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Abstract. Shear walls play an important role to the seismic strength of modern seismic resis-
tant structures. They are designed so that they have significant bending and shear strengths 
and ductility. However, existing structures have lightly reinforced shear walls. In most cases, 
especially under cycling loading, shear cracks appear reducing the shear capacity of the wall. 
Here, a typical shear wall of an existing structure is examined in which it is assumed that a 
crack has been formed. For the modeling of the geometry of the crack a new approach is ap-
plied, using the notion of fractal geometry. The aim of the paper is the estimation of the post-
cracking strength of the wall, taking into account the geometry of the cracks and the mixed 
friction-plastification mechanisms that develop in the vicinity of the crack. Due to the signifi-
cance of the crack geometry a multi-resolution analysis is performed. The materials (steel and 
concrete) are assumed to have elastic-plastic behaviour. For concrete both cracking and 
crushing are taken into account in an accurate manner. On the interface unilateral contact 
and friction conditions are assumed to hold. For every structure resulting for each resolution 
of the interface, a classical Euclidean problem is solved. The obtained results lead to interest-
ing conclusions concerning the post-cracking strength of lightly reinforced shear walls. 
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1 INTRODUCTION 

Shear walls play a significant role to the seismic strength of structures built in seismic prone 
areas. Shear walls in modern structures are designed to have significant bending and shear 
strengths and ductility. However, shear walls in old, existing buildings have been constructed 
using poor materials and usually have inadequate shear strength. In such elements, shear 
cracks appear reducing their overall capacity. The aim of this paper is to apply, a new ap-
proach in order to estimate the post-cracking strength of a shear wall which is part of an exist-
ing structure, taking into account the geometry of the formed cracks. To this end, the notion of 
fractal geometry is applied in order to approximate the geometry of the crack.  

It is well known that the geometry and structure of the interface between two solid surfaces in 
contact is of fundamental importance to the study of friction, wear, lubrication and also 
strength evaluation. Experimental studies [1], [2], [3], [4] have shown that the fracture inter-
faces have irregularities of all scales, and require advanced mathematical models for their de-
scription. In general, the actual contact between two real interfaces is realized only over a 
small fraction in a discrete number of areas. Consequently, the real area of contact is only a 
fraction of the apparent area [5], [6] and the parameters of the actual contact regions are 
strongly influenced by the roughness of the contacting surfaces. For that, fractal contact mod-
els are suitable for the simulation of contact. 

The fractal approach adopted here for the simulation of the geometry of the cracks formed in 
the shear wall, uses computer generated self-affine curves for the modelling of the interface 
roughness, which is strongly dependent on the values of the structural parameters of these 
curves. The computer generated interfaces, which are characterized by a precise value of the 
resolution  of the fractal curve, permit the study of the interface roughness on iteratively 
generated rough profiles. This fact makes this approach suitable for engineering problems, 
since it permits the satisfactory study of the whole problem with reliable numerical calcula-
tions. 

Among the aims of this paper is to study how the resolution of a fractal interface F  affects 
the strength of a reinforced concrete shear wall element, in which it is assumed that a crack 
has been developed. The geometry of the crack is modelled through the application of the 
principles of fractal geometry. On the interface between the two cracked surfaces, unilateral 
contact and friction conditions are assumed to hold. The applied approach takes into account 
the nonlinear behaviour of the materials, including the limited strength of the concrete under 
tension. The shear wall is applied to shear loading. As a result of the applied approach, the 
contribution of the friction between the cracked surfaces is taken into account, as well as the 
additional strength coming from the mechanical interlock between the two faces of the crack. 
For every structure resulting for each resolution of the interface, a classical Euclidean prob-
lem is solved by using a variational formulation [7]. 

2 FRACTAL REPRESENTATION OF ROUGH INTERFACES 

The fractal nature of material damage has been a matter of a very intense research during 
the last three decades. The fractal nature of fracture surfaces in metals was shown more than 
20 years ago by Mandelbrot et. al. [1]. In this paper the authors studied the fracture of cracked 
surfaces in metals fractured either by tensile or impact loading, which were shown to develop 
fractal structure over more than three orders of magnitude. In quasi-brittle materials observa-
tions have shown that fracture surfaces display self-affine scale properties in a certain range 
of scales which is in most cases very large and which greatly depends on the material micro-
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structure. This is true for a large variety of quasi-brittle materials such as rock, concrete, wood 
and ceramics [8], [9]. 

