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Abstract. Structural health monitoring of pipelines by guided waves is a technique under con-
tinuous development. It proved a relevant efficiency in defects detection in pipes. The analysis
of reflections from cracks provides guidance to defects sizing. A guided wave technique capa-
ble of screening long lengths of pipes has been developed in our laboratory. The wave finite
element method, adapted for the case of hollow cylinders as waveguide, was used to calculate
reflection coefficients from different rectangular notches sizes and some singularities located in
industrial pipeline. The numerical simulations were established while varying the excitation
frequency. The aim of this work is to create a database for the identification and approximation
of defects sizes detected in an industrial installation subject of experimental tests. The results
were compared to usual finite element simulations in order to validate the technique. Good
agreement was found between the results. Thus, the database can be used to size approximately
the founded defects.
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1 INTRODUCTION

The technique of defect detection by guided-waves is thetisol that becomes more and
more widespread in the non-destructive testing field. Téchnique allows the scanning of
long-distance pipeline from a single position through the of guided-waves propagation along
the tested pipes and facilitates the defect detection.idrmbmode has shown relevant advan-
tages in defect detection in pipés|[1, 2]. These found damaged to be dimensioned in order
to be classified depending on its severity. The reflectiontearmtsmission of the wave through
defects gives good information about its sizes. Indeedjegliwave reflection and transmission
depends on the defect size and shape, as well as the incideattype and frequency. Since
the near field is complex due to the presence of defects, ralynodel can not readily be
used to describe the near field effect that accounts for taeggmedistribution of the scattered
wave modes. Structural waveguides usually consist of macgl features, such as welding,
ribs, curved members, supports and others. They could algel{ destroy the original wave
form and evoke spurious echoes.

Wave propagation in waveguides has been studied for a lomgds far as the question of
propagation through periodic structures was address@j.[he Wave Finite Element Method
(WFEM) was employed for the low and midfrequency descriptidrcoupled structures and
the analysis of wave propagation through a notch was styfljedther studies consider the
applicability of the WFEM and study the guided elastic wavepagation in cylindrical pipes
with local inhomogeneities [6]. The intact and damaged edrstructures was also treated to
determine their response to incident waves [7].

In this paper, we present firstly the basis of the WFEM. Thigtatias then used to construct
a database of reflection coefficients from a rectangularmioi@ipe with three dimensions :
depth, axial and circumferential extents. The chosen madgetie torsion and calculations was
made in the frequency rangfe— 15|k H 2.

2 WAFE FINITE ELEMENT METHOD

In this section, we present the basis of the WFEM that was wsedristruct a database of
reflection coefficients from defects and features in the .pipehybrid WFE/FE method was
employed for the scattered field calculation [6].

By using axisymmetric elements, WFE method for the 1-D waveggation problem is
employed to extract the wave numbers and mode shapes fgnaxistric modes (longitudinal
modes L(0, m) and torsional modes T(0, m)). Those eigenmadethen superposed to form
a scattering equation by connecting with FE formulationhef pipe segment with inhomo-
geneities. The dynamic reduction technique, componentairghthesis (CMS) is combined
to formulate a numerically efficient scattering equationewldealing with the complex sub-
structure models. This reduction technique fully takes mtcount the fact that the pipelines
usually have some standard local features, and also allavisus types of 3-D defects to be
considered with ease.
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Figure 1: Structure discretized to identical cells

2.1 Finite element description

The structure can be discretized to identical cells as isvehno figure[1l. The general FE
formulation of a typical cell for the 1-D wave propagatiortlire pipe can be written as

D; D, D Q F
D; D, D, q; = F; ) (1)
Drl Dri Drr qr Fr

where [D] is the structure dynamic stiffness matrix, suipgst, r andi denote the left, right
and interior components, respectively. Assume that namatéorce be applied at interior dofs,

eqld is condensed as
Su Siu qQ _ F,
|: Srl Srr :| { qr } B { Fr } ’ (2)

