 3 can be written as 

                          

   
 

   
 

2 2

2
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   

  

  
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 



 



  (3) 

In this equation, km  and kl  are, respectively, the mass and length of link , ,k k i j , k  is the 

angular acceleration of link k , ij i j     and g is the gravity constant. It is clear from Eq. 3 
that the equations of motion for a simple planar rigid body double pendulum are highly 
nonlinear as the result of the nonlinear connectivity conditions. The resulting inertia coeffi-
cients are also highly nonlinear because of the geometric nonlinearities that result from the 
non-structural discontinuities. Such non-structural geometric discontinuities also lead to more 
geometric nonlinearities when the deformation of the links are considered using the FE/FFR 
formulation due to the dynamic coupling between the reference motion and the elastic defor-
mations. In the FFR formulation, uk

P  is expressed in terms of the elastic coordinates and the 

number of equations of motion increases by the number of these elastic coordinates.  
   
 

3 B-SPLINE CURVES AND SURFACES 

In B-spline representation, any curve can be represented as a combination of several poly-
nomial segments. Generally, B-spline curves can be defined using following equation [1, 18]: 

           0, 0 1, 1 , ,
0

( ) ( ) ( ) ...... ( ) ( )r P P P P
n

p p n p n i p i
i

u N u N u N u N u


                             (4) 

where , ( )i pN u  are the B-spline basis functions of degree p , u  is the parameter, and Pi  are the 

control points that define the control polygon. The basis functions can be defined as 
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                              (5) 

where 1i iu u  , and U= { 0u 1u …. 1n pu   } is called the knot vector. The elements of the knot 

vector need not be distinct. Each nonzero span corresponds to a B-spline segment defined by 
two knot points called in this case breakpoints that represent distinct knot values. The number 
of equal knots at a point is referred to as the knot multiplicity.  
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B-spline surfaces can also be defined using the product of B-spline base functions, two 
parameters, and two knot vectors. B-spline surfaces can be defined in the following paramet-
ric form [1, 18]: 

                                , , ,
0 0

( , ) ( ) ( )r P
n m

i p j q i j
i j

u v N u N v
 

     (6) 

where u  and v  are the parameters; , ( )i pN u  and , ( )j qN v  are B-spline basis functions of de-

gree p  and q , respectively; and ,Pi j  are a set of bidirectional net of control points. 

, ( )j qN v can be defined similar to the definition introduced for , ( )i pN u  with another knot vec-

tor 0 1 1{ }V m qv v v    . Note that the orders of the polynomials in the u  and v  direc-

tions can be different; for example, a cubic interpolation can be used along u  while a linear 
interpolation can be used along v . As in the case of B-spline curves, the knots of B-spline 
surfaces do not have to be distinct; distinct knots are called breakpoints and define surface 
segments with non-zero dimensions. The number of the non-distinct knots in U  and V  at a 
point is referred to as the knot multiplicity associated, respectively, with the parameters u  and 
v  at this point. At a given breakpoint, the multiplicity associated with u  can be different from 
the multiplicity associated with v ; allowing for different degrees of continuity for the deriva-
tives with respect to u  and v . For cubic ,i pN  ( 3p  ), 0 1,C C , or 2C  conditions correspond, 

respectively, to knot multiplicity of three, two, and one; while in the case of linear interpola-
tion of ,j qN , the highest continuity degree that can be demanded is continuity of the gradients.  

In B-spline surface representation, there is a relationship between the polynomial degree, 
the number of knots, and the number of control points. This relationship must be fully under-
stood if B-spline geometry will be used as an analysis tool. If 1r   is the number of knots in 
U  and 1s   is the number of knots in V , then in B-spline geometry, one must have 

1, 1r n p s m q           (7) 

