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Abstract: A nonlinear finite element method is adopted for the large displacement dynamic 
analysis of anisotropic plates under in-plane compressive loads.  The analysis is based on the 
two-dimensional layered approach with higher order shear deformation theory with five, 
seven, nine, and eleven degrees of freedom per node, nine-node Lagrangian isoparametric 
quadrilateral elements are used for the discretization of the laminated plates.  A complete 
bond between the layers is assumed (no delamination occurs). A consistent mass matrix is 
used in the present study.  Damping property is considered by using Rayleigh type damping 
which is linearly related to the mass and the stiffness matrices.  Newmark integration method 
and Harmonic acceleration method are used for solving the dynamic equilibrium equations.  
The effects of number of layers, damping factor, and number of degree of freedom per node 
on the large displacement dynamic analysis are considered.  From the present study, noticed 
that the central deflection increase with increasing the degree of freedom per node. 
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1.GENERAL 

Certain civil engineering structures are designed to carry their own dead load plus 
superimposed loads which are immovable and unvarying with time, that is, superimposed 
static loads. In such cases, the stress analysis involves only principles of statics. More often 
the design of a civil engineering structure involves not only static loads but also superimposed 
loads which are either moving or movable and may vary with time as in superimposed 
dynamic loads. In such cases, the stress analysis properly should involve principles of 
dynamics to determine the effect of dynamic loading. However, in many of these cases, 
experience has shown that the dynamic effect makes a minor contribution to the total load 
which must be provided for the design and therefore the dynamic effect need not be evaluated 
precisely. In such cases, the dynamic effect may be handled by the use of an equivalent static 
load, or by an impact factor or by a modification of the factor of safety(3). 

There have been a number of developments which have led to growing interest in a 
more precise evaluation of the effects produced by the dynamic portion of the loading. 
Among these are the imposition of more severe live load conditions (that is, machinery and 
vehicles moving at high speeds), the construction of high towers and long bridges involving 
more severe and important wind-loading conditions, the necessity of developing blast 
resistant constructions, and the desire to improve earthquake resistance of constructions. 
These are some aspects where it may be necessary to consider more precisely the response 
produced by dynamic loading. 

The ability of thin-walled structures to absorb the energy of dynamic transient loading 
has led to its utilization for several classes of important structures, such as aerodynamic 
structures, power plant structure, bridge structures, etc.  These types of structures are designed 
under these loads to maintain the overall structural integrity with irreversible deformation 
analysis. In the present study a computational modeling is developed for the nonlinear 
dynamic analysis of laminated composite plates using finite element method.  The dynamic 
equilibrium Equation and the derivation of mass and damping matrices will be presented. A 
Newmark direct time integration method is adopted. In [1993], Kommineni and Kant 
presented a Co-continuous finite element formulation of a higher order displacement theory 
for predicting linear and geometrically nonlinear behavior in the sense of von-Karman 
transient response of composite and sandwich plates.  Azevedo and Awruch [1999] presented 
a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral 
isoparametric elements.  The main features of their study are: (1) the element matrices were 
obtained by using reduced integrations with hourglass control; (2) an explicit Taylor-Galerkin 
scheme was used to carry out the dynamic analysis by solving the corresponding equations of 
motion in terms of velocity components. Tao, et al. [2004] presented a simple solution of the 
dynamic buckling of stiffened plates under impact loading.  Based on large deflection theory, 
a discretely stiffened plate model had been used.  The tangential stresses of stiffeners and 
their in-plane displacements were neglected. 

 
2. LAMINATED PLATE THEORIES 

A laminated plate is a series of laminas bonded together to act as an integral structural 
element.  Thus, a laminate is not a material but instead a structural element with essential 
features of both material properties and geometry.  The stiffness and strength of such a 
composite material with structural configuration are obtained from the properties of the 
constituent laminas, and thus the macromechanical behavior of a laminate is the main topic of 
this section.  The lamination so described can be considered as a single layer with "rule of 
mixtures" representation of the interaction between the multiple laminas in a plate or shell(6). 
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In the analysis of the laminated plates, there are two categories of theories, equivalent 

single layer and three dimensional elasticity theories.  In the first category, the material 
properties of the constituent layer are smeared to form a hypothetical single layer whose 
properties are equivalent to through thickness integrated sum of its constituents, and this 
category contains classical lamination theory, first order shear deformation theory, and higher 
order shear deformation theory as will be given in the following section: 

