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Abstract. The paper is devoted to new computational techniques in structural dynamics 
where one tries to study, model, analyze and optimize very complex phenomena, for which 
more precise scientific tools of the past were incapable of giving low cost and complete solu-
tion. Soft computing methods differ from conventional (hard) computing in that, unlike hard 
computing, they are tolerant of imprecision, uncertainty, partial truth, and approximation. 
The paper deals with an application of the bio-inspired methods, like the evolutionary algo-
rithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to 
optimization problems. Structures considered in this work are analyzed by the finite element 
method (FEM) and the boundary element method (BEM). The bio-inspired methods are ap-
plied to optimize shape, topology and material properties of 3D structures modeled by the 
FEM and to optimize location of stiffeners in 2D reinforced plates modeled by the coupled 
BEM/FEM. The structures are optimized using the criteria depend on frequency, displace-
ments or stresses. Numerical examples demonstrate that the methods based on the soft com-
putation are effective for solving computer aided optimal design problems.
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1 INTRODUCTION
Structures are frequently subjected to dynamic loads and it is very important to analyze 

their transient dynamic response. Important properties of vibrating structures are eigenfre-
quencies. The dynamic response or natural frequencies of structures can be established by
changing shape, topology and material properties of structures. Another possibility of the re-
sponse improvement is applying stiffeners. The choice of their number, properties and loca-
tion in a structure decides about the effectiveness of reinforcement. Reinforced structures are 
often used in practice because they are resistant, stiff and stable. A typical area of application 
of such structures is an aircraft industry, where light, stiff and highly resistant structures are 
required. Many aircraft elements are made as thin panels reinforced by stiffeners. 

Dynamic response of structures with an arbitrary geometry, material properties and bound-
ary conditions can be obtained by carrying out laboratory tests but they are usually very ex-
pensive and time consuming. In order to reduce costs and time, computer simulations are 
performed instead of experimental investigations. As a result, dynamic quantities of interest 
like displacements, velocities, accelerations, forces, stresses, i.e. can be determined. The most 
versatile methods of analysis of structures subjected to arbitrary static and time dependent 
boundary conditions are the finite element method (FEM) and the boundary element method 
(BEM). The coupling of these methods is very desirable in order to exploit their advantages. 
Optimal properties of dynamically loaded structures can be searched using the computer aided 
optimization tools.

In the present paper, coupling FEM and BEM with the bio-inspired methods in optimiza-
tion of dynamically loaded structures is presented. The evolutionary algorithms (EA), the arti-
ficial immune systems (AIS) and the particle swarm optimizers (PSO) are used to optimize 
shape, topology and material properties of 3D freely vibrating structures and 2D dynamically 
loaded stiffened plates. The former are analyzed by the FEM and the latter by the coupled 
BEM/FEM.

2 SOFT COMPUTING METHODS
Soft computing techniques resemble human reasoning more closely than traditional tech-

niques, which are largely based on conventional logical systems or rely heavily on the 
mathematical capabilities of a computer. These computing techniques are often used to com-
plement each other in applications. It should be pointed out that simplicity and complexity of 
systems are relative, and certainly, most successful mathematical modeling of the past have 
also been challenging and very significant.

Unlike hard computing schemes, which strive for exactness and for full truth, soft comput-
ing techniques exploit the given tolerance of imprecision, partial truth, and uncertainty for a 
particular problem. Another common contrast comes from the observation that inductive rea-
soning plays a larger role in soft computing than in hard computing.

Three important areas of soft computing methods, namely:
• Evolutionary Computation (EC),
• Artificial Immune Systems (AIS),
• Particle Swarm Methods (PSM),
are presented in the paper as soft computing methods. 

2.1 Evolutionary Computation (EC) 
Evolutionary algorithms [1, 10] are algorithms searching the space of solutions and they 

are based on the analogy to the biological evolution of species. Like in biology, the term of an 
individual is used, and it represents a single solution. Evolutionary algorithms operate on 
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populations of individuals, so while the algorithm works, all the time we deal with a set of 
problem solutions. An individual consists of chromosomes. Usually it is assumed that an in-
dividual has one chromosome. Chromosomes consist of genes which are equivalents of de-
sign variables in optimization problems. The adaptation is computed using a fitness function. 
All genes of an individual decide about the fitness function value. A flowchart of an evolu-
tionary algorithm is presented in Fig. 1. 

In the first step, an initial population of individuals is created. Usually, the values of the 
genes of particular individuals are randomly generated. In the next step, the fitness function 
value for each individuals is computed. Then, evolutionary operators change genes of the par-
ent population individuals, they are then selected for the offspring population, which becomes 
a parent population and the algorithm is continuing iteratively till the end of the computation. 
The termination condition of the computation can be formulated as the maximum number of 
iterations. 