Sy =Dy —D;D;; 'Dy; S, =D, —D;D; 'D; ;
S,=D,,-D,D; 'Dy; S, . =D,;—D,D; 'D,.

where

To describe the wave motion, eigensolution need to be deoseajto positive and negative
going wave modes for the computational purpose. These modesle both the propagating
and non-propagating modes. Through the eigensolutiomsndm-reflecting boundaries are
described by the incident wave mode bases

q, = [q+]A+7 FT = _[F+]A+~ (3)
Substitution into Equatioll 2 yields

{(Srlsl_llslr - Srr)[q—w - [F+]} A+ = SrlSl_llFl' (4)

From Equation}4, the excited wave modes can be calculateddiven excitation. The wave
field is thus represented fully by the incident wave modes.

The eigenmodes in the structural waveguide that come frensplectral solutions of WFE
method can be superposed to describe the wave field. Thoseneagles travel independently
and do not interfere with one another. A set of wave modes eanaveling at the same time
in the waveguides, thus the motion at any point therein iplimegarded as the sum of the
motion of various modes. The incident, reflected and trassiom waves can be expressed as

qinc — [q+]A+Ainc7 qref — [qi}AiAref, qtra — [q+]A+AtTCL, (5)
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whereq* and q""* are formed of the same baséq;"| and [q~] are normalizedV by N,
matrices,A™¢, A"/ and A"* denote the amplitudes of the corresponding wakesand A~
are diagonal matrices relating respectively to the pas#ind negative going waves, which are
given as

A* = diag {57} (i =1,2,...N,). (6)

Analogically, we can obtain the expressiondfc, F ¢/ andF! :
ch — [:F—i-]A—i—-Amc7 Fv'ef — [F_]A_Aref, Ftra — []:—‘1—1—]/\—I—-At'ra7 (7)
where the force vectors are also eigenvectors or obtaioed tine displacement vectors.

2.2 Wave propagation in an infinite structural waveguide wit a local defect

Consider an infinitely long structure with the local inhomogigies which are due to the
geometry or material variation. A monochromatic incidemtve, which comprises a single or
multiple wave modes, is assumed to be generatad-ato and travel in the positive — oo
direction. Scattering phenomenon emerges when the inoicire impinges on those inhomo-
geneities as is shown in figuré 2.

Incident wave

E—
: Coupling W 4
Waveguide structure aveguide
structure with defect structure
< E—
Reflected wave Transmitted wave

Figure 2: Waves propagation through damaged couplingtsieic

The resultant wave field consists of the incident and s@tteomponents (both reflection
and transmission).The modeling of damaged cell is simdathat of typical one for modes
extraction except that additional interior dofs might beluded. The coupling condition is
governed by the dynamics equation of coupling structurassdhn be condensed as

s sp 1\ [ F
[Sil Sir]{qi “LF [ ®

Considering the couple conditions

qf = [q"] A"+ [qT] A", qf = [qF] AT 9)
and
Fj= [F*]A™ + [F ] A, F; = [F'] A", (10)
the governing equations for the scattering problem can beredd from eql17 :
Sila™] — [F7] S, la*] } { Arel } [ [F*] - Sj[a"] } ine
r = Amel 11
Sla]  Sclat)+ B ]| A Ssplqt] AT @D

Given a single or a set of incident modes as the input in EquHt0, scattered modes (re-
flection and transmission) acting as the output can be amaiNumerically, the base number
Nr is suggested to be frequency dependent, which can be imptethby a routine to include
those slightly evanescent wave modes into the bases.

4
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To numerically describe the wave mode scattering, the tedle@nd transmission coeffi-
cients are defined by the solution of response from Equafibn 1

Al
= A?L:nc’

tra
Ai

Ri - :
Aénc

(12)

T;

wherei = 1,2, ..., Nr. It should be mentioned that the coefficients depend not onlthe de-
fects, but also on the normalization method of eigenmoddslansize of intact part of waveg-
uide that included for the reduction of high order near-frelodes. The change of the phase of
the coefficient with the frequency is partially owing to theesof intact part of waveguide in
coupling structure model.