 
2.1 Classical lamination theory 

Classical laminated plate theory is also often called "classical laminated theory (CLT)" which 
is based on the Kirchhoff-Love hypothesis for plates and shells (6).  The assumptions of 
classical laminated plate theory are as follows: 
1- The plate is thin.  That is the thickness (h) is small compared to the other physical 

dimensions. 
2- The displacements ( ) ( )zyxvzyxu ,,,,,  and ( )zyxw ,,  are small compared to the plate 

thickness. 
3- The in-plane strains o

y
o
x εε , and o

xyγ  are small compared to unity. 
4- The transverse normal stress zσ  is negligible. 
5- The transverse shear stresses yzxz ττ ,   are negligible. 
     
2.2 First order shear deformation theory (FSDT) 

Timoshenko deep beam theory, which includes transverse shear deformation and rotary 
inertia effect, has been extended to isotropic plates by Reissner and Mindlin, and to laminate 
anisotropic plates by Yang, et. al. and their theory, also called "First order shear deformation 
theory (FSDT)", takes into account the effect of transverse shear deformation and assume it 
constant through the plate thickness.  Thus, a shear correction factor is used (3).  The 
assumptions of First order shear deformation theory (FSDT) are as follows: 
1- The in-plane displacements are linear functions of z (plane cross sections remaining plane 

after deflection). 
2- The displacements ( ) ( )zyxvzyxu ,,,,,  and ( )zyxw ,,  are small compared to the plate 

thickness. 
3- The in-plane strains yx εε , and xyγ  are small compared to unity. 
4- The transverse normal stress zσ  is negligible. 
5- The transverse shear stresses xzτ , and yzτ  are considered to be constant through the plate 

thickness.   
 

Figure (1): Laminated plate with several lamina orientations(6) 
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2.3 Higher order shear deformation theory (HSDT) 
In general, a layered composite plate exhibits coupling between the in-plane displacements, 
transverse displacements and shear rotations.  However, due to the low transverse shear 
modulus relative to the in-plane Young's modulus of each lamina, the transverse shear 
deformation effect is more pronounced in composite than in isotropic plates.  Hence, several 
types of shear deformation theories have been introduced. 
 The higher order shear deformation theories are more efficient to represent the 
transverse shear deformation, through-thickness displacement and strains.  The assumption of 
a higher order plate theory can also be used within the equivalent layer formulation (6). 

The assumptions of higher order shear deformation are as follows:  
1- The plate may be moderately thick. 
2- The in-plane displacements ( ) ( )zyxvzyxu ,,,,,  are cubic functions of z. 
3- The transverse shear stresses xzτ , and yzτ are parabolic in z, no shear correction factor is 

necessary. 
4- The in-plane stresses yx σσ , , and xyτ  are cubic functions of z. 
5-  The normals to the mid-surface before deformation are straight, but not necessarily 

remain normal to it the mid-surface after deformation. 
6- The transverse normal stress zσ  is negligible. 

Figure (2) briefly shows, the basic difference between the classical and the first order 
theories with the higher order theories.     

 

 

 

 

 

 

 

 
 

 

 
 
 

All the prescribed theories are considered in the present study in order to study the effect of 
these theories on the accuracy and the time consumption in the analysis.  In the present study, 
three types of displacement equations were considered. Firstly the displacement 
representation for this theory with five degrees of freedom per node is as follows: 
 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )tyxwtzyxw

tyxztyxvtzyxv
tyxztyxutzyxu

o

yo

xo

,,,,,

,,,,,,,
,,,,,,,

=

+=

+=

θ
θ

 (1) 
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xϕ

Figure (2): Kinematics of deformation of a plate in various plate theories(1) 
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in which t denotes the time; and uo, vo, and wo are the components of the mid-plane 
displacements for a generic point (x,y,z) having displacements u, v, and w in x, y, and z 
directions, respectively.  Here, θx and θy are rotations of transverse normals in the (xz) and 
(yz) planes, respectively. 
 The strain-displacement relations after differentiating Equation (1) are: 
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All the strains above are defined in the middle plane of the laminate and substitution 
these Equations into the stress-strain relations.  Secondly the higher order shear deformation 
theory (HSDT) with seven degrees of freedom per node was considered.  The strain 
expressions derived from the displacement field was considered by Mallikarjuna, and Kant 
[1988], and by Ali [2004] with seven degrees of freedom per node as follows: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )tyxwtzyxw