In evolutionary algorithms the floating-point representation is applied, which means that 
genes included in chromosomes are floating-point numbers. Usually the variation of the gene 
value is limited.

Figure 1: A flowchart of an evolutionary algorithm. 

A single-chromosome individual (called a chromosome) chi, i=1,2,…,N, where N is the 
population size, may be presented by means of a column or line matrix, whose elements are 
represented by genes gij, j=1,2,…,n, where n is the number of genes in a chromosome. The 
sample chromosome is presented in Fig. 2.

Figure 2: Structure of an individual.
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Evolutionary operators change gene values like the biological mechanisms of mutation and 
crossover. Different kinds of operators are presented in publications, and the basic ones are:

- uniform mutation,
- mutation with Gaussian distribution,
- boundary mutation,
- simple crossover,
- arithmetical crossover.

A uniform mutation changes the values of randomly chosen genes in randomly selected in-
dividual. The new values of the genes are drawn in such a way that they could fulfill con-
strains imposed on the variation of the gene values. The diagram of how an operator works is 
presented in Fig. 3.

Figure 3:  A diagram of an uniform mutation.

A mutation with Gaussian distribution is an operator changing the values of an individual’s 
genes randomly, similarly to uniform mutation. New values of the genes are created by means 
of random numbers with Gaussian distribution. The operator searches the individual’s sur-
rounding. 

A boundary mutation (Fig. 4) operates similarly to a uniform mutation, however, new val-
ues of the genes are equal to the left or right value from the gene variation range (left or right 
constraint on gene values).

Figure 4: A diagram of boundary mutation

A simple crossover is an operator creating an offspring on the basis of two parent individu-
als. A cutting position is drawn (Fig. 5), and a new individual consists of the genes coming 
partly form the first and partly form the second individual.
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Figure 5:  A diagram of a simple crossover

An arithmetical crossover has no biological counterpart. A new individual is formed simi-
larly to a simple crossover, on the basis of two parent individuals, however, the values of the 
individual’s genes are defined as the average value of the parent individuals’ genes (Fig. 6).

Figure 6:  A diagram of an arithmetical crossover

An important element of an evolutionary algorithm is the mechanism of selection. The 
probability of the individual’s survival depends on the value of the fitness function. Ranking 
selection is performed in a few steps.  First, the individuals are classified according to the 
value of the fitness function, then a rank value is attributed to each individual. It depends on 
the individual’s number and the rank function. The best individuals obtain the highest rank 
value, the worst obtain the lowest one. In the final step individuals for the offspring genera-
tion are drawn, but the probability of drawing particular individuals is closely related to their 
rank value.

2.2 Artificial Immune Systems (AIS) 
The artificial immune systems (AIS) are developed on the basis of a mechanism discov-

ered in biological immune systems [11]. An immune system is a complex system which con-
tains distributed groups of specialized cells and organs. The main purpose of the immune 
system is to recognize and destroy pathogens - funguses, viruses, bacteria and improper func-
tioning cells. The lymphocytes cells play a very important role in the immune system. The 
lymphocytes are divided into several groups of cells. There are two main groups B and T 
cells, both contains some subgroups (like B-T dependent or B-T independent). The B cells 
contain antibodies, which could neutralize pathogens and are also used to recognize patho-
gens. There is a big diversity between antibodies of the B cells, allowing recognition and neu-
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tralization of many different pathogens. The B cells are produced in the bone marrow in long 
bones. A B cell undergoes a mutation process to achieve big diversity of antibodies. The T 
cells mature in thymus, only T cells recognizing non self cells are released to the lymphatic 
and the blood systems. There are also other cells like macrophages with presenting properties, 
the pathogens are processed by a cell and presented by using MHC (Major Histocompatibility 
Complex) proteins. The recognition of a pathogen is performed in a few steps (Fig. 7). First, 
the B cells or macrophages present the pathogen to a T cell using MHC (Fig. 7b), the T cell 
decides if the presented antigen is a pathogen. The T cell gives a chemical signal to B cells to 
release antibodies. A part of stimulated B cells goes to a lymph node and proliferate (clone) 
(Fig. 7c). A part of the B cells changes into memory cells, the rest of them secrete antibodies 
into blood. The secondary response of the immunology system in the presence of known 
pathogens is faster because of memory cells. The memory cells created during primary re-
sponse, proliferate and the antibodies are secreted to blood (Fig. 7d). The antibodies bind to 
pathogens and neutralize them. Other cells like macrophages destroy pathogens (Fig. 7e). The 
number of lymphocytes in the organism changes, while the presence of pathogens increases, 
but after attacks a part of the lymphocytes is removed from the organism. 

a) b)  c)

d)  e) 

Figure 7: An immune system, a) a B cell and pathogen,
b) the recognition of pathogen using B and T cells, c) the proliferation of activated B cells, d) the proliferation of 

a memory cell – secondary response, e) pathogen absorption by a macrophage.