3 NUMERICAL IMPLEMENTATIONS

Guided wave techniques have two main objectives: defeetilation and defect sizing.
The location of the defect can be easily evaluated from tleateon of a well tuned wave
packet. Practically, the time frequency analysis or denpi®cessing of the obtained testing
signal is necessary. The sizing of the defects is much mdiieuti, because the reflection or
transmission signal depends not only the defect size oreshm also the mode type and fre-
guency, potential mode conversion, and the attenuationaddissipation, leakage or geometry.
However, the wave-defect interaction analysis will heldibtal out which type of modes are
sensitive to a given type of defects. Generally, the nuraén@ave-defect interaction analysis
will provide a reference of the sizing in the practical testieast to some extent.

3.1 Methodology

To construct the database of reflection coefficients, a nicaldinite element model of a
pipe-damaged section was created. The defect is a recaangutch with three-dimensional
variables: depth, axial and circumferential extents (&d8). These parameters can describe
most of defects types that can be encountred such as (hotshssion, metal loss ...). The pipe
is steel with a density = 7800kg.m 3, a Young modulusZ = 2.10*! Pa and a Poisson's ratio
v = 0.3. The outer diameter is68mm and the thickness of the pipe walli$mm. Reflection
coefficients calculation was made depending on the frequierthe rangg5 — 15|k Hz. This
latter corresponds practically to the signal frequency Ighwhe pipe under test was excited.
The torsion mode was considered in the calculation prodadact, the inspection system use
this mode to generate guided waves for the defect detection.

Figure 3: Damaged pipe with defect dimensions.
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The waveguide 1 is a pipe section connected to the wavegumdeh?is a coupling structure
with defect and it is in turn connected to waveguide 3 sintddhe1*t one (see figurig 4). Several
iterations conduct us to obtain a database that contairctietecoefficients as a function of four
variables :a, b, c and f, respectively, axial, depth, circumferential extents fiequency.
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Figure 4: Finite element models of waveguidgs] (a) Wavegtidnd 3} (§) Waveguide 2

3.2 Numerical results and interpretations

Figurel® shows the reflection coefficients variation witlgtrency for different defect sizes.
These curves prove the dependence of reflection coeffimgtfiishe excitation frequency. Gen-
erally speaking, these coefficients increase with the freequ Figuré 6 shows the reflection
coefficients variation with axial, circumferential and ttedefect extents at 10kHz for different
sizes. These curves demonstrate the increase of the reflectefficients with the defect sizes.
The database constructed by a large diversity of defect szeis to plot the 3-D curves show-
ing the evolution of reflection coefficients with two chosemigbles from the defect dimensions
(a, b or c) at a given frequency. In figure 7 we can see 3-D graptie reflection coefficients
variation with defect sizes a0k H z. It is clear that the reflection monotonically increasegwit
axial extent at constant depth and vice versa, it also iseeavith circumferential extent at
constant axial extent and vice versa.

Figurel8 shows color maps of the 3-D reflection plot in figur@ e lines are isolines of con-
stant reflection coefficient as described by the color banmFthese isolines we can observe
that the reflection coefficient obtained for example at aateriepth and axial extent is also
obtained at smaller depth and larger axial extent.

4 CONCLUSIONS

In this study, the Wave Finite Element Method was used toutatie the reflection coeffi-
cients from a rectangular notch, with varying dimensioasated in a pipe excited by torsional
mode. The database created will serve for the sizing of tefetected by an experimental
inspection system. Results show the increase of the reftectiefficients with the defect sizes
and its dependence on the frequency. The reflection coefficgenerally have nonlinear rela-
tionship with defects size of transverse size except at Soegeencies. This means the choice
of central frequency is crucial for the accurate estimatibtihe damage severity.
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Figure 5: Reflection coefficients variation with frequenoy f[(a] different defect depth with = 8mm, ¢ =
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