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Abstract. Dynamics of a marine stationary platform under action of the seismic loading is
investigated. The structure consists of a tube-like ferroconcrete rod of variable cross-section.
To describe the rod vibrations the beam-like model is used. The system of partial differential
equation is reduced to the system with 6 degrees of freedom. Some numerical examples are
studied. It is established that at design it is necessary to pay the main attention to the concrete
strength when the extension deformations appear.
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INTRODUCTION

One of the possible structures of a marine stationary platform for the oilindustrial engineering
is studied. The platform consists of a tube-like ferroconcrete rod with the upper operating floor.
This structure may be used for the depth of see near 250 m. At the design of structure some
external forces are to be taken into account. Among them there are the influence of a surface
gravity waves, of a wind acting on the operating floor, of a water stream, and at last of an
earthquake. For this structure the influence of surface waves is investigated in [1]. Here we
study only the action of a horizontal seismic excitation and find the rod bending deformations.
Peculiarity of this system is that its lowest natural frequency is much smaller than the typical
frequency of the seismic excitation. That is why we seek the solution as a sum of 6 natural
modes. For calculation we take not real, but model seismic impulse which alloys us to find
the dependence of rod vibrations on its frequency. The main result of this investigation is that
at design it is necessary to pay the main attention to the concrete strength when the extension
deformations appear.

1 MATHEMATICAL MODEL OF PLATFORM

The structure consists of a tube-like ferroconcrete rod of variable cross-section. Below the
rod is attached to the foundation which can move in the horizontal direction and rotate around
the horizontal axis. The operating floor is attached above the rod. Vibrations in one plane ate
studied. The attached mass of water and the resistant force of water proportional to the square
of the cross-section velocity are taken into account. It is assumed that the water is stationary,
influence of the surface waves and of the stream is ignored. The seismic load is horizontal, and
the ground acceleration a(t) is given as a function of time and in the limits of foundation it is
not depend on the spatial co-ordinates. The mathematical model used here is described in [1],
the difference is that instead the surface waves here the action of the seismic load is studied.

Figure 1: The structure diagram.

The foundation and the basic platform are supposed to be rigid bodies 0 and 1 (see Fig. 1),
which are attached to the rod S. For the rod the beam model is accepted. Equation of the rod

2



Vyacheslav A.Shekhovtsov, Petr E.Tovstik, Tatiana M.Tovstik

bending in the movable co-ordinate system is

∂2M

∂x2
+

∂

∂x

(
P (x)

∂u

∂x

)
+ ρ(x)

∂2u

∂t2
= f(u, x, t), (1.1)

where

M = J(x)

(
κψ(κ, x) +

β0
ω

∂κ

∂t

)
, κ =

∂2u

∂x2
, f = −ρ(x)a(t)− fv. (1.2)

Here u(x, t) is the horizontal deflection of the rod cross-section x, 0 ≤ x ≤ H , H is the
rod height, M is the bending moment, κ is the curvature, J is the rod bending stiffness in
linear approximation, f is the external load her unit length. The moment M is given with the
account of the nonlinear visco-elastic properties of the cross-section materials. The function
ψ is describer in Section 2, in linear approximation ψ = 1. In (1.2) β0 is the dimensionless
resistant coefficient, ω is the typical frequency.

The water resistance force per unit length is denoted as fv and it is equal to

fv = CvγwR(x)v|v|, v =
∂u

∂t
+ v0, v0(t) =

∫ t

0
a(t) dt, (1.3)

where Cv is the dimensionless coefficient, γw is the water density, R(x) is the cross-section
diameter.

In (1.1) P (x) is the axial compressing force

P (x) =
(
m1 +ms −

∫ x

0
ρs(x) dx

)
g, ms =

∫ H

0
ρs(x) dx, (1.4)

where m1 and ms are the masses of the body 1 and of the rod, ρs(x) is the rod density per unit
length, g = 9.81 (mc−2) is the gravity acceleration

ρ(x) = ρs(x) + ξ(x)ρw(x), ρw(x) = πR2(x)γw, (1.5)

ρw(x) is the density of the additional mass of water, and ξ(x) = 1 at x < H1, ξ(x) = 0 at
x > H1, H1 < H is the depth of water.