The artificial immune systems [2], [3], [4] take only a few elements from the biological 
immune systems. The most frequently used are the mutation of the B cells, proliferation, 
memory cells, and recognition by using the B and T cells. The artificial immune systems have 
been used to optimization problems in [5], classification and also computer viruses recogni-
tion in [2]. The cloning algorithm presented by von Zuben and de Castro [4], [5] uses some 
mechanisms similar to biological immune systems to global optimization problems. The un-
known global optimum is the searched pathogen. The memory cells contain design variables 
and proliferate during the optimization process. The B cells created from memory cells un-
dergo mutation. The B cells evaluate and better ones exchange memory cells. In Wierzchoń 
[13] version of Clonalg the crowding mechanism is used - the diverse between memory cells 
is forced. A new memory cell is randomly created and substitutes the old one, if two memory 
cells have similar design variables. The crowding mechanism allows finding not only the 
global optimum but also other local ones. The presented approach is based on the Wierzchoń 
[13] algorithm, but the mutation operator is changed. The Gaussian mutation is used instead 
of the nonuniform mutation in the presented approach.
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A flowchart of an artificial immune system is presented in Fig. 8. The memory cells are 
created randomly. They proliferate and mutate creating B cells. The number of nc clones cre-
ated by each memory cell is determined by the memory cells objective function value. The 
objective functions for B cells are evaluated. The selection process exchanges some memory 
cells for better B cells. The selection is performed on the basis of the geometrical distance be-
tween each memory cell and B cells (measured by using design variables). The crowding 
mechanism removes similar memory cells. The similarity is also determined as the 
geometrical distance between memory cells. The process is iteratively repeated until the stop 
condition is fulfilled. The stop condition can be expressed as the maximum number of 
iterations.

Figure 8: An artificial immune system.

2.3 Particle Swarm Methods (PSM) 
The particle swarm algorithms [12], similarly to the evolutionary and immune algorithms,  

are developed on the basis of the mechanisms discovered in the nature. The swarm algorithms 
are based on the models of the animals social behaviours: moving and living in the groups. 
The animals relocate in the three-dimensional space in order to change their stay place, the 
feeding ground, to find the good place for reproduction or to evading predators. We can dis-
tinguish many species of the insects living in swarms, fishes swimming in the shoals, birds 
flying in flocks or animals living in herds (Fig. 9). 

a) b)

Figure 9: Particles swarms: a) fish shoal (http://www.sxc.hu/photo/1187373),
b) bird flock (http://www.sxc.hu/photo/1095384).
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A simulation of the bird flocking was published in [12]. They assumed that this kind of the 
coordinated motion is possible only when three basic rules are fulfilled: collision avoidance, 
velocity matching of the neighbours and flock centring. The computer implementation of 
these three rules showed very realistic flocking behaviour flaying in the three dimensional 
space, splitting before obstacle and rejoining again after missing it. The similar observations 
concerned the fish shoals. Further observations and simulations of the birds and fishes behav-
iour gave in effect more accurate and more precise formulated conclusions [9]. The results of 
this biological examination where used by Kennedy and Eberhart [7], who proposed Particle 
Swarm Optimiser – PSO. This algorithm realizes directed motion of the particles in n-
dimensional space to search for solution for n-variable optimisation problem. PSO works in 
an iterative way. The location of one individual (particle) is determined on the basis of its ear-
lier experience and experience of whole group (swarm). Moreover, the ability to memorize 
and, in consequence, returning to the areas with convenient properties, known earlier, enables 
adaptation of the particles to the life environment. The optimisation process using PSO is 
based on finding the better and better locations in the search-space (in the natural environment 
that are for example hatching or feeding grounds).

The algorithm with continuous representation of design variables and constant constriction 
coefficient  (constricted continuous PSO) has been used in presented research. In this ap-
proach each particle oscillates in the search space between its previous best position and the 
best position of its neighbours, with expectation to find new best locations on its trajectory. 
When the swarm is rather small (swarm consists of  several or tens particles) it can be as-
sumed that all the particles stay in neighbourhood with currently considered one. In this case 
we can assume the global neighbourhood version and the best location found by swarm so far 
is taken into account –  current position of the swarm leader (Fig. 10).

