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Abstract. This study develops a posterior h-hierarchical adaptive scaled boundary finite ele-

ment method for transient elastodynamic problems using a mesh refinement procedure which 

subdivides subdomains. In a time step, the fields of displacement, stress, velocity and accele-

ration are all semi-analytical and the kinetic energy, strain energy and energy errors are all 

semi-analytically integrated in subdomains. This makes mesh mapping very simple but accu-

rate. Mesh refinement is very simple, flexible and efficient because only a small number of 

subdomains are subdivided due to the high accuracy of the SBFEM. The results of an example 

with stress wave propagation were presented. It is shown that the developed method is capa-

ble of capturing the propagation of steep stress regions and calculating accurate dynamic 

responses, but only using a fraction of degrees of freedom required by adaptive finite element 

methods.
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1 INTRODUCTION 

A few adaptive spatial discretisation methods based on finite element method (FEM) and 
posteriori error estimators have been developed to efficiently simulate elastodynamic prob-
lems with stress wave propagation [1, 2]. However, there still exist two major difficulties in 
adaptive finite element method (AFEM). First, automatic remeshing to capture the stress 
wave propagation usually involves complicated and time-consuming topological changes on a 
large number of small-sized elements, especially for large-scale problems. This may also lead 
to ill-shaped elements resulting in inaccurate responses. Second, mesh mapping after remesh-
ing to transfer state variables from the old mesh to the new one is approximate, which may 
lead to high accumulative errors in later time steps. In addition, identifying the old element 
where a new node is located may be time-consuming as well because a large number of finite 
elements need to be checked. 

The scaled boundary finite element method (SBFEM) developed in 1990s [3, 4] is a semi-
analytical method combining the advantages of the FEM and the boundary element method 
(BEM). It models an analysis domain by a small number of large-sized subdomains and only 
the subdomain boundaries are discretised, and the modeled dimensions are reduced by one as 
the BEM, but no fundamental solutions or singular integrations are needed. Therefore, the 
FEM’s wide applicability and the BEM’s simplicity in remeshing are both retained.  

This study aims to further extend the applicability of the SBFEM by developing an adap-
tive SBFEM (ASBFEM) for transient elastodynamic problems using a simple subdomain 
subdivision procedure. A simply-supported beam under impact was modeled to validate the 
developed ASBFEM. 

2 METHODOLOGY 

2.1 The scaled boundary finite element method 

 A domain of analysis is illustrated in Figure 1(a) as an example. The domain is divided in-
to three subdomains whose geometry and dimensions are defined by a few vertices. Figure 
1(b) shows the details of Subdomain 1. The subdomain is represented by scaling a defining 
curve S relative to a scaling centre. A normalized radial coordinate ξ is defined, varying from 
zero at the scaling centre and unit value on S. A circumferential coordinate η is defined 
around the defining curve S. A curve similar to S defined by ξ=0.5 is shown in Figure 1b. The 
coordinates ξ and η form a local coordinate system used in all the subdomains and simple 
transformation equations between the local and global coordinates can be identified with ease 
for each subdomain: 
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where (x1, y1) and (x2, y2) are nodal coordinates of a two-node element on the boundary and 
(x0, y0) are the coordinates of the scaling centre. The displacements of any point (ξ, η) in a 
subdomain are assumed as 

)()(),( ξηηξ uNu                                                                       (3) 

where u(ξ) are the displacements along the radial lines and are analytical with respect to ξ. 
N(η) is the shape function matrix in the circumferential direction. 



Zihua Zhang, Zhenjun Yang, Guohua Liu and Yunjin Hu 
 

 3 

         
(a) Subdomaining of a domain                                                  (b) Subdomain 1 

Figure 1 The concept of the scaled boundary finite element method 

For linear elastic materials, the stress vector in a subdomain is calculated by 
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where B1(η) and B2(η) are coefficient matrixes, and D is the elasticity matrix. 

2.2 Solutions in time domain 

In elastodynamics, the dynamic equilibrium equation of a subdomain is derived as [5] 
sss

puKuM
bb
                                                          (5) 

where ub is the displacement vector and üb is the acceleration vector on the subdomain boun-
dary, ps the subdomain load vector, Ks the subdomain stiffness matrix and Ms the subdomain 
mass matrix. 

