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Abstract. This work shows an application of the Smoothed Particle Hydrodynamics (SPH) 
for the numerical modeling of engineering problems involving rapid evolution over time, high 
strain and gradients, heterogeneity, deformable contours and the presence of mobile material 
interfaces.  

Following a Lagrangian approach the continuum is discretized by means of a finite number of 
material particles carrying physical properties and moving according to Newton’s equations 
of the classical physics. Spatial derivatives of a variable at a point are approximated by using 
the information on the neighboring particles based on the kernel approximation.  

This paper recalls the basics of the method along with some numerical aspects concerning 
boundaries treatment, time integration scheme etc.; furthermore some details are provided 
about the recent improvements carried out for SPH simulations of: a) non-cohesive sediment 
flushing by rapid water discharge in an hydropower reservoir, b) underwater explosion for 
bottom sediment resuspension in an artificial reservoir.  

Numerical examples are illustrated and discussed concerning 2D and 3D test cases carried 
out with the aim of investigating the basic features of both sediment dynamics and gas 
explosion: obtained results shows that the SPH method can be applied to model the relevant 
engineering aspects of the considered problems and can be a helpful tool for future design 
applications in the field of hydropower reservoir management. 
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1 INTRODUCTION 
The key idea at the base of a meshfree method is to obtain a discretization of the 

continuum through a set of arbitrarily distributed nodes (or particles) that lack of a connective 
mesh and can adapt to possible topological and geometrical changes. 

With respect to traditional grid-based approaches, a meshless method allows tracing the 
deformation undergone by the material without excessive degradation of numerical results 
(owing to conflicts between mesh and physical compatibility) and high computational effort 
(e.g. adaptive mesh refinement). 

When the nodes assumes a physical meaning (i.e. they represent material particles carrying 
physical properties such as mass, momentum etc.) is said a meshfree particle method and 
follows, in general, a Lagrangian approach. 

Among the different meshfree particle methods the Smoothed Particle Hydrodynamics 
(SPH) was originally developed as a probabilistic model for simulating astrophysical 
problems [1, 2]. It was later modified as a deterministic meshfree particle method and applied 
to continuum solid and fluid mechanics [3, 4] because the kinematics and dynamics of the 
liquid particles, responding to Newton’s Equations of the classical physics, could be described 
in analogy with the simulation of the collective movement of astrophysical particles at large 
scale. 

According to standard SPH, a continuous physical quantity A(x), defined on the domain  
as a function of the position vector x, and its spatial derivatives at the i–th material point are 
approximated by using the information on the neighboring particles based on the kernel 
estimate. 

This procedure adopts a kernel function W(r, h), which is continuous, non-zero and 
depends on the modulus of the relative position r = |xi - xj| of the neighboring j–th particle 
falling within a circular space (spherical in 3D problems) with radius 2h, where h is generally 
referred to as the smoothing length (Fig.1). 

 
Figure 1: Typical representation of particle discretization and kernel function. 

The SPH approximation of the field function A(x) originates from the concept of integral 
representation:  

       xxxxx 


  dAA   (1) 
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In Eq.1 the Dirac delta function  is replaced by the kernel function leading to the kernel 
approximation:  

      


 xxx dAhrWA ,  (2) 

The discrete form of the Eq.2, for the set of material particles representing the discretized 
continuum, can be obtained by the so called particle approximation:  
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The summation in Eq.3 is extended over the N–neighboring particles, having volume 
Vj = mj  / j, falling within the compact support (or influence domain) I of the i–th particle. 

In a similar fashion it can be demonstrated that the particle approximation of the function 
derivative can be obtained by shifting the differential operation on the kernel; two alternative 
expressions are commonly adopted in fluid mechanics [5, 6]:  
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Applying the SPH interpolation, the Lagrangian form of the Navier-Stokes equations for a 
weakly compressible viscous fluid can be transformed into a system of ordinary differential 
equations that, by adopting the equations (4) and replacing W(rij, h) with Wij, are written as:  
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The additional term ij in Eq.5 is the so called Monaghan artificial viscosity [4] introduced 
for numeric stability:  
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The are several advantages that can be obtained from such an approach: representation of 
the evolution of both free-surfaces, moving-interfaces and breaking becomes more simple to 
face with [7]; treatment of large deformation and shock problems becomes a relatively easier 
task [8]; the particle tracking along with the relevant field variables can be obtained by 
numerical solution of the discretized set of governing equations in Lagrangian form [9]. 
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2 NUMERICAL ASPECTS 
The solution strategy of a meshfree particle method follows a pattern similar to a grid-

based method.  
The computational domain is divided into a finite number of particles, followed by the 

numerical discretization of the system of partial differential equations according to the 
procedure described in the previous section; the resulting ordinary differential equations are 
solved through any stable time-stepping algorithm [10]: here a first order explicit numerical 
scheme is used and a cubic spline function is adopted for kernel representation [8].  