Figure 10: The idea of the particle swarm.

The position of the i-th particle is changed by stochastic velocity vi, which is dependent on 
the particle distance from its earlier best position and position of the swarm leader. This ap-
proach is given by the following equations:

1 2 ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij ij j ij ij j ij ijv k wv k k q k d k k q k d kφ φ   + = + − + −    (1)
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( 1) ( ) ( 1),     1,2,...,  ;  1,2,...,ij ij ijd k d k v k i m j n+ = + + = = (2)
where:

1 1 1 2 2 2( ) ( );  ( ) ( )j j j jk c r k k c r kφ φ= = ,
m – number of the particles,
n – number of design variables (problem dimension),
w – inertia weight, 
c1, c2 – acceleration coefficients,
 r1, r2 – random numbers with uniform distribution [0,1],
di(k) – position of the i-th particle in k-th iteration step,
vi(k) – velocity of the i-th particle in k-th iteration step,
qi(k) – the best found position of the i-th particle found so far,
ˆ ( )iq k – the best position found so far by swarm – the position of the swarm leader,

 k – iteration step.

The velocity of  i-th particle is determine by three components of the sum in Equation (1). 
The first component wvi(k) plays the role of the constraint to avoid excessive oscillation in the 
search space. The inertia weight w controls the influence of particle velocity from the previ-
ous step on the current one. In this way this factor controls the exploration and exploitation. 
Higher value of inertia weight facilitates the global searching, and lower – the local searching. 
The inertia weight plays the role of the constraint applied for the velocities to avoid particles 
dispersion and guaranteeing convergence of the optimisation process. The second component 

[ ]1( ) ( ) ( )i ik q k d kφ − realizes the cognitive aspect. This component represents the particle dis-
tance from its best position found earlier. It is related to the natural inclination of the indi-
viduals (particles) to the environments where they had the best experiences (the best value of 
the fitness function). The third component [ ]2 ˆ( ) ( ) ( )i ik q k d kφ −  represents the particle distance 
from the position of the swarm leader. It refers to the natural inclination of the individuals to 
follow the other which achieved a success.

The flowchart of the particle swarm optimiser is presented in Fig. 11. At the beginning of 
the algorithm the particle swarm of assumed size is created randomly. Starting positions and 
velocities of the particles are created randomly. The objective function values are evaluated 
for each particle. In the next step the best positions of the particles are updated and the swarm 
leader is chosen. Then the particles velocities are modified by means of the Equation (1) and 
particles positions are modified according to the Equation (2). The process is iteratively re-
peated until the stop condition is fulfilled. The stop condition is typically expressed as the 
maximum number of iterations.
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Figure 11: Particle swarm optimiser – block diagram.

The general effect is that each particle oscillates in the search space between its previous 
best position (position with the best fitness function value) and the best position of its best 
neighbour (relatively swarm leader), hopefully finding new best positions (solutions) on its 
trajectory, what in whole swarm sense leads to the optimal solution.

3 SOFT COMPUTING IN OPTIMIZATION OF DYNAMICALLY LOADED 
STRUCTURES

3.1 Evolutionary generalized optimization of structures modeled by the FEM 
Consider a structure which, at the beginning of an evolutionary process, occupies a domain 
( )3

0 in EΩ , bounded by a boundary 0Γ . The domain 0Ω  is filled by a elastic homogeneous 
and isotropic material of a Young’s modulus E0 and a Poisson ratio ν . The 3-D structures are 
considered in the framework of the linear theory of elasticity. During the evolutionary process 
the domain tΩ , its boundary tΓ  and  the field of Young’s modulus 

( ) ( ), , , , ,t tE x y z E x y z= ∈Ω  can change for each generation t (for t=0, E0=const). The evolu-
tionary process proceeds in an environment in which the structure fitness is describing by 
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maximization of the objective functions: 

a) maximization of the first eigenfrequency

1max( )ω (3)

with a constraint imposed on the volume of the structure 

max

V

V V

≡ Ω

≤
(4)

b) maximization of the difference between first, second and third eigenfrequency

[ ]2 1 3 2max ( ) ( )ω ω ω ω− + − (5)

with a constraint imposed on the volume of the structure (4)

c) maximization of the difference between first, second, third eigenfrequency and forced 
vibration frequency forcedω

1 2 3max forced forced forcedω ω ω ω ω ω − + − + −  (6)

with a constraint imposed on the volume of the structure (4).