Fractal sets are characterized by non-integer dimensions [10]. The dimension of a fractal 
set in plane can vary from 0 to 2. Accordingly, by increasing the resolution of a fractal set, its 
length tends to 0 if its dimension is smaller than 1 (totally disconnected set), or tends to infin-
ity if it is larger than 1. In these cases the length is a nominal, useless quantity, since it 
changes as the resolution increases. Conversely, the fractal dimension of a fractal set is a pa-
rameter of great importance because of its scale-independent character.  

Many methods which are based on experimental or numerical calculations, such as the 
Richardson method [10], have been developed for the estimation of the fractal dimension of a 
curve. According to this method, dividers, which are set to a prescribed opening  , are used. 
Moving with these dividers along the curve so that each new step starts where the previous 
step leaves off, one obtains the number of steps ( )N  . The curve is said to be of fractal nature 
if by repeating this procedure for different values of   the relation 

 ( ) ~ DN       (1) 

is obtained in some interval (*) (*) .     The power D denotes the fractal dimension of the 
profile, which is in the range 1 2.D  The relation between the fractal dimension D  of this 
profile and the dimension of the corresponding surface is 1sD D  [10]. 

The idea of self-affinity is very popular in studying surface roughness because experimental 
studies have shown that usually, under repeated magnifications, the profiles of real surfaces 
are statistically self-affine to themselves [1], [11]. The self-affine fractals were used in a 
number of papers as a tool for the description of rough surfaces [12]-[17]. Typically, such a 
profile can be measured by taking height data iy  with respect to an arbitrary datum at 

N equidistant discrete points ix  and following the procedure presented in [18]. Here, fractal 

interpolation functions are used for the passage from this discrete set of data 

  , , 0,1, 2,...,i ix y i N  to a continuous model, where   ,i ix yF 0,1,..., .i N  It has been 

proved [18] that there is a sequence of functions     1n nx T x F F , where 0 0:T C C is 

an operator defined by: 

    1 1
1 ( )( ) ( ) ( )n n i i i n i ix T x c l x d l x g 
    F F F    (2) 

for 1[ , ], 1, 2,..., .i ix x x i N   The operator T converges to a fractal curve F , as n  . The 

transformation il  transforms 0[ , ]Nx x  to 1[ , ]i ix x  and it is defined by the relation 

 ( ) .i i il x a x b     (3) 

The factors id  are the hidden variables of the transformations and they have to satisfy 

0 1id   in order for 0 0:T C C  to have a unique fixed point. Moreover, the remaining pa-

rameters are given by the following equations: 

    1 0/i i i Na x x x x      (4) 

        1 0 0 0/ /i i i N i N Nc y y x x d y y x x        (5) 

    1 0 0/i N i i Nb x x x x x x    (6) 
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        1 0 0 0 0 0/ / .i N i i N i N N Ng x y x y x x d x y x y x x       (7)  

The fractal interpolation functions give profiles which look quite attractive from the view-
point of a graphic roughness simulation. In higher approximations these profiles appear 
rougher as it is shown in the next section where the first to fourth approximations of a fractal 
interpolation function are presented. Moreover, the roughness of the profile is strongly af-
fected by the free parameters , 1,...,id i N  of the interpolation functions. As these parameters 

take larger values, the resulting profiles appear rougher. 
It must be mentioned here that an important advantage of the fractal interpolation functions 
presented here is that their fractal dimension can be obtained numerically [18] and is given by 
the relation: 

 1 1

1 1

| | | | 1.
N N

D D D D
i i i i

i i

d a d a    

 

       (8) 

3 DESCRIPTION OF THE CONSIDERED PROBLEM 

In Figure 1 a reinforced concrete shear wall element is presented which is assumed to be 
part of a typical existing structure built during the 60s or 70s. The wall is reinforced by a dou-
ble steel mesh consisting of horizontal and vertical rebars having a diameter of 8mm and a 
spacing of 200mm. The quality of the steel mesh is assumed to be S220 (typical for buildings 
of that age). At the two ends of the wall the amount of reinforcement is higher. Four 20mm 
rebars of higher quality (S400) are used, without specific provisions to increase the confine-
ment. The thickness of the wall is 200mm and the quality of concrete is assumed to be C16, 
typical for this kind of constructions. The wall is fixed on the lower horizontal boundary. 