tyxztyxztyxvtzyxv

tyxztyxztyxutzyxu
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yyo

xxo
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 (4) 

in which (u, v, w, θx, and θy) are defined previously, *
xθ  and *

yθ  are the corresponding higher 
order terms in Taylor's series expression and also defined at the middle plane.  The strain-
displacement relations after differentiating Equation (4) are: 
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where the parameters ( yxxyyx
o
xy

o
y

o
x ϕϕκκκγεε ,,,,,,, ) are defined previously. 
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Also, all the strains above are defined in the middle-plane of the laminate and 
substitution these Equations into the stress-strain relations. 

 
 

Thirdly, Higher order shear deformation theory (HSDT) with nine degrees of freedom per 
node was considered.  The strain expressions derived from the displacement field were 
considered by [Ali, 2004] with nine degrees of freedom per node as follows: 
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in which the parameters (u, v, w, θx, θy, *
xθ , and *

yθ ) are defined previously, *
ou , and *

ov are 
the corresponding higher order terms in Taylor's series expression and they are also defined at 
the middle plane.  The strain-displacement relations after differentiating Equation (7) are: 
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where ( ***** ,,,,,,,,,,,, yxyxxyyxxyyx
o
xy

o
y

o
x ϕϕϕϕκκκκκκγεε ) are defined previously. 
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Also, all the strains above are defined in the middle-plane of the laminate.  By 
substitution from Equation (8) into the stress-strain relations, after complete integration, the 
stress-resultant/strain relations of the laminate are as follows: 
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and, 
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All coefficients in A, B, D, E, F, G, and H groups are defined as follows: 
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DYNAMIC EQUILIBRIUM EQUATION 
The dynamic equilibrium Equations are obtained by using the principle of virtual work which 
states that for any arbitrary kinematically consistent set of displacements, the internal virtual 
work done by stresses through virtual strains must be equal to that done by the external forces 
irrespective of the material behavior as [Cook, 1995](8): 
 

( ) ( ) ( ) ( )∫ ∫∫ −ρ−+=σε
v v

b
T

t
T

s

T dvuCuPdudsPdudvd
t

&&&  (13) 

where du  is a vector of virtual displacements, εd  is the vector of associated virtual strains 
and σ  is the vector of actual stresses. The term tP  is a vector of surface tractions acting on 
the portion ts of the boundary S . Vectors uPb &&ρ,  and uC & are the body, inertial and damping 
forces respectively. The symbol (.) denotes differentiation with respect to time. ρ  is the mass 
density and C  is the damping parameter.  

For the finite element representation, the displacements, velocities and accelerations 
uu &, and u&&  can be defined in terms of the nodal variables dd &, and d&& by the expressions: 
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Figure (3): Geometry of an NL-layered laminate [Jones,1999]()
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where ∑
=

==
m

i
ii NddNu

1
),( ηξ  , Ni is the shape functions for i node, and m is the number of 

nodes. 
  With standard strain-nodal displacement matrix [ ]B , the virtual strain vector can be 
related to the nodal displacements as: 

[ ] [ ] dBdBd
m

i
ii δ=δ=ε ∑

=1
 (17) 

Upon substitution of Equations (14-17) into Equation (13) then: 
 

[ ] [ ] [ ][ ] { })(tfddKdCdMd e
TT δδ =++ &&&  (18) 

in which the mass matrix [ ]M , the damping matrix [ ]C , the stiffness matrix [ ]K  and the 
external applied vector { })(tfe  have the following element contributions: 
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where es and eV denote the surface and volume of the element under consideration. As Tdδ is 
arbitrary, then Equation (18) may be written as: 
 

[ ]{ } [ ]{ } [ ]{ } { })(tfdKdCdM e=++ &&&  (23) 
Equation (23) is the dynamic equilibrium Equation for a single or multi-degree of freedom 
system. 