The distribution of Young’s modulus ( ) ( ), , , , , tE x y z x y z ∈Ω  in the structure is described 

by a hyper surface ( ) ( ) 3, , , , ,W x y z x y z H∈ . The hyper surface ( ), ,W x y z  is stretched under 
3 3H E⊂  and the domain tΩ  is included in 3H , i.e. ( )3

t HΩ ⊆ .

The shape of the hyper surface ( ), ,W x y z  is controlled by genes dj, j=1,2,…,N, which cre-
ate a chromosome

1 2, ,..., ,...,j Nch d d d d=  (7)

Gene values are described by the function ( ), ,W x y z  in interpolation nodes (control 

points) ( ), ,
j

x y z , i.e. ( ), ,j j
d W x y z =   , j=1,2,…,N.

The following constraints are imposed on genes

min max
j j jd d d≤ ≤  (8)

where min
jd - the minimum value of the gene and max

jd - the maximum value of the gene.

The assignation of Young’s moduli to each finite element , 1, 2,...,e e RΩ =  is performed by 
the mapping:

( ) ( ), , , , , , 1, 2,...,e ee e
E W x y z x y z e R = ∈Ω =   (9)

It means that each finite element can have different material.
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When the value of Young’s modulus for the e-th finite element is included in the interval
min0 eE E≤ < , the finite element is eliminated and the void is created, the interval

min maxeE E E≤ < , the finite element remains having the value of the Young’s modulus  from 
this material. As a result, shape, topology and material properties of the structure are changing 
simultaneously and this procedure is called evolutionary generalized optimization.

Example 1 – maximization of the first eigenfrequency of a 3D bracket

A structure like a 3D bracket (Fig. 12a) is optimized. The criterion of optimization is the 
maximization of the first eigenfrequency. The best solution obtained after 88 generations is 
presented in Fig. 12b. The Table 1 contains input data. 

Minimal Young’s 
module Maximal volume

0.4 x 2∗105 MPa 4000 mm3

Numbers of chromosomes
100

Table 1: Input data.

a) b)
Figure 12:  A 3-D bracket: a) geometrical dimensions b) distribution of Young’s moduli 

Example 2 – maximization of the difference between first, second and third eigenfrequency of 
a rectangular prism

A 3D structure in the form of a rectangular prism (Fig. 13a) is optimized. The criterion of 
optimization is the maximization of the difference between first, second and third eigenfre-
quencies. The best solution in the form of a distribution of Young’s moduli obtained after 169 
generations is performed in Fig. 13b. Input data are included in Table 2.

Minimal Young’s 
module Maximal volume

0.4 x 2∗105 MPa 4.8e4 mm3

Numbers of chromo-
somes Dimensions of cubicoid

100 200 x 80 x 12 mm

Table 2: Input data.
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a) 

b) 
Figure 13: A rectangular prism: a) dimensions, b) distribution of Young’s moduli.

Example 3 - maximization of the difference between first, second and third eigenfrequency 
and forced vibration frequency of a rectangular prism

The last example concerns optimization of a 3D structure from the previous example (Fig. 
13a). The criterion of optimization is the maximization of the difference between first, second 
third eigenfrequencies and forced vibration frequency. The best solution is obtained after 134 
generations is presented in Fig. 14. Input data are included in Table 3.

Minimal Young’s 
module Maximal volume

0.4 x 2∗105 MPa 80000 mm3

Numbers of chromo-
somes Dimensions of cubicoid

100 200 x 80 x 12 mm

Table 3. Input data

Figure 14: Distribution of Young’s moduli for a rectangular prism obtained for the resonance criterion.
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3.2 Bio-inspired optimization of structures modeled by the coupled BEM/FEM 
A two-dimensional, homogenous, isotropic and linear elastic deformable body with bound-

ary Γ1 and occupying domain Ω1, is considered. The body is modeled as a plate in plane stress 
or strain and it is reinforced by the stiffener occupying domain Ω2. The body is supported 
(displacements u(x,τ) are known at a part of the outer boundary) and subjected to dynamic 
tractions t(x,τ) (where τ is time), applied at the outer boundary, as shown in Fig.15.

Figure 15: Reinforced plate subjected to dynamic loads.

The plate is modeled by the boundary element method (BEM) [6] and the stiffener by the 
finite element method (FEM) using beam finite elements, attached along the Γ12 boundary 
(the interface). A perfect bonding between the plate and the stiffener is assumed. The whole 
structure is analyzed by the coupled BEM/FEM and the subregion method [8]. The method 
allows modeling of bodies with many plate subdomains and stiffeners of different properties. 
The numerical equations, which are written for each plate and beam subdomain separately, 
are coupled using displacement compatibility conditions and traction equilibrium conditions 
at all nodes along the common boundaries. 