The boundary conditions at the bottom x = 0 and at the upper end x = H are the motion
equations of the bodies 0 and 1
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x=H

, φ =
∂u

∂x
,

(1.6)

where m0, m1 are the bodies masses, J0, J1 are the central inertia moments, h0, h1 are the
distances to the mass centers (see Fig. 1) of the bodies 0 and 1 respectively.
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The non-linear force F0 and moment L0 of the ground and the foundation interaction are
accepted as [2]

F0 = −cuu∗ϕu(u∗)−
βucu
ω

u̇∗, u∗ = u(0)− h∗φ(0),

L0 = −cφφ0ϕφ(φ(0))−
βφcφ
ω

φ̇(0),

ϕu =
(
1 +

∣∣∣∣ uucr
∣∣∣∣mu

)−1/mu

, ϕφ =

(
1 +

∣∣∣∣∣ φφcr

∣∣∣∣∣
mφ
)−1/mφ

,

(1.7)

where h∗ is the distance to the force horizontal center of the ground and the foundation in-
teraction, parameters cu, cφ, βu, βφ,mu,mφ, ucr, φcr are to be given. In linear approximation
ϕu = ϕφ = 1. The second summands in relations (1.7) take into account the visco-elastic
ground properties.

2 THE BENDING ROD STIFFNESS

The rod is the three layered ferroconcrete tube with the variable cross-section (see Fig. 2).
The outer layers r1 ≤ r ≤ r2 r3 ≤ r ≤ r4 = R are steel, and the middle layer r2 ≤ r ≤ r3 is
concrete.

rk(x) = rk0 − bx, k = 1, 2, 3, 4, b =
R0 −R1

H
, (2.1)

where rk0 are the layers radii at x = 0, R0 and R1 are the radii of lower and upper tube cross-
sections.

Figure 2: The three layered tube cross-section.

We accept the following dependences between stresses σ and strains ε (in the vertical direc-
tion neglecting the other stresses and strains):
for the steel

σ = Es


−εs at ε < −εs,
ε at |ε| ≤ εs,
εs at ε > εs,

σs = Esεs (2.2)
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and for the concrete

σ = Ec


−εc at ε < −εc,
ε at − εc ≤ ε ≤ 0,
0 at ε > 0,

σc = Ecεc. (2.3)

Here Es Ec are the Young modules for steel and for concrete, εs is the yield limit of steel which
is accepted identical at extension and at compression, εc is the flowing limit for concrete at
compression. Relations (2.2) and (2.3) correspond to the Prandtl model, and relation (2.3) fixes
the assumption that the concrete does not resist the extension. In the linear approximation the
both materials are linearly elastic ones, and for the steel σ = Esε and for the concrete σ = Ecε.

The rod cross-section x is compressed by the axial force P and let the curvature κ(x) is
given. Our aim is to find the dependence between the bending moment M and the curvature κ.
It is supposed that the hypothesis about the plane cross-sections if fulfilled. According to this
hypothesis the deformation ε of the fibre lying at the distance z from the cross-section diameter
is equal

ε(r, φ) = ε0 + κz, z = r cosφ. (2.4)

In the linear approximation

P = −Kε0, K = π (Es(r
2
2 − r21) + Ec(r

2
3 − r22) + Es(r

2
4 − r23)) ,

M = Jκ, J =
π

4

(
Es(r

4
2 − r41) + Ec(r

4
3 − r42) + Es(r

4
4 − r43)

)
.

(2.5)

Due to the compression P > 0 we get ε0 < 0, therefore for the small enough curvature κ the
linear relations (2.5) are valid. At

|κ| > κ∗ = min
{
ε0 + εs
r4

,
ε0 + εc
r3

,
−ε0
r3

}
(2.6)

one or the both materials become as the nonlinear ones and the relations (2.5) are to be corrected.

P =
∫
σ(r, φ, ε0) r dr dφ, M =

∫
σ(r, φ, ε0) r

2 cosφdr dφ, (2.7)

where the integration is fulfilled on the circular area occupied by materials, and the stress
σ(r, φ, ε0) is calculated by the relation (2.2) or (2.3). If the curvature κ and the compress-
ing force P are given then by the first relation (2.7) we find the deformation ε0, and then by the
second relation (2.7) we calculate the moment M . Therefore the function ψ(κ) = M/(Jκ) is
build.

3 THE MODEL OF THE GROUND ACCELERATION AT THE EARTHQUAKE

For the analytical description of the acceleration a(t) we use the relation

a(t) = At2e−αt sin(νt+ θ). (3.1)

It is necessary to put the following restriction on the function a(t)∫ ∞

0
a(t)dt = 0, (3.2)

because in the opposite case the ground will move after the seismic impulse is finished. For the
function (3.1) the relation (3.2) is fulfilled if

α(3ν2 − α2) sin θ + ν(ν2 − 3α2)cosθ = 0. (3.3)

In Fig. 3 the impulse with the parameters A = 0.295, α = 0.4, ν = 10 is shown (the value θ
is to be found from the equation (3.3)).
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Figure 3: The seismic impulse.