 
FORMULATION OF ELEMENT MASS MATRIX  

The kinetic energy of the element (e) can be expressed as follows: 
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2
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 The velocity vector within an element is discretized such that: 
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 By substituting Equation (25) into Equation (24), one gets: 
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The mass matrix for nine degrees of freedom per node is: 
 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

4

4

3

3

2

2

1

1

1

99

0

0

I
I

I
I

I
I

I
I

I

m  (28) 

For layered plates, the element mass matrix can be written as follows: 
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where in the above Equation (28), I1, I2, I3, and I4 are translation inertia, rotary inertia, and 
respectively higher order inertia terms, and these are given by: 
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where Lρ  is material density of L-th layer. 
 

FORMULATION OF DAMPING PROPERTIES 

The most common form for the representation of the damping matrix [C] is the so-called 
Rayleigh-type damping(3) which was given as; 
 

[ ] [ ] [ ]KaMaC o 1+=  (31) 
in which (ao and a1) are arbitrary proportionality factors, which make the damping matrix 
satisfy the orthogonality condition with respect to the modal matrix [Φ] in the same way of 
the orthogonality conditions for the mass and stiffness matrices that is(5): 
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{ } [ ]{ } [ ]
{ } [ ]{ } [ ][ ] 212 /Λγ=ΦΦ

Λ=ΦΦ

=ΦΦ

C

K

IM

T

T

T

 (32) 

where 
{ } :Φ  The modal matrix whose columns represent the natural modal shapes and the 
superscript ( T ) denotes transpose.  
[ ] :I  Identity matrix. 

[ ] :Λ  Spectral matrix, which is a diagonal matrix with elements representing the 
squares of the natural frequencies ( 2

iω ).  
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[ ] :γ  Modal damping matrix which is also a diagonal matrix with elements 
representing the damping ratios for the system modes ( iγ ) 

Premultiplying Equation (37) by { }TΦ  and postmultiplying it by { }Φ  yields: 
 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }ΦΦ+ΦΦ=ΦΦ KaMaC TT
o

T
1  (33) 

Substituting Equations (38) into Equation (39) gives; 
 

[ ][ ] [ ] [ ]Λ+=Λγ 1
212 aIao

/  (34) 
 The two factors, ao and a1 can be determined by specifying the damping ratios for two 
modes for example 1 and 2, and substituting into Equation (34) as(12): 

2
11112 ω+=ωγ aao  (35) 
2
21222 ω+=ωγ aao  (36) 

where ω1 and ω2 are the natural frequencies for modes 1 and 2 respectively.  By solving the 
above two Equations one can get: 
 

)(
)(

2
1

2
2

2112212
ω−ω

γω−γωωω
=oa  (37) 

)(
)(

2
1

2
2

1122
1

2
ω−ω

γω−γω
=a  (38) 

Then, the values of ao and a1 are substituted into Equation (31) to get the required damping 
matrix. 
 
FORCED VIBRATION ANALYSIS 

The calculation of the nonlinear dynamic response of structure of structures including 
instability or buckling phenomena has received considerable attention and a good amount of 
literature has appeared on this subject. The nonlinear dynamic analysis depends largely on 
solving the following Equations: 
 

[ ] { } [ ] { } [ ] { } { })()()()( tFtdKtdCtdM T =++ &&&  (39) 
in which [ ]TK  is the tangent stiffness matrix of the plate (or structure) and depends on the 
current displacements and stresses. The most conventional implicit time integration 
procedures is Newmark method.   After solving Equation (39) at time (t+∆t) for 
displacements, velocities, and accelerations, the following equation as: 
 

[ ] [ ] [ ]( ){ } { } [ ] { } { }( )
[ ] { } { }( )tt

ttttttoT

dadaC

dadaMtFdCaMaK
&&&

&&&

54

321 )(

++

++=++ ∆+∆+  (40) 

For convenience, the following is used: 
 

