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Abstract. Structural health monitoring of pipelines by guided waves is a technique under con-
tinuous development. It proved a relevant efficiency in defects detection in pipes. The analysis
of reflections from cracks provides guidance to defects sizing. A guided wave technique capa-
ble of screening long lengths of pipes has been developed in our laboratory. The wave finite
element method, adapted for the case of hollow cylinders as waveguide, was used to calculate
reflection coefficients from different rectangular notches sizes and some singularities located in
industrial pipeline. The numerical simulations were established while varying the excitation
frequency. The aim of this work is to create a database for the identification and approximation
of defects sizes detected in an industrial installation subject of experimental tests. The results
were compared to usual finite element simulations in order to validate the technique. Good
agreement was found between the results. Thus, the database can be used to size approximately
the founded defects.
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1 INTRODUCTION

The technique of defect detection by guided-waves is the solution that becomes more and
more widespread in the non-destructive testing field. This technique allows the scanning of
long-distance pipeline from a single position through the use of guided-waves propagation along
the tested pipes and facilitates the defect detection. Torsional mode has shown relevant advan-
tages in defect detection in pipes [1, 2]. These found damages need to be dimensioned in order
to be classified depending on its severity. The reflection andtransmission of the wave through
defects gives good information about its sizes. Indeed, guided wave reflection and transmission
depends on the defect size and shape, as well as the incident wave type and frequency. Since
the near field is complex due to the presence of defects, analytical model can not readily be
used to describe the near field effect that accounts for the energy redistribution of the scattered
wave modes. Structural waveguides usually consist of many local features, such as welding,
ribs, curved members, supports and others. They could also largely destroy the original wave
form and evoke spurious echoes.

Wave propagation in waveguides has been studied for a long time as far as the question of
propagation through periodic structures was addressed [3,4]. The Wave Finite Element Method
(WFEM) was employed for the low and midfrequency descriptionof coupled structures and
the analysis of wave propagation through a notch was studied[5]. Other studies consider the
applicability of the WFEM and study the guided elastic wave propagation in cylindrical pipes
with local inhomogeneities [6]. The intact and damaged curved structures was also treated to
determine their response to incident waves [7].

In this paper, we present firstly the basis of the WFEM. This latter was then used to construct
a database of reflection coefficients from a rectangular notch in pipe with three dimensions :
depth, axial and circumferential extents. The chosen mode was the torsion and calculations was
made in the frequency range[5− 15]kHz.

2 WAFE FINITE ELEMENT METHOD

In this section, we present the basis of the WFEM that was used to construct a database of
reflection coefficients from defects and features in the pipe. A hybrid WFE/FE method was
employed for the scattered field calculation [6].

By using axisymmetric elements, WFE method for the 1-D wave propagation problem is
employed to extract the wave numbers and mode shapes for axisymmetric modes (longitudinal
modes L(0, m) and torsional modes T(0, m)). Those eigenmodesare then superposed to form
a scattering equation by connecting with FE formulation of the pipe segment with inhomo-
geneities. The dynamic reduction technique, component modal synthesis (CMS) is combined
to formulate a numerically efficient scattering equation when dealing with the complex sub-
structure models. This reduction technique fully takes into account the fact that the pipelines
usually have some standard local features, and also allows various types of 3-D defects to be
considered with ease.
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Figure 1: Structure discretized to identical cells

2.1 Finite element description

The structure can be discretized to identical cells as is shown in figure 1. The general FE
formulation of a typical cell for the 1-D wave propagation inthe pipe can be written as
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where [D] is the structure dynamic stiffness matrix, subscripts l, r andi denote the left, right
and interior components, respectively. Assume that no external force be applied at interior dofs,
eq.1 is condensed as

[

Sll Slr

Srl Srr

]{

ql

qr

}

=

{

Fl

Fr

}

, (2)

where

Sll = Dll −DliDii
−1Dil ; Slr = Dlr −DliDii

−1Dir ;
Srl = Drl −DriDii

−1Dil ; Srr = Dri −DriDii
−1Dir.