4 THE APPROXIMATE SOLUTION OF THE EQUATION (1.1)

In Sections 1–3 the problem is formulated. We seek its solution satisfying to the initial
condition u(x, 0) = 0 as a partial sum of the Fourier series of eigen functions Uk(x) of the
linear boundary value problem

u(x, t) =
K∑
k=1

Uk(x)qk(t). (4.1)

The boundary value problem for natural modes Uk(x) and for the corresponding natural
frequencies ωk is to be obtained from equation (1.1) and boundary conditions (1.6) after re-
placements

∂2

∂t2
= −ω2, f = a = β0 = βu = βφ = 0, ψ = ϕu = ϕφ = 1. (4.2)

For ωk ̸= ωn the natural modes satisfy to the orthogonality condition∫ H

0
ρUkUndx+m0Uk0Un0 + J0U

′
k(0)U

′
n(0) +m1Uk1Un1 + J1U

′
k(H)U ′

n(H) = 0, (4.3)

Where by the trait the derivative with respect to x is denoted.
At n = k the left side of the equality (4.3) gives the equivalent mass Mk corresponding to

the kth natural mode

Mk =
∫ H

0
ρU2

kdx+m0U
2
k0 + J0(U

′
k(0))

2 +m1U
2
k1 + J1(U

′
k(H))2. (4.4)

To construct the equations for unknowns qk(t) in (4.1) we use the Bubnov–Galerkin method
according which the work of active forces and of inertia forces on the displacement Uk(x) is
equal to zero. As a result we get

Mk

(
q̈k + βkωkq̇k + ω2

kqk
)
+Ma

ka = Qv +Qs +QF , k = 1, . . . , K. (4.5)

whis
Ma

k =
∫ H

0
ρUk dx+m0Uk0 + J0U

′
k(0) +m1Uk1 + J1U

′
k(H). (4.6)
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By dots the derivatives with respect to time t are denoted. The summand βkωkq̇k in (4.5) (βk
are the dimensionless resistant coefficients) takes into account the resistance of the kth natural
mode. Here we make the additional assumption that the decreases of various natural modes are
not connected to each other. As Qv

k, Qs
k QF

k we denote the nonlinear generalized forces which
are connected with the resistance of water, with the plastic properties of the rod, and with the
interaction forces between the foundation and the ground respectively

Qv
k = −

∫ H

0
CvγR(x)v|v|Uk(x)dx, v =

∫ t

0
a(t) dt+

K∑
i=1

Ui(x)q̇i(t),

Qs
k = −

∫ H

0
J(x)(1− ψ(κ))U ′′

k (x)dx, κ =
K∑
i=1

U ′′
i (x)q̇i(t),

QF
k = cuu∗(1− ϕu(u∗))Uk∗ + cφu

′(0)(1− ϕφ(u
′(0)))U ′

k(0),

u∗ =
K∑
i=1

(Ui(0)− h∗U
′
i(0))qi(t), Uk∗ = Uk(0)− h∗U

′
k(0),

u′(0) =
K∑
i=1

Ui(0)qi(t).

(4.7)

At Qv = Qs = QF = 0 the system (4.5) divides to K independent equations.

5 NUMERICAL RESULTS.

We fix the values of structure parameters and study the series of values of parameters of the
seismic acceleration in (3.1).

We take the following parameters given in SI. The dimensions of structure and radii of the
rod layers: H1 = 235, H = 250, r10 = 4.9, r20 = 4.95, r30 = 5.95, r40 = R0 = 6, R1 = 5.
The densities of water, steel, and concrete: γw = 103, γs = 7.85 · 103, γc = 2.2 · 103. The
Young modules and the yield limits of steel and concrete: Es = 2.06 · 1011, Ec = 0.131Es,
εs = 0.00134, εc = 1.16εs. The mass parameters and the distances to the mass centers of bodies
0 and 1: ms = 2.32 · 107, m0 = 107, m1 = 107, J0 = 15m0, J1 = 10m1, h0 = 3, h1 = 3.
The foundation parameters: cu = 107, cφ = 1012, ucr = 10, φcr = 0.1, mu = 2, mφ = 2. The
visco-elastic resistant parameters: βk = 0.1, k = 1, 2, 3, 4. The resistant coefficient of motion
in water Cv = 2.2.