These formulas imply that, for a given polynomial order, if the number of knots decreases, 
the number of control points (degrees of freedom used in the analysis) must also decrease. A 
decrease in the knot multiplicity by one is equivalent to eliminating one control point. This 
can also be equivalent to increasing the degree of continuity since eliminating a control point 
can be the result of imposing algebraic equations that relates the derivatives at a certain 
breakpoint. From the bidirectional structure used in Eq. 6, a surface segment which has cubic 
interpolation along u  ( 3, 3, 1 8p n r    ) and a linear interpolation along 
v ( 1, 1, 1 4q m s    ), should have    1 1 8n m     control points; this is regardless of 

whether the surface is two- or three-dimensional. Manipulation of the B-spline surface of Eq.6 
shows that these eight control points are the result of using the alternate basis 
set 2 2 3 31, , , , , , ,u v uv u u v u u v . That is, B-spline representation and the formulas of Eq. 7 do not 

allow for the use of the basis set  2 31, , , , ,u v uv u u  which can be effectively used to develop a 
shear deformable beam model. If a cubic interpolation is used for both u  and v  (thin plate), 
the B-spline representation will require 16 control points because the expansion must include 
all terms ; , 0,1,2,3k lu v k l   regardless of whether the shape of deformation of the plate is 
simple or complex; one must strictly follow the B-spline rigid structure. This can be of disad-
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vantage in the analysis since such a geometric representation can unnecessarily increase the 
dimension of the analysis model and leads to the loss of the flexibility offered by the FE me-
thod or modal analysis techniques. As the degree of the polynomial interpolation increases, 
the problem gets even worse.  

 
4 ANCF FINITE ELEMENT GEOMETRY 

In the absolute nodal coordinate formulation, the position vector of any arbitrary point of 
the finite element with respect to the fixed global reference frame can be generally written as 
follows 

                                           , ,r S ex y x y t                                                            (8) 

where x  and y  are the element spatial coordinates, t  is time, S  is the element shape function 
matrix, and e  is the vector of the element nodal coordinates. An example of ANCF elements 
can be planar two-node shear deformable beam element. The shape function matrix for this 
element is defined as 

 1 2 3 4 5 6S I I I I I Is s s s s s      (9) 

In this equation, I is the identity matrix, ands , 1,2, ,6i i    are shape functions defined as [16]: 

                 
   

 

2 3 2 3
1 2 3

2 3 2 3
4 5 6

1 3 2 ,     2 , 1 ,  

3 2 , ,     

s s l s l

s s l s l

      

    

        


      
                              (10) 

where l  is the element length,
x

l
   and .

y

l
   

Each of the element nodes has six degrees of freedom; two translational coordinates de-

fined by the two-dimensional vector  1

T

2r     r r , and four gradient coordinates defined by 

the two vectors  1

 T

x2r   x xr r  and
T

1 2  ry y yr r    . The vector of nodal coordinates e  can 

then be written as 

TT T T T T T          e r r r r r rA A A B B B
x y x y                                                   (11) 

In this equation, A  and B  refer to the end points of the finite element. Note that the element 
defined by the preceding equations is based on a cubic interpolation for x  and a linear inter-
polation for y . This element has been widely used in the analysis of large deformation prob-
lems. The standard ANCF assembly process ensures continuity of both position and gradient 
coordinates when two finite elements are rigidly connected.  

Structural discontinuities can be systematically modeled using ANCF finite elements by 
using the proper gradient transformations. The gradient transformations, which are different 
from vector transformations, enter into the formulation of the element dynamic equations. 
Furthermore, constraints on higher derivatives can also be imposed at a preprocessing stage 
using linear algebraic equations; allowing for having a higher degree of continuity.  
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5 ANCF VS B-SPLINE CURVES AS ANALYSIS TOOLS 

While B-spline geometry can always be converted to ANCF geometry, the converse is not 
true. ANCF geometry does not impose restriction on the basis functions that must be included 
in the interpolating polynomials. This allows for developing finite elements that have less co-
ordinates as compared to those developed using the B-spline representation. Furthermore, 
ANCF geometry can be used to model both structural and non-structural discontinuities [13, 
15, 17, and 18], while the rigid recurrence formula for B-spline representation cannot be used 
to model structural discontinuities in a straight forward manner. The basic differences be-
tween ANCF and B-spline geometries are demonstrated in this section using a planar beam 
example. This element is an example of ANCF elements that cannot be converted to B-spline 
representation. This element is based on a polynomial expansion that does not have the two 
basis functions 2x y  and 3x y . These terms can be included in ANCF geometry by adding nod-
al coordinates allowing for converting B-spline representation to ANCF representation. Simi-
lar comments apply to ANCF thin plate elements that do not have to include all the basis 
functions ; , 0,1, 2,3k lx y k l  . This flexibility offered by ANCF geometry allows for develop-
ing finite elements that have smaller number of coordinates compared to those elements de-
veloped by B-spline geometry. 