To describe the wave motion, eigensolution need to be decomposed to positive and negative
going wave modes for the computational purpose. These modesinclude both the propagating
and non-propagating modes. Through the eigensolutions, the non-reflecting boundaries are
described by the incident wave mode bases

qr = [q+]A+, Fr = −[F+]A+. (3)

Substitution into Equation 2 yields
{

(SrlS
−1

ll Slr − Srr)[q
+]− [F+]

}

A+ = SrlS
−1

ll Fl. (4)

From Equation 4, the excited wave modes can be calculated fora given excitation. The wave
field is thus represented fully by the incident wave modes.

The eigenmodes in the structural waveguide that come from the spectral solutions of WFE
method can be superposed to describe the wave field. Those eigenmodes travel independently
and do not interfere with one another. A set of wave modes can be traveling at the same time
in the waveguides, thus the motion at any point therein is simply regarded as the sum of the
motion of various modes. The incident, reflected and transmission waves can be expressed as

qinc = [q+]Λ+Ainc, qref = [q−]Λ−Aref , qtra = [q+]Λ+Atra, (5)
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whereqinc andqtra are formed of the same bases,[q+] and [q−] are normalizedN by Nr

matrices,Ainc, Aref andAtra denote the amplitudes of the corresponding waves,Λ+ andΛ−

are diagonal matrices relating respectively to the positive and negative going waves, which are
given as

Λ± = diag
{

e±jkix
}

, (i = 1, 2, ...Nr). (6)

Analogically, we can obtain the expressions ofFinc, Fref andFtra :

Finc = [F+]Λ+Ainc, Fref = [F−]Λ−Aref , Ftra = [F+]Λ+Atra, (7)

where the force vectors are also eigenvectors or obtained from the displacement vectors.

2.2 Wave propagation in an infinite structural waveguide with a local defect

Consider an infinitely long structure with the local inhomogeneities which are due to the
geometry or material variation. A monochromatic incident wave, which comprises a single or
multiple wave modes, is assumed to be generated atx − ∞ and travel in the positivex − ∞

direction. Scattering phenomenon emerges when the incident wave impinges on those inhomo-
geneities as is shown in figure 2.
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Figure 2: Waves propagation through damaged coupling structure.

The resultant wave field consists of the incident and scattered components (both reflection
and transmission).The modeling of damaged cell is similar to that of typical one for modes
extraction except that additional interior dofs might be included. The coupling condition is
governed by the dynamics equation of coupling structures that can be condensed as
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Considering the couple conditions
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the governing equations for the scattering problem can be obtained from eq. 7 :
[
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Given a single or a set of incident modes as the input in Equation 10, scattered modes (re-
flection and transmission) acting as the output can be obtained. Numerically, the base number
Nr is suggested to be frequency dependent, which can be implemented by a routine to include
those slightly evanescent wave modes into the bases.
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To numerically describe the wave mode scattering, the reflection and transmission coeffi-
cients are defined by the solution of response from Equation 11:

Ri =
A

ref
i

Ainc
i

, Ti =
Atra

i

Ainc
i

(12)

wherei = 1, 2, ..., Nr. It should be mentioned that the coefficients depend not onlyon the de-
fects, but also on the normalization method of eigenmodes and the size of intact part of waveg-
uide that included for the reduction of high order near-fieldmodes. The change of the phase of
the coefficient with the frequency is partially owing to the size of intact part of waveguide in
coupling structure model.

3 NUMERICAL IMPLEMENTATIONS

Guided wave techniques have two main objectives: defect localization and defect sizing.
The location of the defect can be easily evaluated from the reflection of a well tuned wave
packet. Practically, the time frequency analysis or denoise processing of the obtained testing
signal is necessary. The sizing of the defects is much more difficult, because the reflection or
transmission signal depends not only the defect size or shape, but also the mode type and fre-
quency, potential mode conversion, and the attenuation dueto dissipation, leakage or geometry.
However, the wave-defect interaction analysis will help tofind out which type of modes are
sensitive to a given type of defects. Generally, the numerical wave-defect interaction analysis
will provide a reference of the sizing in the practical test,at least to some extent.