[ ] [ ] [ ] [ ]CaMaKK oTeffT 1++=  (41) 
and, 

{ } { } [ ] { } { }( ) [ ] { } { }( )tttttteff dadaCdadaMtFtF &&&&&&
5432 ++++= ∆+)()(  (42) 
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So, Equation (42) may be written in the form: 
[ ] { } { }efftteffT tFdK )(=∆+  (43) 

For a linear system, [ ]effTK will be constant during the analysis at any time, while in the 

nonlinear analysis, [ ]effTK  is a function of current displacement vector { }d .  Therefore, an 

iterative procedure must be used to define [ ]effTK .  In the nonlinear analysis, it is more useful 
to put Equation (43) in increment form.  For such purpose, Equation (43) may be rewritten as: 
 

[ ]{ } { })(ˆˆ tFdKT ∆=∆  (44) 
in which [ ]TK̂  is the effective stiffness matrix and { })(ˆ tF∆  is the effective load vector.  
Equation (44) is solved by an iterative procedure like Equation (40).  It may be noted that 
Equation (40) may be used for solving linear problems, while for nonlinear problems, 
Equation (44) should be used. 
 Solving Equation (44) for { }d∆ , approximate values for accelerations, velocities and 
displacements may be given as: 

{ } { } { } { }
{ } { } { } { }
{ } { } { } ;ddd

dadadad

dadadad

ttt

tttt

ttott

∆+=

−−∆=

−−∆=

∆+

∆+

∆+

&&&&

&&&&&

541

32

 

(45) 

where  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=

−====

2
2

1

1
2
111

54

3212

β
γ

β
γ

βββ
γ

β

taa

a
t

a
t

a
t

ao

∆

∆∆∆

,

,
)(

,
)(

,
)(   

 
APPLICATIONS AND DISCUSSIONS 
Several plates are analyzed to study the different effects on the large displacement dynamic 
behavior of plates with some comparison with other researchers.  
Comparison with available theoretical investigation of composite plate  
Clamped supported square angle-ply laminated plate under transverse suddenly applied 
constant dynamic loading 
 
A square angle-ply (0o/45o/90o/core/90o/45o/30o/0o) sandwich laminated plate with clamped 
edges and subjected to a suddenly applied uniformly transverse load was analyzed and 
compared with Kommineni and Kant [1993]().  The following layer material properties are 
used in the analysis: for face sheets (Graphite/epoxy prereg system) (E1=130.8 GPa; E2=10.6 
GPa G12=G13=6 GPa; G23=3.9 GPa; v12=0.28; and ρ=15.8 kN.sec2/m4); for core sheet (US 
Commercial al. honeycomb, ¼ in cell size, 0.003 in foil) (G13=0.5206 GPa; G23=0.1772 GPa; 
ρ=1.009 kN.sec2/m4).  The time step is (∆t=0.000025 sec),and applied load (q=50 kN/m2).  
The geometry properties are (a=1.0 m, a/b=1, and h=0.01m, at top three stiff layers, thickness 
of each layer=0.025 h, at bottom four stiff layer, thickness of each layer=0.08125 h, and 
thickness of core=0.6 h).  Kommineni and Kant used nine-node isoparametric Lagrangian 
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elements with nine-node degrees of freedom per node and divided the full plate into (4×4) 
element mesh. 

In the present study, the full laminated plate is modeled by (4×4) element mesh with 
nine-node isoparametric Lagrangian element and nine degrees of freedom per node. A 
consistent mass matrix and Newmark integration method with  α=1/2, and β=1/4 were used 
in the present study.  
 Figure (4) shows the time history curve for the clamped angle-ply laminated plate 
under transverse suddenly applied load.  From this figure, it can be noticed that good 
agreement with other study exists with a difference not exceeding (1%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   
      A simply supported square plate with slenderness ratio (b/h=100), and with symmetric 
cross-ply and antisymmetric cross-ply arrangements, were chosen to study the effect of 
number of layers on the large displacement dynamic behavior of a laminated composite plate 
under in-plane constant dynamic loading. The initial imperfection is (wo/h= 0.1) by which the 
shape is considered to be a sinusoidal curve.  
   