One can also show that ANCF finite elements can describe structural and non-structural 
discontinuities. Non-structural discontinuities that allow for large rigid body rotations can be 
described using a 0C  model obtained by imposing constraints on the position coordinates on-
ly. For example if two elements i  and j  are connected by pin joint at a node, one can apply 

the algebraic equations r ri j  at this node. These algebraic equations can be imposed at a 
preprocessing stage to eliminate the dependent variables and define FE mesh that has a con-
stant mass matrix and zero Coriolis and centrifugal forces despite the finite rotations allowed 
between the finite elements of the mesh. Non-structural discontinuities can also be described 
using B-spline geometry by reducing the knot multiplicity at the joint node by one. Note that 
in the case of non-structural discontinuities no constraints are imposed on the gradient vectors, 
and therefore, the state of strain is not unique at the joint node. Each of the Lagrangian 

strains    1 2, 1 2r r r rT T
xx x x yy y y     , and 2r rT

xy x y   have two values at the joint 

node; one defined on element i  and the other is defined on element j . 

Here , ,r r r r r rx y zx y z         . 

The concept of degrees of freedom widely used in mechanics is not considered in devel-
oping the recurrence relationships on which B-spline and NURBS geometry are based. This 
represents another serious limitation when these computational geometry methods are used as 
analysis tools; as evident by the fact that B-spline geometry cannot describe structural discon-
tinuities. This type of discontinuities, while it remains of the 0C  continuity type, requires im-
posing additional constraints on the gradients; these constraints cannot be captured by the B-
spline recurrence formula since they require the elimination of additional vectors. In the case 
of B-spline, 0C  continuity is achieved by reducing the knot multiplicity by one, and this eli-
minates one control point leading to the definition of a pin joint (non-structural discontinuity). 
ANCF geometry, on the other hand, allows for imposing constraints on the gradients using the 

tensor transformation    1 2r x r x A     , where  1 1 1x
T

x y  and  2 2 2x
T

x y  are 

two sets of coordinate lines, and A  is the matrix of coordinate line transformation. Using this 
tensor gradient transformation, the structural discontinuities can be systematically modeled 
using ANCF finite elements [13, 17]. 
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6 NEW ANCF FINITE ELEMENT MESH 

In this section, it is shown how fully parameterized ANCF three-dimensional finite ele-
ments can be used to develop spatial joint models that allow large relative rigid body rotation 
between the finite elements. ANCF finite elements connected by this joint can be assembled 
using linear connectivity conditions leading to FE mesh that has a constant mass matrix and 
zero Coriolis and centrifugal forces. The fully parameterized three-dimensional ANCF beam 
element is used in this investigation to demonstrate the development of such joint models. 
The displacement field of the element can be written as      , , , ,r S ex y z x y z t  where ,x y , 

and z  are the element spatial coordinates [12, 19]. The element has two nodes; each node has 

12 nodal coordinates defined by the vector e r r r r
Tk kT kT kT kT

x y z    , where k  is the node 

number. This ANCF finite element captures the cross section deformation and its coupling 
with extension and bending. Therefore, this element can be used to develop general models 
for belt drives and rubber tracked vehicles. Furthermore, this three-dimensional beam element 
is another example that can be used to demonstrate the generality of the ANCF geometry. 
This element is based on cubic interpolation in x  and linear interpolation in y  and z . None-

theless, one can show that the four basis functions 2 3 2 3, , ,x y x y x z x z  are not used in develop-
ing the displacement field of this widely used ANCF beam element. Therefore, the geometry 
of this element cannot be converted to B-spline volume geometry. These missing basis func-
tions can be systematically included in the development of another ANCF finite element that 
can be converted to B-spline volume geometry. However, such an element will lead to 50% 
increase in the number of the element nodal coordinates.  