A set of algebraic equations for the plate in Fig.15 has the following form:
1 1 1

1 12 1 12 1 12
12 12 12

               + =                    

��
��
u u tM M H H G G
u u t (10)

where: M is the mass matrix, H and G are the BEM coefficient matrices, u and u��  are dis-
placement and acceleration vectors, respectively, t is a vector of tractions applied at the outer 
boundary or the interface. The superscripts denote the matrices, which correspond to the outer 
boundary or the interface.

The equation of motion for the stiffener in Fig.15 in a matrix form is:
21 21 21 21 21 21+ =��M  u   K  u   T  t (11)

where: K is the FEM stiffness matrix, T is the matrix, which expresses the relationship be-
tween the FE nodal forces and the BE tractions. The latter matrix allows treatment the finite 
element region as an equivalent boundary element region. 

If the structure is subjected to time dependent boundary conditions, the dynamic interac-
tion forces between the plate and the stiffener act along the interface. These tractions are 
treated as body forces distributed along the attachment line and they are unknowns of the 
problem. The displacement compatibility conditions and the traction equilibrium conditions at 
the nodes along the interface are:

12 21 12 21;= = −u   u      t t  (12)

If the above conditions are taken into account in equations for the plate (10) and stiffener 
(11), the following system of equations for the whole structure is obtained:
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1
1 12 1 1 12 12

12 1 1
21 12 21 21

12

-
0 0

u
M M u H H G u G t

M u K T t

 
         + =      

        
 

��
�� 13)

The unknowns are displacements and tractions on the external boundary and at the inter-
face in each time step.

Example 4 – Reinforced rectangular plate

Optimization of a reinforced rectangular plate (Fig.16) is performed by means of AIS, PSO 
and EA. The plate is dynamically loaded and it is reinforced by the frame-like structure com-
posed of straight beams. The plate and the stiffeners are modeled by the boundary elements 
and frame finite elements, respectively. Different kinds of load and support are considered. 
The structure before optimization (the reference plate) is shown in Fig. 16.

Figure 16: Reinforced rectangular plate.

The length and the height of the plate is L=10 cm and H=5 cm, respectively. The thickness 
of the plate is g=0.25 cm, the dimensions of beams cross-section are 2a=0.5 cm and b=0.5 cm. 

The material of the plate and frame is aluminum and the mechanical properties are: 
modulus of elasticity E=70 GPa, Poisson’s ratio ν=0.34 and density ρ=2700 kg/m3. The mate-
rial is homogeneous, isotropic and linear elastic and the plane stress is assumed.

The uniformly distributed load is applied at the upper edge of the plate. Two kinds of time 
dependent loads are considered (see Fig.17): a) the sinusoidal load p(τ)=posin(2πτ/T) with the 
period of time T=20π µs, and b) the Heaviside load p(τ)=poH(τ). The value of the load in both 
cases is po=10 MPa. The time of analysis is 600 µs and the time step ∆t=2 µs.

Figure 17: Dynamic loadings: a) sinusoidal, b) Heaviside.

Three different supports are considered (see Fig.18): 
a) support A – the plate is fixed on the left and right edge, 
b) support B – the plate is supported at two segments, each of 0.5 cm long, 
c) support C – the plate is fixed at the bottom edge.
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Figure 18: Types of supports: a) support A, b) support B, c) support C.

The optimal positions of stiffeners are searched in order to maximize stiffness of the plate. 
The maximal dynamic vertical displacement on the loaded edge is minimized. Because of 
symmetry of the structure and boundary conditions, only a half of the structure is considered. 
The number of design variables defining the position of the frame is 4: X1, X2, Y1 and Y2 
(see Fig.19). The longer beams are parallel to the x axis. The end points of beams can move 
along the edges of the plate within the constraints, as shown in Fig.19. The constraints on de-
sign variables are imposed: X1 and X2 variables are within the range from 0.5 to 4.75 cm, Y1 
from 0.5 to 2.25 cm and Y2 from 2.75 to 4.5 cm. The parameters of AIS are: the number of 
memory cells and the clones is 6, the crowding factor and the Gaussian mutation is 0.5. The 
parameters of EA are: the number of chromosomes is 20, the probability of the Gaussian mu-
tation is 0.5, the probability of a simple and arithmetic crossover is 0.05. The parameters of 
PSO are: numbers of particles is 20, inertia weight is 0.73 and two acceleration coefficients 
are 1.47.

Figure 19: Design variables and constraints.

The total number of boundary and finite elements in the BEM/FEM analysis is 120 and 
120, respectively (each horizontal and vertical beam is discretized into 40 and 20 finite ele-
ments, respectively). The number of boundary and finite elements during the optimization is 
constant. 