The obtained velocity field allows one to update the particle position x and to compute the 
density field by means of the continuity equation (1); the pressure pi at each point is then 
calculated through the equation of state for a weakly compressible fluid and then smoothed 
out:  
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Solid boundaries are treated by means of the semi-analytic technique [8]. Each portion of 
the solid contour contributing to the mass and momentum equations of the generic i-th 
particle is replaced by a fluid region extending beyond the boundary and treated as a material 
continuum with uniform velocity (ub = ui), and hydrostatic pressure distribution (Fig.2).  

 

”i   

 

x 

y 

Fluid-dynamic field 

’i  
A B 

C 

Pi 

z 

Solid boundary 

2h  

r

r

rb



ub

extended fluid region

ui

 

”i   

 

x 

y 

Fluid-dynamic field 

’i  
A B 

C 

Pi 

z 

Solid boundary 

2h  

r

r

rb



ub

extended fluid region

ui

 
Figure 2: Scheck of boundary treatment (2D case). 

A typical term for boundary contribution in the balance equations is: 
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In Eq.8  = f (, ) denotes the solid angle under which the i-th particle sees the portion of 
the solid boundary intersected by its sphere of influence and the integrals Jn (n=1, 2, 3) 
depends on the boundary’s geometry and can be computed analytically. 

3 MODELING NON-COHESIVE SEDIMENT FLUSHING 
This Section illustrates some details concerning the SPH modeling of fluid-sediment 

coupled dynamics in flushing problems induced by rapidly varied water flows.  
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Figure 3: Sketch of the bottom sediment. 

In a typical situation schematized by Fig.3, the solid grains can be: a) at or very close to 
the fluid-sediment interface and thus exposed to the hydrodynamic bottom shear or b) hidden 
by the overlaying solid particles.  

3.1 Exposed grains  
In the first condition the erosion of a single grain is evaluated by means of a failure 

criterion which is based on the Shields theory and defines a critical threshold that triggers the 
motion of the solid particle. 

The critical bottom shear for an horizontal bed b cr,0 is evaluated through the Shields 
parameter cr which can be computed as a function of the grain Reynolds number Re*:  

  



 /Re

)( 50**
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

  (9) 

The erosion of the grain occurs only if the critical bottom shear is exceeded by the 
hydrodynamic bottom shear:  
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*ub    (10) 

From equations (9) and (10) follows that the friction velocity u* should be evaluated for 
determining particle erosion: this is obtained from the computed fluid velocity ul at a given 
position z close to the water-sediment interface and assuming a logarithmic velocity profile:  

 
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 An iterative procedure should be applied since the characteristic bed roughness z0 is a 
function of the friction velocity in turn. 

Additional corrective coefficients should be introduced in order to account for a reduction 
of b cr,0 owing to both longitudinal and transverse bed slope [11]. 

If a solid particle is eroded it is considered as a viscous fluid whose kinematics and 
dynamics responds to the governing equations (5); elsewhere is treated as explained in the 
following point. 

3.2 Hidden grains 
In the second condition granular particles are treated as part of the boundary and excluded 

from the computation of the velocity and density fields; their total pressure (pi
tot) is imposed 

according to the lithostatic condition and then included in the pressure smoothing of the fluid 
particles:  
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Equations (13) imply that the total pressure at the i-th particle inside the solid matrix can 
be evaluated only if i

s and i
ws are known: this means that the local fluid-sediment interface 

needs to be identified at each time step. Such task is accomplished, with a relatively reduced 
effort, within the algorithm for the neighboring particle search: the spatial domain is divided 
into squared columns with base length of 2h and, for each column, the highest solid and the 
lowest fluid particles are stored and adopted for imposing the total lithostatic pressure at every 
time step. 

4 MODELING GAS EXPLOSION   
The explosion process of a high explosive (HE) material is characterized by a violent 

oxidation involving a chemical compound and an oxidizer; since the internal energy of the 
products is lower then the one of the reactants, a great amount of heat (say reaction heat) is 
quickly released [12]. 

Even if such a phenomenon develops at very high speed of reaction, in the early phase it is 
characterized by two distinct inhomogeneous zones: a detonation-produced explosive gas and 
a non-oxidized explosive; between them a very thin layer exists which represents the front of 
a reacting shock wave (detonation wave) advancing with a characteristic velocity U. 

Anyway in several applications the detonation speed can be assumed indefinitely high and 
the HE charge completely transformed into gaseous products; their expansion can be analyzed 
by considering the Euler equation for an inviscid fluid and assuming adiabatic process [6, 13]. 