A planar pin joint between rigid or flexible bodies is an example of 0C  continuity, as pre-
viously discussed. A pin joint between two rigid bodies in the spatial analysis also allows for 
only one degree of freedom, which is a relative rotation about the joint axis. Since the pin 
joint eliminates five degrees of freedom in the rigid body analysis, its formulation requires 
five algebraic constraint equations that eliminate three relative translation displacements and 
two relative rotations between the two bodies. In the case of flexible bodies, an infinitesimal 
volume can have 12 modes of displacements; three rigid body translations, three rotations, 
and six deformation modes. In this section, a new model of pin joint between ANCF finite 
elements is introduced. The formulation of this pin joint between elements i  and j  employs 
the following six scalar equations defined at the joint node: 

,r r r ri j i j
        (12) 

Here   is the coordinate line that defines the joint axis;   can be ,x y , z  or any other coordi-
nate line as discussed later in this section. The six scalar equations of Eq. 12 eliminate six de-
grees of freedom; three translations, two rotations, and one deformation mode. This joint 
model ensures 1C  continuity with respect to the coordinate line   and 0C  continuity with 
respect to the other two parameters. It follows that the Lagrangian strain component 

 1 2r rT
      is continuous at the joint definition point, while the other five strain com-

ponents can be discontinuous. 
While the algebraic constraint equations of a pin joint between two rigid bodies are highly 

nonlinear. The algebraic constraint equations of Eq. 12 are linear. Therefore, these equations 
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can be applied at a preprocessing stage to systematically eliminate the dependent variables. 
Using these equations, one can develop a new kinematically linear FE mesh for flexible-link 
chains in which the links can have arbitrarily large relative rotations. The use of this pin joint 
model with ANCF finite elements leads to a constant mass matrix and zero Coriolis and cen-
trifugal forces. 

As previously mentioned in this paper, B-spline geometry can describe the type of non-
structural discontinuity discussed in this section. Nonetheless, if an arbitrary axis of a pin joint 
is to be used in the analysis, the use of B-spline geometry can be difficult given the rigid 
structure of the B-spline recurrence formula. In order to be able to choose an arbitrary axis of 
rotation for the pin joint, one must be able to define the gradient vector in the direction of a 
coordinate line along this axis of rotation. Such a definition can be easily made using ANCF 
geometry using the gradient tensor transformation. Let ,u v , and w  be another set of parame-
ters; one of them can be used to define the joint axis. It follows 
that r r r r r r Au v w x y z    , where A  is the constant matrix of coordinate transforma-

tion defined as 

                                                        A

x x x

u v w
y y y

u v w
z z z

u v w

   
    
       
    
    

                                       (13) 

The fact that this matrix is constant allows having linear pin joint connectivity conditions 
when ANCF finite elements are used [13, 17].  

 

7 NUMERICAL RESULTS 

It will be demonstrated in this section that ANCF meshes that allow relative motion be-
tween the finite elements can be developed. In these ANCF meshes, the finite elements are 
connected using linear algebraic equations and the mesh mass matrix remains constant. Chain 
example characterized by non-structural discontinuities is considered in this section. The links 
of the chain used in this section are assumed to be flexible with mass density of 7200 kg/m3, 
and a Poisson ratio of 0.3. Two different values of the modulus of elasticity, 8102  and 

11102  N/m2, are used in the simulations. The elastic forces of the ANCF elements are formu-
lated using a general continuum mechanics approach that employs a Hookean constitutive 
model. The system is represented by one FE mesh (one flexible body). 

The chain used is a multi-link chain that has an overall length of 1 m (Fig. 2). It consists 
of 8 links that are connected by pin joints. These pin joints ensure 0C  continuity and allow for 
independent relative rotations and deformation modes at the joint nodes. In computational ge-
ometry, this case of non-structural discontinuities at the joint nodes corresponds to knot mul-
tiplicity of 3 when cubic polynomials are used for the finite elements. Each link in this chain 
is represented by one planar shear deformable beam element. Therefore, the chain has 80 de-
grees of freedom; 8 degrees of freedom represent rigid body relative rotations, and the re-
maining 72 degrees of freedom represent deformation modes; with 9 deformation modes for 
each link. The chain is subjected to a base excitation defined by the func-
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tion 0.01sin(0.1 ) X t  . All the links of the chain are assumed to be initially horizontal. 
The effect of the link gravity is considered. 