       Figures (5) and (6) present the time history curve and show that for the same volume of 
the plate, the response (deflection) will decrease about (15%) for the symmetric cross-ply and 
about (29%) for the antisymmetric cross-ply plates where with increasing the number of 
layers (3-10) for the symmetric cross-ply and (2-10) for the antisymmetric cross-ply 
arrangements, the stiffness increase may be related to the increase of the number of the 
reinforced layers.  Thus, extension and bending stiffness will increase; and therefore, the 
amplitude will decrease.  Also, the increase of the number of layers will give a better 
distribution of orthogonal stiffness through the depth.  From these figures, it can be seen that 
the increase of the number of layers more than (8 layers) for the symmetric cross-ply and the 
antisymmetric cross-ply plates have slight effect on increasing the stiffness of the plate. 
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Figure (4): Central deflection ratio-time curve of a clamped square sandwich composite plate under transverse constant 
dynamic loading,(b/h=100, ∆t=0.000025sec, q=50 kN/m2) 
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To study the effect of shear deformation on the large displacement dynamic analysis 

of a laminated composite plate under in-plane constant dynamic loading, a simply supported 
square plate with slenderness ratio (b/h=20), and with symmetric cross-ply antisymmetric 
cross-ply arrangements and with eight layers was analyzed. The initial imperfection is (wo/h= 
0.1) by which the shape is considered to be a sinusoidal curve.   

Figure (5): Effect of number of layers on the large displacement analysis of symmetric cross-ply laminated 
plate under in-plane constant dynamic loading ratio (Px/Pu=0.4), (b/h=100,�t=0.0001, wo/h=0.1) 

Figure (6): Effect of number of layers on the large displacement analysis of antisymmetric cross-ply laminated 
plate under in-plane constant dynamic loading ratio (Px/Pu=0.4), (b/h=100,�t=0.0001, wo/h=0.1) 
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  Figures (7) and (8) present the time history curves for the symmetric cross-ply, and for 
the antisymmetric cross-ply laminated composite plates by taking the through-thickness shear 
deformation through the degrees of freedom of the element.  From these figures, it can be 
noticed that increasing the number of degrees of freedom per node from five degrees to nine 
degrees will increase the central deflection about (16%) for symmetric cross-ply and about 
(20%) for antisymmetric cross-ply plates.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To study the effect of damping on the large displacement elastic-plastic dynamic 

behavior of composite plates, two examples are considered.  The first one is a simply 

Figure (7): Effect of transverse shear deformation on the large displacement analysis of symmetric cross-ply 
laminated plate under in-plane constant dynamic loading ratio (Px/Pu=0.3), (b/h=20,�t=0.0001, 

wo/h=0.1,Pu=18563 kN/m) 
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Figure (8): Effect of transverse shear deformation on the large displacement analysis of antisymmetric cross-
ply laminated plate under in-plane constant dynamic loading ratio (Px/Pu=0.3), (b/h=20,�t=0.0001, 

wo/h=0.1,Pu=16347 kN/m) 
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supported square plate with symmetric cross-ply lamination with eight layers and under in-
plane dynamic loading.  The second one is a simply supported square plate with 
antisymmetric cross-ply lamination with eight layers and under in-plane dynamic loading.  
Different values of damping factor (0.05-0.1) are considered in the present study. The initial 
imperfection shape is considered to be a sinusoidal curve.  The following geometry and layer 
material properties of high graphite epoxy are used in the analysis: (E1=172.5 GPa; E2=7.08 
GPa; G12=G13=3.45 GPa, G23=1.38 GPa; ρ=15.8 kN.sec2/m4)().  The geometry properties are 
(a=1.0 m, a/b=1). 

Figure (9) and (10) present the time history curve for a simply supported square plate 
with symmetric and antisymmetric cross-ply lamination under in-plane constant loading. It is 
noticed that the response (deflection) decreases with the increase of the damping factor. Also, 
the plate shows no oscillation about the static deflection position, this means that the plate is 
under the critical damping ratio 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 5 10 15 20 25

-1

0

1

2

3

4

Symmetric cross-ply

γ=0.05

γ=0.075

γ=0.10

Figure (9):Effect of damping factor on the large displacement analysis of a simply supported square symmetric 
cross-ply plate under in-plane constant dynamic loading, (b/h=100, �t=0.0001, wo/h=0.1, Px/Pu=0.65, 