The considered shear wall is divided into two parts by a crack which is assumed that has 
been formed as a result of the action of an earthquake. Obviously, the depicted crack has been 
formed due to shear failure of concrete. For the description of the geometry of the crack, the 
notion of fractals is used. More specifically, the crack is assumed to be a fractal interface, de-
scribed by the fixed point of a fractal interpolation function interpolating the set of data 
      1.0, 2.95 , 0.4, 2.0 1.8,1.0 3.2,0.5 .  The free parameters of the fractal interpolation 

function are taken to have the values 1 2 3 0.50.d d d    

The objective here is to estimate the capacity of the shear wall under an action similar to 
the one that has created the crack. For this reason, a horizontal displacement of 20mm is ap-
plied on the upper side of the wall (see Fig. 1). Moreover, a vertical distributed loading Nq  is 

applied on the upper horizontal boundary, creating a compressive axial loading. The resultant 
of this loading is denoted by N . For ,N  six different values will be considered from 0 to 
2.500 kN with a step of 500 kN. 

As it was mentioned in the previous section, self-affine interfaces are adopted for the inter-
face simulation. The computer generated interfaces , 1, 2,...n n F  are only images “pre-

fractals” characterized by a precise value of the resolution  n  of the fractal set. The resolu-

tion  n  is related to the  n -th iteration of the fractal interpolation function and represents 

the characteristic linear size of the interface. As it is shown in Fig. 2 where four iterations of a 
fractal interface are given, the linear size of the interface changes rapidly when higher order 
approximations are taken into account. It is assumed that the opposite sides of the fracture are 
perfectly matching surfaces, so only one side of the fracture was generated by using the de-
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scribed fractal interpolation function. By applying relation (8) the fractal dimension D  of the 
interface studied here results to be equal to 1.369. 

fixed boundary
x

y

#O8/200
4O20 4O20

N
q

P,δ

 
Figure 1: The considered shear wall. 

1st resolution 2nd resolution

3rd resolution 4th resolution  
Figure 2: The first four resolutions of the fractal crack. 
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In Table 1 the characteristics of each resolution are presented. The resolution ( )n  for each 
iteration ( )n  is given in the second column of Table 1. The last column of this table presents 

the total crack lengths ( )nL  in m. 
 

Iteration 
( )n  

Resolution 
( )n  (m) 

Interface length 
( )nL  (m) 

1st 1.404 4.888 
2nd 0.468 4.946 
3rd 0.156 5.080 
4th 0.052 5.373 

Table 1: Characteristics of the considered structures 

For the modelling of the above problem the finite element method is used. In order to 
avoid a much more complicated three-dimensional analysis, two-dimensional finite elements 
were employed, however, special consideration was given to the incorporation of the nonlin-
earities that govern the response of the wall. More specifically, the mass of the concrete was 
modelled through quadrilateral and triangular plain stress elements. The finite element discre-
tization density is similar for all the considered problems [19]. This rule ensures that the dis-
cretization density will not affect the comparison between the results of the various analyses 
that were performed.  

 The modulus of elasticity for the elements representing the mass of concrete was taken 
equal to 21E  MPa and the Poisson’s coefficient equal to 0.16  . The material was as-
sumed to follow the nonlinear law depicted in Fig. 3a. Under compression, the material be-
haves elastoplastically, until a total strain of 0.004. After this strain value crushing develops 
in the concrete, leading its strength to zero. A more complicated behaviour is considered un-
der tension. More specifically, after the exhaustion of the tension strength of concrete, a sof-
tening branch follows, having a slope 710sk  MPa. Progressively the tension strength of 

concrete is also zeroed. The above uni-directional nonlinear law is complemented by an ap-
propriate yield criterion (Tresca) which takes into account the two-dimensional stress fields 
that develop in the considered problem. For the simulation of cracking a smeared crack algo-
rithm is used, in which the cracks are evenly distributed over the area of each finite element 
[20]. 