We take K = 6. In Table 1 there are the first six natural frequencies ωk, the corresponding
periods, and the mass parameters Mk, M

a
k .

k 1 2 3 4 5 6
ωk 0.256 0.688 3.117 8.158 15.89 26.39
Tk 24.56 9.15 2.02 0.77 0.40 0.24

Mk · 10−7 2.58 7.20 7.19 19.30 66.13 931.00
Ma

k · 10−7 1.32 −0.22 2.52 1.42 4.91 46.28
Ma

k /Mk 0.514 −0.031 0.351 0.074 0.071 0.050

Table 1: The natural frequencies and the mass parameters.

In the last line of Table 1 there is parameter Ma
k /Mk, which characterizes the level of the kth
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eigen mode excitation. We see that the modes with k = 1 and k = 3 are excited larger than the
other ones.

We bound with the analysis of the seismic impulses of the form shown in Fig. 3 and change
the maximal amplitude Amax = maxt |a(t)| and frequency ν. Then the parameters in (3.1) are
A = 0.295Amax, α = 0.4, and the parameter θ is to be found from (3.3).

We change the frequency ν of seismic impulse in the limits 0.5 ≤ ν ≤ 30 (1/c), and will
increase Amax nd fix the value, for which the rod material turns in the nonlinear area according
the condition (2.6). Calculations show (see also Table 2) that in all studied cases the condition
when the concrete is extended is critical. Such deformations are inadmissibe from the point of
view of the concrete strength.

Figure 4: The boundary of the parameters (ν (1/c), Amax (m/c2)) area, below which the concrete is compressed
only.

In Fig. 4 the boundary of parameters area in the plane (ν, Amax), upper which the concrete
may be stretched. The more dangerous are impulses with the lower values of the frequency ν,
which are not typical for the seismic ones. For seismic impulses the values 10 ≤ ν ≤ 300 [3].
Here the impulses with ν ≤ 30 are studied because for ν > 30 the used beam model is doubtful.

k ν Ak0
max uk0(H1) Aks

max uks(H1) Akc
max ukc(H1)

1 10 6.7 0.06 18.1 0.24 24.4 0.28
2 15 1.3 0.01 14.4 0.07 14.9 0.08
3 20 8.6 0.02 23.7 0.07 33.3 0.10

Table 2: The amplitudes of transition in the nonlinear area of the rod deformations.

In Table 2 three values of ν are studied, and the values ν1 and ν3 correspond to the points
of the relative maximum of the curve Amax(ν) (Fig. 3), and ν2 corresponds to the minimal
point. As Ak

max and uk(H1) the maximal amplitude of the seismic impulse (in m/c2) and the
maximal deflection of the upper body 1 (in m). Indexes 0, s, c correspond to appear extended
deformations in concrete, to appear the yield of steel and to appear the yield of concrete at
compression. It is clear that the values Aks

max and Akc
max are too large for seismic impulses.

Therefore at design it is necessary to pay the main attention to the concrete strength.
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6 CONCLUSIONS

In book [1] there is the investigation of the platform dynamics under action of surface gravity
waves. In this problem the typical frequency of waves in some cases is close to the first natural
frequency of structure. That is why it is possible in [1] to reduce the system to the single
equation of the first order (with K = 1). At the seismic excitation the typical frequencies are
much larger than the first natural frequency of structure. We take K = 6 but for ν > 30 the
exactness of the system (1.1) is not enough (see the values ωk in Table 1) and it is desirable to
use the more complex mathematical models of this structure.

Plans of the following investigation of this structure may consist in the complification of
model by introducing the shear rod deformations. It is important in one side if we want to study
the seismic excitations with the more high frequencies, and in the other side to take an attention
that the concrete badly hold the shear stresses. Also it is necessary to study the vertical seismic
excitation and the corresponding vertical vibrations of the rod. At last it is desirable to study
the simultaneous action of the horizontal and the vertical seismic excitation and the interaction
of the bending and the longitudinal rod vibrations.

Here we take the model seismic impulse. It seems that the real random seismic impulse with
the same maximal amplitude leads to the smaller amplitude of the rod vibrations. Nevertheless
it is desirable to study the structure reaction under action of the random seismic impulse with
the given spectral density.

ACKNOWLEDGEMENTS

The work is supported by the Russian Foundation of Basic Researches, grant 10.01.00420 a.

REFERENCES

[1] V.A. Shekhovtsov. Random nonlinear vibrations of the marine stationary platforms.
St. Petersburg. 2004. 246 p. (in Russian)

[2] Ju.M. Kolesnikov. Investigation and design of piles. In.: Oilindustrial engineering.
Moscow. 1980. (in Russian)

[3] A.N. Birbraer. Design of structures to seismic resistance. St. Petersburg. ”Nauka”. 1998.
255 p. (in Russian)

9