As a result the viscous contribution at the right hand side of the linear momentum Eq.5 is 
neglected, and a balance equation for the gas internal energy is introduced: 
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The state equation given by eq.15 is used for adiabatic transformation.  

   iii ep  1  (15) 

The kernel function adopted in subsequent analyses is a quintic spline [14], while the time 
integration is carried out through an explicit numerical scheme deriving from the symplectic 
algorithm [15]. 

5 NUMERICAL EXAMPLES  
This section provides some numerical results concerning basic SPH simulations of both 

sediment flushing and gas explosion; the models previously described are adopted. 

5.1 Sediment flushing  
In the following are illustrated 2D and 3D numerical simulations of non-cohesive sediment 

flushing by a rapid water flow.  

 
Figure 4: Longitudinal cross-section of the sediment flushing model. 

The problem set up is schematized in Fig.4: it simplifies a more refined laboratory test [16] 
for the analysis of sediment erosion at the midsection of a long-narrow artificial reservoir 
induced by the opening of the bottom outlet for siltation control.  

In order to moderate the computational time, the volume of both sediment and stored water 
has been lowered by reducing the longitudinal length of the tank toward its left-hand 
boundary; at the initial time the same water level as in the abovementioned experiment has 
been assumed, thus keeping the hydraulic head invariant. 

The horizontal deposit of non-cohesive sediment is composed of uniform sand with median 
diameter d50=0.1 mm, bed porosity n=0.53 and saturated unit volume density s=1750 kg/m3.  

The longitudinal measures of the SPH model are shown in Fig.4; the transverse thickness 
of the 3D model is equal to 0.03m; the resulting total particles number (water plus sediment) 
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is 3300 and 9900 respectively in the 2D and 3D geometry (transverse thickness equal to 0.03 
m); other relevant physical and numerical model parameters are summarized in Tab.1. 
 

MODEL PARAMETERS 
h0 interpart. distance 0.01 m 
h smoothing length 1.25 h0 
0 water ref. density 1000 kg/m3 
s sediment ref. density 1750 kg/m3 
 water viscosity 1.0E-3 Pa/s 
s sediment viscosity 750 Pa/s 
 water comp. modulus 1.0E-6 kg/(m s2) 
s sediment comp. mod. 1.75E-6 kg/(m s2) 
M artificial viscosity  0.2 
M artificial viscosity  0.0 
p pressure smoothing  0.2 
d50 median grain diameter  1.0E-4 m 
ks   char. grain roughness  3.0 d50 

 
Table 1: Principal model parameters adopted for flushing computations. 

At the initial time the sediment bed has a vertical thickness of 0.165 m; the water height is 
0.8 m and it is discharged from the lower right-hand side of the tank at a constant flow rate of 
q0 = 7.9E-3 m3/s producing the scouring of the bottom sediment.  

 
Figure 5: Comparison of eroded profile in 3D (left-hand) and 2D geometry at t = 11.0 s. 

Fig.5 shows a comparison of the eroded sediment profiles at time 11s; water particles are 
depicted in blue while the color of solid grains depends on their status: the red indicates fixed 
particles (both hidden and exposed) that are treated as a solid boundary and excluded from the 
computation, while the green color denotes eroded sediment transported as bed load; the latter 
are located in that zone where the velocity reaches the highest values (see Fig.6) and are 
confined within a distance of 2h from the water-sediment interface. 

From Fig.5 can be seen a good qualitative agreement between 3D and 2D model: similar 
water free surface and eroded profile are obtained; in both cases the sediment slope is 
characterized by the presence of a sub-horizontal berm past the intake: this is consistent with 
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the velocity profile along the flow path during the transient phase and is confirmed by the 
experimental test during the early phase.  

 
Figure 6: Pressure (left-hand) and velocity profile in 3D model. 

Figure 6 displays pressure and velocity profiles obtained with the 3D geometry at t = 9.00 s: 
lithostatic pressure distribution in the fixed solid particles is visible; the velocity modulus is 
maximum around the intake. 

5.2 Gas explosion 
In the following are shown some numerical simulations of the expansion process of a HE 

gas; both the underwater and vacuum expansion of a circular-shaped charge are considered. 
As previously specified the detonation velocity U is assumed to be indefinitely high with 
respect to the gas kinematic: thus the explosive charge is assumed completely detonated.  

Table 2 summarizes the relevant model parameters adopted in subsequent computations. 
 

MODEL PARAMETERS 
h0 interpart. distance 0.005 m 
h smoothing length 1.3 h0 
0 water ref. density 1000 kg/m3 
g0 gas ref. density 1630 kg/m3 
e0 spec. detonation energy 4.29E+06 J/kg 
cs speed of sound 5.0E+4 m/s 
M artificial viscosity  0.2 
M artificial viscosity  10.0 
v velocity smoothing  0.2 
W water state equation  1.4 – 7.0 
G gas state equation  1.4 

 
Table 2: Principal model parameters adopted for gas explosion computations. 