The steel rebars were modelled through two-dimensional beam elements, which were con-
nected to the same grid of nodes as the plain stress elements simulating the concrete. At each 
position, the properties that were given to the steel rebars take into account the reinforcement 
that exists in the whole depth of the wall. For example, the horizontal and vertical elements 
that simulate the steel mesh are assigned an area of 100.5 mm2 that corresponds to the cross-
sectional area of two 8mm steel rebars. For simplicity, the edge reinforcements were simu-
lated by a single row of beam elements that have an area of 1256mm2 (i.e. 4314mm2). For 
the steel rebars, a modulus of elasticity 210E  MPa was assumed. Moreover, the nonlinear 
laws of Fig. 3b,c were considered for the S220 and S400 steel qualities respectively. These 
laws exhibit a hardening branch, after the yield stress of the material is attained. 

Figure 4 depicts the finite element discretizations for the structures that correspond to the 
third and fourth iterations of the fractal interface. The grey lines in the finite element meshes 
correspond to the positions of the steel rebars. The distance between the two facing parts of 
the interface is only 0.1mm. Special attention was given in the modelling so that the steel re-
bars retain their initial horizontal and vertical positions, i.e. no eccentricity exists between the 
corresponding rows of beam finite elements due to the formation of the crack.  



O. Panagouli,  E. Mistakidis and K. Iordanidou 

 

 7

 

a)

b)

ε

σ (MPa)

220

0.2ya

264

-220
-264

c)

400

0.2ya

480

-400
-480

0.004

13.6

1.6

ε

σ (MPa)

ε

σ (MPa)

sk

compression

tension

 
Figure 3: The adopted materials laws a) C16 concrete, b) S220 steel, c) S400 steel. 

      
Figure 4: F.E. discretizations for third and fourth approximations of the fractal interface. 

In this paper, only the finite element models corresponding to the 3rd and 4th approxima-
tions of the fractal crack were considered, because 1st and 2nd approximations don’t have 
meaning from the engineering point of view.  
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At the interfaces, unilateral contact and friction conditions were assumed to hold. The Cou-
lomb’s friction model was followed with a coefficient equal to 0.6 At each scale, where a 
classical Euclidean problem is solved, a variational formulation [7] was used in order to de-
scribe the contact between the two parts of the crack.  

For every value of the vertical loading N ,  a solution is taken in terms of shear forces and 
horizontal displacements at the interface, for different values of the resolution of the cracked 
wall and for the case of the uncracked wall. The aim of this work is to study the behaviour of 
the shear wall, i.e. the behaviour of the concrete and the forces in the rods, as the vertical 
loading and the resolution of the interface change. 

Two cases are considered: 
 In the first case the wall is uncracked. 
 In the second case, where a fractal crack F  has been developed in the wall, different 

resolutions are taken into account in order to examine how the resolution of a fractal 
interface F  affects the strength of a reinforced concrete shear wall element.  

The solution of the above problems is obtained through the application of the Newton-
Raphson iterative method. Due to the highly nonlinear nature of the problem, a very fine load 
incrementation was used. The maximum value of the horizontal displacement (20mm) was 
applied in 2000 loading steps, while the total vertical loading was applied in the 1st load step 
and was assumed as constant in the subsequent steps.  

4 EXPERIMENTAL AND NUMERICAL RESULTS  

Figure 5 presents the applied horizontal load verse the corresponding displacement ( P   
curves) for the different values of the vertical loading N . It has to be noticed, starting from 
the case of the uncracked wall, that the value of the vertical loading plays a significant role. 
As the value of the vertical loading increases, the capacity of the wall to undertake horizontal 
loading increases as well. However, for the higher load values (for N=2.000 and 2.500 kN), 
strength degradations are noticed. As it will be explained later, these degradations have their 
nature to the exhaustion of the shear strength of concrete. However, after this strength degra-
dation, the resistance of the wall increases again as a result of the transfer of the loading from 
the concrete to the horizontal steel rebars. 