The values of design variables obtained by AIS, PSO and EA for the plate subjected to the 
sinusoidal load, the Heaviside load and for three kinds of supports, are presented in Table 3. 
The results obtained by three different methods are almost the same. The values of Jo and J 
(where: Jo and J is the objective function for the reference and the optimal plate, respectively) 
and the reduction R=(Jo-J)/Jo⋅100%, are also presented.

A significant reduction R, resulting in the improvement of dynamic response of the optimal 
plates in comparison with the initial designs, can be observed. The optimal structures for dif-
ferent kinds of supports and for the sinusoidal and the Heaviside loads are shown in Fig.20a 
and Fig.20b, respectively. It can be seen that in the present example most of constraints are 
active.
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Design variables [cm]

Lo
ad Support X1 X2 Y1 Y2

Jo
[10-4cm]

J
[10-4cm]

R
[%]

AIS, PSO and EA
A 4.75 2.86 0.88 2.75 89 76 15

B 4.75 1.81 0.57 2.75 92 73 21

Si
nu

so
id

al

C 1.20 1.82 0.50 2.75 82 62 24

A 0.50 4.75 0.50 4.50 112 91 19

B 4.75 1.41 0.50 4.50 211 149 29

H
ea

vi
si

de

C 0.50 2.20 1.70 2.80 49 42 14

Table 4: Values of design variables, J and R.

Figure 20: Optimal plates subjected to dynamic loads: a) sinusoidal, b) Heaviside.

The number of fitness function evaluations by three different bio-inspired algorithms used 
in this example is presented in Table 5. It can be observed that the number of fitness function 
evaluations for obtaining the final design variables and the corresponding fitness functions 
presented in Table 5 is different and depends on the applied load and support. Generally, the 
efficiency of the AIS and the PSO is similar and much better for this particular example, than 
the efficiency of the EA. 



T. Burczyński, R. Górski, A. Poteralski and M. Szczepanik

18

EA AIS PSO

Lo
ad Support

fitness function evaluations

A 2515 336 360

B 3705 408 440

Si
nu

so
id

al

C 1952 432 520

A 303 276 60

B 1526 252 120

H
ea

vi
si

de
 

C 2797 528 580

Table 5: Efficiency of bio-inspired methods.

Example 5 – Reinforced plate with a hole

Optimization of a rectangular reinforced plate with a hole (Fig. 21) is performed by means 
of PSO with the same parameters like in the example 4. The plate is dynamically loaded and it 
is reinforced by 8 symmetrically distributed rods of circular cross-section. The plate and the 
reinforcing rods are modeled by the boundary elements and beam finite elements, respectively. 
The structure before optimization (the reference plate) is shown in Fig. 21. 

Figure 21. Reinforced plate with a hole.

The plate is stretched by a uniformly distributed load applied at its left and right edge. The 
dynamical load is defined by the Heaviside impulse p(t)=poH(t), the value of the load is po=10 
MPa. The time of analysis is T=300 µs and the time step ∆t=3 µs.

The length and the height of the plate and the hole radius is L=10 cm, H=5 cm and R=1 cm, 
respectively. The thickness of the plate is g=1 cm and the diameter of each rod is d=0.3 cm. 
Distance between the rod axes for the reference plate is 1 cm, the length of the shorter and 
longer rods is 3 cm and 4 cm, respectively. Distance between the end points of the rods to the 
left or right edge of the plate is 0.5 cm.

The plane stress is assumed. The materials of the plate (p) and stiffeners (s) are epoxy and 
steel, respectively. They are homogeneous, isotropic and linear elastic. The values of me-
chanical properties are: modulus of elasticity Ep=4.5 GPa and Es=210 GPa, Poisson’s ratio 
νp=0.37 and νs=0.3, density ρp=1160 kg/m3 and ρs=7860 kg/m3.

The optimal location of reinforcement in the interior of the plate is searched and the fol-
lowing objective function J is minimized:
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( )
2

0

AT
x

o

t
J dt

σ

σ
= ∫ (14)

where ( )A
x tσ  is the x-component of stress at the point A (see Fig. 21), oσ  is a nominal stress at 

the weakened cross-section, defined as the ratio of the applied load to the area of this cross-
section, T is a time of analysis.

The objective function (14) is minimized with respect to design variables (Xij, Yij, i,j=1,2), 
defining the coordinates of the j-th end point of the i-th rod. It is assumed that during optimi-
zation the reinforcement is symmetrical with respect to two symmetry axes. Thus only a quar-
ter of the plate with two rods is modeled (the appropriate boundary conditions at the 
symmetry axes are assumed) and the number of design variables is 8.