3.1 Methodology

To construct the database of reflection coefficients, a numerical finite element model of a
pipe-damaged section was created. The defect is a rectangular notch with three-dimensional
variables: depth, axial and circumferential extents (figure 3). These parameters can describe
most of defects types that can be encountred such as (notchs,corrosion, metal loss ...). The pipe
is steel with a densityρ = 7800kg.m−3, a Young modulusE = 2.1011Pa and a Poisson‘s ratio
ν = 0.3. The outer diameter is168mm and the thickness of the pipe wall is11mm. Reflection
coefficients calculation was made depending on the frequency in the range[5 − 15]kHz. This
latter corresponds practically to the signal frequency by wich the pipe under test was excited.
The torsion mode was considered in the calculation process.In fact, the inspection system use
this mode to generate guided waves for the defect detection.

a

b

c

Figure 3: Damaged pipe with defect dimensions.
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The waveguide 1 is a pipe section connected to the waveguide 2wich is a coupling structure
with defect and it is in turn connected to waveguide 3 similarto the1st one (see figure 4). Several
iterations conduct us to obtain a database that contain reflection coefficients as a function of four
variables :a, b, c andf , respectively, axial, depth, circumferential extents andfrequency.

(a)

Defect

(b)

Figure 4: Finite element models of waveguides : (a) Waveguide 1 and 3, (b) Waveguide 2

3.2 Numerical results and interpretations

Figure 5 shows the reflection coefficients variation with frequency for different defect sizes.
These curves prove the dependence of reflection coefficientswith the excitation frequency. Gen-
erally speaking, these coefficients increase with the frequency. Figure 6 shows the reflection
coefficients variation with axial, circumferential and depth defect extents at 10kHz for different
sizes. These curves demonstrate the increase of the reflection coefficients with the defect sizes.
The database constructed by a large diversity of defect sizes let us to plot the 3-D curves show-
ing the evolution of reflection coefficients with two chosen variables from the defect dimensions
(a, b or c) at a given frequency. In figure 7 we can see 3-D graphsof the reflection coefficients
variation with defect sizes at10kHz. It is clear that the reflection monotonically increases with
axial extent at constant depth and vice versa, it also increases with circumferential extent at
constant axial extent and vice versa.
Figure 8 shows color maps of the 3-D reflection plot in figure 7.The lines are isolines of con-
stant reflection coefficient as described by the color bar. From these isolines we can observe
that the reflection coefficient obtained for example at a certain depth and axial extent is also
obtained at smaller depth and larger axial extent.

4 CONCLUSIONS

In this study, the Wave Finite Element Method was used to calculate the reflection coeffi-
cients from a rectangular notch, with varying dimensions, located in a pipe excited by torsional
mode. The database created will serve for the sizing of defects detected by an experimental
inspection system. Results show the increase of the reflection coefficients with the defect sizes
and its dependence on the frequency. The reflection coefficients generally have nonlinear rela-
tionship with defects size of transverse size except at somefrequencies. This means the choice
of central frequency is crucial for the accurate estimationof the damage severity.
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Figure 5: Reflection coefficients variation with frequency for : (a) different defect depth witha = 8mm, c =
60mm; (b) different defect circumferential-extents witha = 8mm, b = 5mm; and (c) different defect axial-
extents withc = 132mm, b = 8mm
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Figure 6: Reflection coefficients variation with : (a) defectaxial-extents for different circumferential and depth
sizes; (b) defect circumferential-extents for different axial and depth sizes; and (c) defect depth for different cir-
cumferential and axial sizes; at10kHz
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Figure 7: 3D graph of reflection coefficients at10kHz with : (a) varying depth and axial extent(c = 72mm),
(b) varying circumferential and axial extents (through thickness defect) and, (c) varying depth and circumferential
extent(a = 8mm).
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Figure 8: Color map of reflection coefficients at10kHz with : (a) varying depth and axial extent(c = 72mm),
(b) varying circumferential and axial extents (through thickness defect) and, (c) varying depth and circumferential
extent(a = 8mm).
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