Assembling Eq. (5) for all subdomains lead to the global equation system 
PKUUM                                                            (6) 

where M and K are the assembled global mass and stiffness matrices, P is the global load 
vector, U and Ü are the nodal displacement and acceleration vectors respectively. 

The Newmark integration scheme [6] is used to solve Eq. (6). At time step n, the state va-
riables are calculated by 
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where Δt is the time increment, β and γ are the Newmark parameters. In this study, β = 0.25 
and γ = 0.5 are used for all the examples with unconditional stability. 

The subdomain displacement and stress field are 
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where λi  and φi (i=1-N) are eigen values and eigen vectors from solving a standard eigen 
problems [7]. c={c1, c2, …, cN}T

 are constants dependent on boundary conditions, and N is the 
number of degrees of freedom (DOFs) of the subdomain. 

The velocity and acceleration fields in a subdomain are calculated by differentiating Eq. (9) 
with respect to time 
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From Eqs. (9)-(12) it is clear that the displacements, stresses, velocities and accelerations 
in a subdomain are all analytical with respect to the radial coordinate ξ. 

3 DYNAMIC ENERGY ERROR ESTIMATOR 

The energy norm of the total energy is 
  2/122

sk
uuu                                                        (13) 
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are the energy norm of the kinetic energy and the strain energy respectively. NS is the number 
of subdomains.  

A recovered stress field can be used to calculate the strain energy semi-analytically [8] 
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And the kinetic energy is [9] 
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where σi
* is the recovered stresses of ith mode at the boundary nodes, )(

i
u  is the velocity 

vector of ith mode along the subdomain boundary. 
Substituting Eqs. (16) and (17) into Eq. (13) yields 
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The domain energy error can be evaluated as [8] 
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(a) Subdomains 
before subdivision 
(nodes are deleted)  1 2 
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(b) Subdomains 
after subdivision 
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(c) Subdomains 

after nodal discre-
tisation 

Figure 2 The remeshing procedure 

is the energy error of a subdomain and 
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The dynamic energy error estimator is defined as 
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4 THE ADAPTIVE PROCEDURE 

4.1 Remeshing 

The aim of the adaptive procedure is to make 
each subdomain contribute equally to the domain 
energy error. The average limit of the subdomain 
error is defined as 
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where   is the target error estimator of the domain. 
A parameter θ is employed to identify the sub-

domains that should be refined 
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In each time step, a very simple mesh refinement procedure applies to all subdomains with 
θ>1, as illustrated in Figure 2 where two subdomains in the whole domain are shown. Sub-
domain 1 needs to be refined and Subdomain 2 represents those connected with Subdomain 1. 
Figure 2a shows the two subdomains with vertices only after nodes are removed. Subdomain 
1 is first subdivided into four smaller subdomains by adding a vertex at the scaling centre and 
a vertex at the middle point of each of the four edges, as shown in Figure 2b. The old subdo-
main 1 is then deleted and the topologies of the four smaller subdomains are generated. The 
topology of Subdomain 2 is updated with the addition of one vertex. A global seed of elemen-
tal size is then assigned to the five subdomains to generate nodes on their edges, resulting in 
Figure 2c for analysis. 

The estimator is updated based on the new mesh until the following condition is satisfied 
                                                                   (25) 

4.2 Mesh mapping 

Once a new mesh is obtained, nodal state variables, including displacement, velocity and 
acceleration, are transferred from the old mesh to the new one as initial conditions of the 
following time step. For a point or a node located at coordinates (x0, y0) in the new mesh after 
remeshing, the subdomain in the old mesh within which the point (x0, y0) is located is first 
found. The coordinates (x0, y0) are then easily transformed to SBFEM coordinates (ξ0, η0) by 
Eqs. (1) and (2) in this subdomain. Because the properties of this subdomain (eigenvalues λi, 
eigenvectors φi and constants ci) are known, the displacements, velocities and accelerations at 
(ξ0, η0) in the old mesh or (x0, y0) in the new mesh can be calculated by Eq. (9), Eq. (11) and 
Eq. (12), respectively (ξ=ξ0, η=η0). This procedure is also very accurate because Eqs (9, 11-12) 
are semi-analytical. In addition, because the SBFEM discretises a domain by a few large-sized 
subdomains, it takes little time to locate the old subdomain for the newly-generated nodes. 
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Figure 3 Flow chart of the adaptive procedure 