Coming now to the cases of the cracked walls, the beneficial effect of the normal compres-
sive loading is once more verified. This result holds for both the 3rd and the 4th approxima-
tions of the fractal crack but for small displacement values only. For larger displacement 
values, the two variants of the cracked wall behave differently. The 4th approximation appears 
to have a stable behaviour without strength degradations. However, it is noticed that in the 
case of the 3rd approximation and for heavy axial loading, significant strength degradation 
takes place.  

The above results can be more easily understood if we compare in the same diagram the 
curves obtained for the three different structures studied here (uncracked, 3rd iteration, 4th itra-
tion) for specific load levels. Figure 6 gives the P-δ curves for three cases of axial loading, 
namely for N=0, N=1500kN and N=2.500 kN. It is noticed that for low values of the com-
pressive axial loading, there is actually no difference between the uncracked and the cracked 
walls. In all the cases the horizontal loading is easily transferred and no signs of strength deg-
radation are noticed. That means that the wall works mainly in bending and the shear forces 
are well below the shear strength of the wall. For moderate axial loading values (i.e. for 
N=1.500 kN), it is noticed that the uncracked wall appears to have greater strength that the 
cracked variants examined here. It is also noticed that the 4th iteration of the fractal crack 
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leads to greater ultimate strength. This fact can be primarily attributed to the fact that the 4th 
iteration seems to lead to a greater degree of interlocking between the two parts of the crack.  
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Figure 5: Load-displacement (P-δ) curves for the cases of the uncracked and cracked walls. 

However, the most interesting case is that of the heave axial loading (N=2.500 kN).   First, it 
can be noticed that the behavior of the 4th approximation of the fractal crack leads to results 
that are close enough to those of the uncracked wall. There exist some differences for hori-
zontal displacements in the range of 2-6mm. In this range the uncracked wall exhibit greater 
resistance. However, for 6mm, the uncracked wall appears strength degradation and after this 
displacement value the results of the 4th approximation of the fractal crack are again very 
close to those of the initially uncracked wall.  
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Significantly different is the case of the 3rd approximation of the fractal crack. It is noticed 
that although in the first loading steps the results follow closely those of the 4th approximation, 
after a displacement value of 3mm significant strength degradation appears, having the form 
of successive vertical branches. The ultimate strength of this wall is significantly lower than 
the other variants.  
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Figure 6: Comparison of the behaviour of the three variants of the examined wall for specific values of the com-

pressive axial loading. 

It is interesting to try to explain this significantly different behaviour that appears between 
the walls corresponding to the 3rd and 4th approximations of the fractal crack. For this reason, 
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all the parameters affecting the behaviour of the wall will be comparatively studied in the se-
quel. 

N=500 kN 

N=1500 kN 

N=2500 kN 
Figure 7: Cracking strains for various values of the vertical loading, for  the cases of the uncracked wall (left 

column) and the cracked walls (3rd approximation- middle column and 4th approximation – right column). 
 

Figure 7 depicts the cracking strains of concrete for specific values of the axial loading. All 
the depicted results correspond to the end of the analysis, i.e. they have been obtained for an 
applied horizontal displacement of 20mm. First of all, it can be noticed that for low values of 
the axial loading, the cracking patterns that have been developed in all the studied walls are 
rather similar. The larger cracking strain values (yellow and grey colours) have their nature in 
the bending deformation of the wall. For moderate axial loading, the cracking patterns are 
quite different. The uncracked wall has again a bending type cracking pattern. The cracked 
walls seem to behave differently. Both of them exhibit significant cracking in the vicinity of 
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the crack (grey colors). Apart from this, shear type cracking patterns develop at the upper 
parts of the walls.  

The above results alone cannot explain the significantly different responses that the two 
cracked variants of the wall exhibit. For this reason, the plastic strains of concrete are exam-
ined in the following. Figure 8 depicts the plastic concrete strains for the three different vari-
ants of the wall and for specific values of axial loading. The upper value of the presented 
scale corresponds actually to the crushing limit (grey values). Therefore, it can be considered 
that the concrete stresses in these areas are actually zero. For the uncracked wall (left column 
of Fig. 8) it can be noticed that the more heavily deformed region is the lower right corner. It 
is clear that in this case the wall exhibits a typical bending type deformation behaviour (crack-
ing at the lower left region, crushing at the lower right corner).  