Pu=972.4 kN/m ) 
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Figure (10):Effect of damping factor on the large displacement analysis of a simply supported square 
antisymmetric cross-ply plate under in-plane constant dynamic loading, (b/h=100, � t=0.0001, wo/h=0.1, 

Px/Pu=0.65, Pu=960 kN/m) 
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CONCLUSIONS 
A nonlinear finite element method is adopted for the large displacement dynamic analysis of 
anisotropic plates under in-plane compressive load.  Damping property is considered by using 
Rayleigh type damping which is linearly related to the mass and the stiffness matrices.  
Newmark integration method is used for solving the dynamic equilibrium equations.  The 
effects of initial imperfection, orthotropy of individual layers, fiber’s orientation angle, type 
of loading, damping factor, and on the large displacement dynamic analysis are considered. 
The conclusion it is shown that the antisymmetric cross-ply laminated plate has a damping 
rate faster than the symmetric cross-ply laminated plate and if damping is considered and if 
the response of the plate shows no oscillation about the static deflection position, it means that 
the damping factor is below the critical damping factor. So, noticed that the central deflection 
increasing with increasing the degree of freedom per node. 

 
REFERENCES 

[1] Ali, N. H., “Finite Element Dynamic Analysis of Laminated Composite Plates Including 
Damping Effect”, M.Sc. Thesis, University of Babylon, Hilla, Iraq, 2004. 

[2] Akay, H. “Dynamic Large Deformation Analysis of Plates Using Mixed Finite Elements” 
Comp. & Struct., Vol.11, 1980, pp1-11. 

[3] Ammash, H. K., “Nonlinear Static and Dynamic Analysis of Laminated Plates  Under In-
plane Forces”, Ph.D. Thesis, University of Babylon, Hilla, Iraq, 2008. 

[4] Azevedo, R.L. and Awruch, A.M. “Geometric Nonlinear Dynamic Analysis of Plates and 
Shells Using Eight-Node Hexahedral Finite Element with Reduced Integration”, J. Braz. 
Soc. Mech. Sci., Vol.21, No.3, 1999, pp.1-22. 

[5] Bathe, K.J., and Ozdemir, H. “Elastic-Plastic Large Deformation Static and Dynamic 
Analysis.”, Comp. & Struct., Vol.6, No.2, 1975, pp81-92.  

[6] Jones, R.M., “Mechanics of Composite Materials”, Second Edition, Taylor and Francis 
Inc., U.S.A., 1999. 

[7] Kao, R., “Nonlinear Dyanmic Buckling of Spherical Caps with Initial Imperfections”, 
Comp. & Struct., Vol.12, 1980, pp49-63. 

[8] Kaw, A., “Mechanics of Composite Materials”, Second Edition, Taylor and Francis 
Group, LLC, 2006. 

[9] Khante, S. N., Rode, V., and Kant, T., “Nonlinear Transient Dynamic Response of 
Damping Plates Using a Higher Order Shear Deformation Theory”, Nonlinear Dynamics, 
Vol.47, 2007, pp38-403. 

[10] Kommineni, J. R., and Kant, T. “Geometrically Non-linear Transient Co Finite Element 
Analysis of Composite and Sandwich Plates with a Refined Theory.” Struct. Eng. And 
Mech., Vol.1, No.1, 1993, pp87-102. 

[11] Pica, A., Wood, R.D., and Hinton, E. “Finite Element Analysis of Geometrically 
Nonlinear Plate Behavior Using a Mindlin Formulation.” Comp. & Struct., Vol.11, 1979, 
pp.203-215.  

[12] Pytet, M., “Introduction to Finite Element Vibration Analysis”, 1990. 
[13] Tao, Z., Tu-guang, L., Yao,Z., and Jio-zhi,L. “Nonlinear Dynamic Buckling of 

Stiffened Plates under In-plane Impact Load.”, J. Zhejiang University Science, Vol.5, 
No.5, 2004, pp609-617. 

[14] Weller, T., Abramovich, H., and Yaffe, R., “Dynamic Buckling of Beams and Plates 
Subjected to Axial Impact”, Comp. & Struct., Vol.32, No.3/4, 1989, pp835-851. 

 