When considering the vacuum gas expansion, at the initial time 20 particles are placed in 
the radial direction while 60 particles are positioned along the tangential direction resulting in 
a total number of 1200. The particle position, velocity and pressure are depicted in Fig.7 at 
time intervals of 10s; axes labels are in meters. 
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Figure 7: Expansion of detonated gas in vacuum; axes scale in meters. 
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The charge centre represents a singular point since no particle is placed on it and this 
explains the lower pressure. 

The expansion process reflects theoretical expectation until t=40s: past that time some 
irregularities in the pressure distribution at the outer boundary of the gaseous mass appear; 
such a fact should be connected with the lack of information owing to the low number of 
neighbors in the interaction domain of external particles. 

Such non-physical behavior is however avoided if a surrounding medium is considered for 
confinement of the explosive charge.  

 
Figure 8: Expansion of detonated gas surrounded by a water crown into a rigid box; axes scale in meters. 

Fig.8 shows the expansion of a circular charge surrounded by a water crown and confined 
in a rigid squared box with length of 0.30 m; the simulation is carried out considering the 
same compressibility modulus for both gas and water (i.e. G /W = 1).  

The upper left-hand panel displays the initial configuration and the position of the gauges 
for pressure detection on the transversal and diagonal directions; continuous green line 
denotes the rigid box contour. 

The central and right-hand upper panels show particles position, velocity modulus and 
pressure at time t = 0.07 ms when the water impacts with the box walls. 

The lower panel shows pressure distribution at initial time (t = 0.0 ms) and at the impact 
time (t = 0.07 ms): in the latter a pressure wave is reflected by the box wall and propagates 
backward along the transversal direction with a peak of about 1 GPa. 

The simulation ends at 0.2 ms: after the gas and water particles have completely expand 
occupying the whole box internal volume, symmetrical jets originates from both transversal 
and diagonal directions thus pumping the gas toward the box center and producing a 
contraction of its volume. 
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Figure 9: Expansion of detonated gas surrounded by a water crown into a rigid box; axes scale in meters. 

Fig.9 shows the results obtained when increasing to 7.0 the value of the gamma water 
constant in the state equation (i.e. G /W = 0.2). 

The particles dynamics is rather similar to that one described in the case G /W = 1: anyway 
now the water compressibility modulus is greater than the gas and this produces reflected 
pressure waves with higher peaks and celerity; the pulsation frequency of the gas expansion 
and contraction described in the previous analysis is also increased. 

6 CONCLUSIONS 
An advanced application of the Smoothed Particle Hydrodynamics method for the 

numerical modeling of rapid multiphase flow and underwater explosion problems have been 
illustrated in this paper. 

The basic features of the numerical model adopted for simulating both non-cohesive 
sediment flushing and underwater expansion of a HE gas have been illustrated. 

The proposed results have shown that the physics of the investigated problems can be 
simulated with an adequate degree of accuracy for engineering applications. 
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8 LIST OF SYMBOLS 
A physical field function (scalar or vector) 
Cn normalization factor for kernel functions 
cs speed of sound 
d50 median sediment diameter  
D /Dt material derivative 
e internal energy 
ks characteristic grain roughness height    
h smoothing length 
h0 initial interparticle distance  
V  particle volume  
m  mass  
n  dimension of the physical space  
N neighboring particles 
p pressure  
p0 reference pressure 
rij=|xi-xj| modulus of the relative distance vector 
u* friction velocity 
U detonation wave characteristic velocity  
r radial unit vector  
g gravitational acceleration vector 
u velocity vector  
uij relative velocity vector  
ub velocity vector of the solid boundary 
x position vector  
xij relative position vector  
dV elementary volume  
M, M constants of Monaghan artificial viscosity 
 Dirac delta function 
 state equation parameter 
 fluid compressibility modulus 
 Von Kàrmàn constant  
, , r spherical coordinates  
 dynamic viscosity
 cinematic viscosity
 Monaghan artificial viscosity 
 density  
s sediment density  
g gas density  
0 reference density  
cr Shields parameter 
p pressure smoothing coefficient 
b cr,0 critical bottom shear stress (horizontal bed) 
b hydrodynamic bottom shear 
s solid particle distance from the water-sediment interface 
w local draught of the water-sediment interface 
ws fluid particle distance from the water-sediment interface  
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W kernel smoothing function 
d elementary volume of the continuum 
 spatial domain  
I compact support (or influence domain) of the i-th particle 
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