N=500 kN 

N=1500 kN 

N=2000 kN 
Figure 8: Plastic strains for various values of the vertical loading, for  the cases of the uncracked wall (left 

column) and the cracked walls (3rd approximation- middle column and 4th approximation – right column) 
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On the other hand, the cracked walls seem to deform significantly in the vicinity of the 

crack. This phenomenon is more pronounced in the case of the 3rd approximation of the frac-
tal wall. Especially in the case of heavy axial loading, it can be noticed that the vicinity of the 
crack is in crushed state, i.e. in this region the forces are transmitted solely by the steel mesh 
(the concrete has no ability to transfer any kind of forces). For the case of the 4th approxima-
tion, this phenomenon is rather limited, i.e. it can be concluded that in this case the crack re-
tains partial its ability to transfer shear and compressive forces through the contact and 
friction phenomena that develop in the interface and through the mechanical interlocking that 
occurs between the two interface parts. 

It is now interesting to examine the deformations that have occurred at the steel mesh. Fig-
ure 9 displays the steel mesh for the three variants of the considered wall and for different 
values of the vertical loading. The presented deformations correspond to the last load step and 
have been magnified by a factor of 10 so that the differences between the examined cases 
visible.  

 
N=500 kN 

 
N=1500 kN 

 
N=2500 kN 
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Figure 9: Deformation of the steel mesh for various values of the vertical loading, for  the cases of the un-
cracked wall (left column) and the cracked walls (3rd approximation- middle column and 4th approximation – 

right column).  
For low vertical loading values, the deformations of the steel meshes are actually very 

similar. However, for moderate values of the vertical loading (N=1.000kN) there exist some 
differences. The steel meshes of the cracked walls seem to be distorted in the vicinity of the 
right part of the formed crack. In this region the vertical rebars above and below the crack 
present an offset which can be attributed to the inability of the interface to transfer shear 
forces. For the case of heavy vertical loading, the situation is different again. The wall corre-
sponding to the 4th resolution of the fractal crack has a deformation similar to that of the case 
of the moderate loading. However, the steel mesh of the wall corresponding to the 3rd resolu-
tion of the fractal crack exhibits significant deformations all along the crack. All the upper 
vertical rebars present a significant horizontal offset with respect to the lower ones. This hori-
zontal offset is obvious even in the leftmost part of the wall. Moreover, the horizontal rebars 
of the upper part present a vertical offset with respect to the ones of the lower part. This de-
formation pattern verifies the findings that were noticed in Fig. 8 concerning the excessive 
strains in the vicinity of the crack (which had values well above the crushing strain limit). 
This deformation type of the steel mesh has its nature to the inability of the concrete to trans-
fer any loading in this case.  

 

In the sequel, the difference in the response between the 3rd and the 4th approximations of 
the fractal crack for the case of the heavy vertical loading will be explained. First of all, it has 
to be noticed that the higher vertical loading leads also to higher values of the horizontal load-
ing, as it has been explained for the case of the uncracked wall. These increased horizontal 
forces have to be transferred from the upper part of the cracked wall to its lower part. In this 
respect, three mechanisms develop in order to facilitate the horizontal load transfer: 
 Exploitation of the tensile strength of the horizontal rebars; 
 Development of friction on the part of the crack where contact forces occur; 
 Mechanical interlock between the two faces of the crack. 
The first two mechanisms are almost similar in both cracked walls. However, it is obvious 
from Fig. 6 that the higher resolution approximations of the fractal crack have improved ca-
pacity to transfer forces through the mechanical interlock mechanism. To the authors’ opinion, 
this is the most important reason for the difference in the response between the walls corre-
sponding to the 3rd and the 4th approximation of the fractal crack. For lower vertical load val-
ues the differences are rather limited, however, as the vertical loading increases, the response 
is completely different because the increased vertical forces are combined with the increased 
horizontal forces and “destroy” completely the vicinity of the interface. 