4.3 The flow chart 

Figure 3 illustrates the flow chart of the 
adaptive procedure. A parent mesh consisting of 
relatively large-sized subdomains and a target 
error estimator   are input first. At time step n, 
the state variables 

nnn
UUU  ,,  are solved by the 

Newmark integration method using the old mesh 
at the end of time step (n-1) and the error estimator 
δ is calculated. If δ exceeds the target, the adaptive 
procedure is triggered to identify a new mesh, 
starting from the parent mesh. The nodal state 
variables are then mapped from the old mesh to 
the new mesh as the initial conditions. After the 
state variables are solved, Eq. (25) is checked 
again. This iteration is repeated until an optimal 
adaptive mesh satisfying Eq. (25) is identified. 

5 NUMERICAL EXAMPLE  

The numerical example examined is a simply-
supported beam subjected to an impact loading on 
the beam top face. The dimensions and material 
properties are shown in Figure 4. The dynamic 
responses in a time period of (0, 1.2s) were calcu-
lated with a constant time increment Δt=0.02s. A 

regular mesh (mesh 1) and an irregular mesh (mesh 2) are employed as the parent mesh, as 
shown in Figure 5. The target error estimator is  =15%. The same example was modeled in 
[2] using AFEM. 

Figures 6(a) and 6(b) show the horizon-
tal stress contours and corresponding adap-
tive meshes at t=0.04s & 0.10s respectively. 
It can be observed that, with the stress 
wave propagation, the mesh is refined from 
the ends to the mid-span of the beam.  

Figure 7 shows the histories of vertical 
displacement at point A. It can be seen that 
the results of non-adaptive SBFEM for 
both meshes gradually deviate away from 
the results of FEM [2] using a very fine 
mesh which can be considered as exact. 
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A E=9800, ν=0.3 
ρ=1.0, thickness=0.1 
Plane stress B 

Figure 4 Dimensions of the simply-supported beam 

Vertices Nodes Constraints 
a. Mesh 1 (DOFs=56) 

b. Mesh 2 (DOFs=50) 
Figure 5 Parent meshes of the beam 
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The results of the developed ASBFEM are better than AFEM reported in [2] and very close to 
FEM. Figure 8 shows the horizontal stress at point B. It can also be seen that the results of the 
present method agree well with FEM and better than the non-adaptive SBFEM. 

 
Based on mesh 1, DOFs=344 

 
Based on mesh 2, DOFs=246 

 
(a)  t=0.04s 

 
Based on mesh 1, DOFs=248 

 
Based on mesh 2, DOFs=150 

 
(b)  t=0.10s 

Figure 6 Adaptive meshes and the horizontal stress contours 

 
Figure 7  Histories of the vertical displacement at A 

 
Figure 8  Histories of horizontal stress at B 

 
Figure 9  Histories of the energy error estimator δ  

 
Figure 10  Histories of degrees of freedom 

Figure 9 shows the histories of the energy error estimator calculated by non-adaptive 
SBFEM and the present method. It can be observed that the present method is able to control 
the estimator under the target 15% in most stages, while the estimators of the former are 
around 20% based on mesh 1 and 25% based on mesh 2 respectively. 

Figure 10 shows the degrees of freedom used in the present ASBFEM. For this example, 
150 DOFs are used in most stages while about 2,000 DOFs were used in AFEM [2]. 
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6 CONCLUSIONS  

An adaptive scaled boundary finite element method subdividing subdomains has been devel-
oped for elastodynamic problems in this study. It uses a semi-analytically integrated posteriori 
error estimator, and a simple and efficient mesh refinement procedure with accurate mesh 
mapping to adaptively identify an optimal mesh that captures stress wave propagation. An 
example under impact load was modelled. It has been demonstrated that the developed me-
thod is capable of computing accurate dynamic responses and effectively capturing stress 
wave propagation while using a fraction of degrees of freedom that are needed by adaptive 
finite element methods. The developed method thus provides a strong competitor in adaptive 
modelling of elastodynamic problems. 
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