The constraints on design variables are imposed. The distance between the rods and the 
outer boundary (of the quarter of the plate) cannot be lower than 0.5 cm. The intersection of 
rods is not allowed. 

The total number of boundary and finite elements in the BEM/FEM analysis is 92 and 64, 
respectively (each rod is discretized into 32 finite elements).

For this example five tests were performed and similar results were obtained. The values of 
design variables for the optimal solutions, rounded off to two decimal places, are: X11=0.97 
cm, Y11=1.03 cm, X12=4.50 cm, Y12=1.50 cm, X21=1.57 cm, Y21=2.00 cm, X22=4.50 cm and 
Y22=2.00 cm. The optimal structure is shown in Fig. 22. 

Figure 22. Optimal location of rods in the plate.

Example 6 – Reinforced cantilever plate 

Optimization of a reinforced cantilever plate (Fig. 23) is performed by means of PSO with 
the same parameters like in the example 4. The dynamically loaded plate is reinforced at the 
whole non-fixed outer boundary and between two holes (at the interface between two BE re-
gions). The reinforcement has rectangular cross-section. The plate and the reinforcement are 
modeled by the boundary elements and frame finite elements, respectively. The structure be-
fore optimization (the reference plate) is shown in Fig. 23. 

Figure 23. Reinforced cantilever plate.
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The uniformly distributed load is applied at the upper edge. The plate is subjected to the 
sinusoidal load p(t)=posin(2πt/T). The amplitude of the load is po=1 MPa and the period of 
time is T=5 ms. The time of analysis is 12 ms and the time step ∆t=0.02 ms.

The length and the height of the plate is L=50 cm and H=40 cm, respectively. The other 
dimensions are: a=5 cm, b=1 cm, c=5 cm and g=1 cm. The L1, L2 and H1, H2 defining the 
shape of the cantilever, are design variables of the problem and they are within the range from 
15 to 35 cm and 0 to 25 cm, respectively.

The plane stress is assumed. The cantilever is linear elastic, isotropic and homogeneous 
and its material is steel. The values of mechanical properties are: modulus of elasticity E=210 
GPa, Poisson’s ratio ν=0.3 and density ρ=7860 kg/m3.

The optimal shape of the cantilever is searched and the following objective function J is 
minimized:

( )
2

0

AT
y

o

u t
J dt

u
= ∫ (15)

where ( )A
yu t  is a vertical displacement at the point A (see Fig. 23), ou is an admissible dis-

placement, T is a time of analysis.
The objective function (15) is minimized with respect to design variables (Li, Hi, i,j=1,2), 

defining dimensions of the structure. 
The total number of boundary and finite elements in the BEM/FEM analysis is 84 and 72, 

respectively The quadratic elements (with 2 degrees of freedom per node) are employed for 
the BEM mesh. The frame elements (with 3 degrees of freedom per node) are used for the 
FEM mesh. During optimization the number of boundary and finite elements is constant.

Figure 24. Optimal shape of the cantilever.

For this example five tests were performed and similar results were obtained. The values of 
design variables for the optimal solutions are (rounded off to two decimal places): L1=30.62 
cm, L2=35.00 cm, H1=25.00 cm and H2=25.00 cm. The optimal structure is shown in Fig. 24.

4 CONCLUSIONS 
In the paper, the formulation and application of the finite element method, the boundary 

element method and the bio-inspired methods to optimization of shape, topology and material 
properties of dynamically loaded structures for different criteria of optimization is presented. 
The bio-inspired methods can be simply implemented because they need only the values of 
objective functions. An important feature of these approaches is a strong probability of find-
ing the global optimal solutions. The described approaches are free from limitations of classic 
gradient optimization methods. 
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In the presented approach, shape, topology and material optimization is performed simul-
taneously for 3D freely vibrating structures analyzed by the finite element method. The opti-
mal location of reinforcement is searched in order to increase a stiffness or strength of 
dynamically loaded reinforced plates analyzed by the coupled boundary/finite element 
method. As a result of optimization, a significant improvement of dynamic response is ob-
tained, in comparison with initial designs.

Coupling of finite or boundary element method and the bio-inspired algorithms give an ef-
fective and efficient alternative optimization tool, which enables solving a large class of the 
optimization problems of mechanical structures. Numerical examples confirm the efficiency 
of the proposed optimization method and demonstrate that the methods based on soft comput-
ing are effective techniques for solving computer aided optimal design problems. Generally, 
for the considered numerical examples, the efficiency of the artificial immune systems and the 
particle swarm optimizers is better than the evolutionary algorithms.
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