In order to verify the obtained results, a simulation of a very stiff pendulum is carried out 
first, and the results are compared with the results of a rigid link chain model.  For the very 
stiff chain, a modulus of elasticity of 11102  N/m2 is used for the finite elements. Figure 4 
shows the vertical position of the center of the last link as function of time for both cases of 
the rigid and stiff chains.   

 

Figure 4 Vertical displacement of the center of link 8   

( Flexible link chain, ---- Rigid link chain) 
 
 

Figure 5 shows the absolute rotation of the last link of the chain about an axis parallel to 
the pin join axes. The results presented in Figs. 4 and 5 show a good agreement between the 
results obtained using the rigid and very stiff link chain models. For the rigid link chain model, 
nonlinear algebraic equations are used to define the pin joints and the resulting generalized 
mass matrix associated with the system degrees of freedom is highly nonlinear. For the flexi-
ble ANCF chain model, the chain is represented by one FE mesh (one flexible body), the pin 
joint constraints are linear, and the mass matrix is constant. Figure 6 shows the vertical dis-
placement of the tip point of link 8 of the chain when the modulus of elasticity is reduced 
to 8102 N/m2.  Figure 7 shows the relative rotation between links 7 and 8 of the flexible 
chain as function of time. 



Ahmed A. Shabana, Ashraf M. Hamed, Paramsothy Jayakumar and Michael D. Letherwood 

 12

 

Figure 5 Rotation of link 8 ( Flexible link chain, ---- Rigid link chain) 
 

 

 

Figure 6 Vertical displacement of the tip point of link 8 of the flexible chain  
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Figure 7 Relative rotation between last two chain links 
 

Figures 8 and 9 show the distribution of the normal strain components xx  and yy . It is 

clear from the results presented in these figures that the strains are discontinuous as the result 
of the non-structural discontinuities at the joints; the strains are continuous within the ele-
ments, and xx  decreases since the links at the beginning of the chain are subjected to higher 

gravity forces as compared to the links at the end of the chain. It is important, however, to 
point out that for fully parameterized ANCF finite elements one can always define at an arbi-
trary point inside the element, coordinate lines in which there are continuous strain compo-
nents regardless of the shape of the structure. 

 

Figure 8 Distribution of the normal strain xx
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Figure 9 Distribution of the normal strain yy

 
 

8 CONCLUSIONS  

This paper addresses the important issue of using computational geometry methods such 
as B-spline and NURBS as analysis tools. B-spline and NURBS employ recurrence formulas 
that allow changing the degree of continuity at a breakpoint by adjusting the knot multiplicity 
at this point. As demonstrated in this paper, the recurrence formula has several drawbacks 
when B-spline representation is used as an analysis tool. Because the recurrence formula does 
not provide flexibility for choosing the basis functions, B-spline representation can lead to 
significantly larger number of coordinates and a higher dimensional model. This fact was 
used to demonstrate the generality of the ANCF geometry. While B-spline geometry can al-
ways be converted to ANCF geometry, the converse is not true. It is also shown that the B-
spline recurrence formula cannot be used to model structural discontinuity in a straight for-
ward manner. While structural discontinuities are of the 0C  type, they cannot be captured in 
the B-spline representation by reducing the knot multiplicity by one. This reduction of the 
knot multiplicity is equivalent to elimination of the relative translation only; and such a reduc-
tion in the knot multiplicity leads to a rigid body mode that defines the conditions of a pin 
joint. In the case of structural discontinuities, on the other hand, the 0C  B-spline representa-
tion does not eliminate the rigid body mode since additional algebraic constraint equations are 
required in order to eliminate the relative rotations between two segments. The paper also pre-
sents a new three-dimensional pin joint model that leads to linear connectivity conditions and 
constant mass matrix when used with ANCF finite elements. The limitations identified in this 
paper when B-spline geometry is used as analysis tool suggest the use of the I-CAD-A ap-
proach in which a constant transformation can be developed to convert CAD geometry to FE 
mesh.  
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