Figures 10,11 and 12 display the forces that develop at the horizontal and vertical rebars of 
the steel mesh for the three variants of the wall examined here (uncracked, 3rd approximation, 
4th approximation respectively) for displacements of 5 and 20mm. The left column of each 
figure corresponds to lower values of the axial loading (N=500kN), the middle column to 
moderate loading values (N=1500 kN) and the right column to heavy axial loading (N=2.500 
kN).   
 

For the case of the uncracked wall (Fig. 10) it is noticed that in the early horizontal loading 
steps (δ=5mm), only the vertical rebars are significantly loaded. The rebars in the left side of 
the wall have tensile forces while the rebars in the right side develop compressive forces, as a 
result of the bending of the wall. For δ=20mm, after the development of cracking in various 
parts of the initially uncracked wall, the horizontal rebars are also stressed, mainly in the areas 
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where the corresponding cracks have reduced or zeroed  the ability of concrete to transfer 
shear forces.  

 

Horizontal displacement δ=5mm 

Horizontal displacement δ=20mm 
Figure 10: Forces developed in the steel mesh for various values of the vertical loading for the uncracked 

wall (left column:  N=500 kN, middle column: N=1500 kN, right column: N=2500 kN). 
 
For the case of the 3rd approximation of the crack, it is noticed that the vertical rebars are 

stressed only for small axial loading values. For moderate and heavy axial loading, the verti-
cal rebars are only partial stressed. It deserves to be noticed that the rebar stresses are negative 
in the vicinity of the crack, a fact that verifies that the concrete is unable to transfer even 
compressive loading. Moreover, it is noticed that the rebars of the right side of the wall do not 
develop compressive stresses any more, due to the fact that the magnitude of bending that de-
velops in this case is significantly smaller than that in the case of the uncracked wall. The 
horizontal rebars are stressed only in specific areas, near the crack and in the regions where 
cracking strains have been developed. In any case, a closer look in the forces that have been 
developed in the rebars verifies the significantly decreased bending capacity of the specific 
wall. 

The situation is rather different for the case of the 4th approximation of the fractal crack. 
The corresponding rebar forces are depicted in Fig. 12. It can easily be verified that for small 
values of the axial loading, the picture of the forces of the vertical rebars is quite similar to 
that of the uncracked wall. The same holds also for the forces of the horizontal rebars. For 
moderate axial load values, the forces of the vertical rebars appear discontinuities. At the right 
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part of the crack it can be noticed that in some rebars the forces are compressive, indicating 
again the partial inability of the concrete in this region to transfer compressive loading. The 
horizontal rebars  are mainly stressed in the upper part of the cracked wall and in the vicinity 
of the crack. Notice that this result is absolutely compatible with the remarks given for the 
cracked areas in Fig. 7. 

 

 

Horizontal displacement δ=5mm 

Horizontal displacement δ=20mm 
 

Figure 11: Forces developed in the steel mesh for various values of the vertical loading for the 3rd  approxi-
mation (left column:     N=500 kN, middle column: N=1500 kN, right column: N=2500 kN). 

5 CONCLUSIONS 

In the paper, the finite element analysis of a typical wall element was presented assuming 
that a certain crack has been developed as a result of an earthquake action. The crack was 
modelled following tools from the theory of fractals. Two different resolutions of the fractal 
curve were considered and their results were compared to those of the initially uncracked wall. 
The main finding of the paper is that the cracked wall still has the capacity to sustain mono-
tonic horizontal loading. For small axial loading values, this capacity is similar to that of the 
initially uncracked wall. However, for larger axial loading values, the demands increase. In 
this case, it seems that a more accurate modelling of the fractal crack (i.e. considering higher 
values of the resolution) leads to better result. Using lower resolution values, the mechanical 
interlock between the two faces of the crack is rather limited, leading the concrete in vicinity 
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of the crack to overstressing and gradually to a complete loss of its capacity to sustain any 
kind of forces. In this case the bending capacity of the wall is significantly limited with re-
spect to that of the uncracked concrete. 

 

Horizontal displacement δ=5mm 

Horizontal displacement δ=20mm 
 

Figure 12: Forces developed in the steel mesh for various values of the vertical loading for the 4th approxi-
mation (left column: N=500 kN, middle column: N=1500 kN, right column: N=2500 kN). 
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