

 COMPDYN 2011

3
rd

 ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering

M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.)

Corfu, Greece, 25–28 May 2011

Normalized domination selection criteria for differential evolution

algorithms in constrained optimization for seismic engineering

J. Avakian
1
, A. Fiore

2
, D. Serio

1
, R. Greco

2
 G.C. Marano

1

1Department of Environmental Engineering and Sustainable Development, Technical Univer-

sity of Bari, viale del Turismo 10, 74100 Taranto, Italy
2
Department of Civil and Architectural Engineering, Technical University of Bari, viale del

Turismo 10, 74100 Taranto, Italy

Keywords: Structural optimization, constrained optimization, evolution algorithms, selection

criteria

Abstract. Optimization is a central aspect of structural engineering, but its practical applica-

tion hasn't been supported by mathematical and numerical tools because of inner strong non-

linear aspects involved. Moreover during last few decades Evolutionary Algorithms (EAs)

gives new interest and horizons in this specific topic, thanks to their strong capacity in treat-

ment of these problems more efficiently than standard methods. But a common criticism to

EAs is lack of efficiency and robustness in handling constraints, mainly because they were

originally developed for unconstraint problems only. For this reason during past decade hy-

brid algorithms combining evolutionary computation and constraint-handling techniques

have shown to be effective in this specific area. Moreover still now this is a crucial point for

practical applications in structural optimization. In this paper a Normalized Domination Se-

lection-based (NDS) rule is proposed to solve constrained-handling optimization problems

using a modified version of proposed Differential Evolution algorithm (NDS - DEa). The

strategy developed doesn’t requires any additional parameter, increasing the appeal for a

simple implementation in many real problems by structural designer without a specific know-

ledge in the field. Mainly it is based on a domination criteria in selection phase. Actually a

common way for constrained handling is introducing a specific role for selection step, so that

all other phase of EA aren’t modified; in this way DE flow chart scheme doesn't present any

modification from a standard unconstrained one. Anyway the specific constrained selection

scheme plays an important role in solution search efficiency, certainly more than in uncon-

strained cases. Unconstrained selection is based only on comparing individuals OF values,

but in constrained one it seemed somewhat different and complicated. The more simple,

common and intuitive way for approaching this phase is the penalty function, where OF val-

ues are reduced for those individuals don’t satisfying constraints disqualifies (unfeasible in-

dividuals). It is immediate (and well known in literature) that depending on penalty low

adopted, a more drastic or permissive surviving of unfeasible solutions happened. But this is

a central point in this problems, because of in many cases indeed real optimal solutions lies

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

2

just on one constraints, so that its correct evaluation needs of specific research around the

boundary, not only in the feasible space. to develop this strategy the domination concept is

related to the specific selection that has to be implemented. If in a unconstrained contest it

means simply that the domination coincide with the OF ranking, in the constrained contest

the question has to be properly treated. In fact there are three possible scenarios:

 both two individuals are feasible -> selection based on rank

 both two individuals are unfeasible -> selection of the feasible one

 one is feasible and the other is unfeasible -> selection of less unfeasible

Moreover the last case presents same some ambiguity because in general there are many con-

straints with different scales, so that it is impossible to rank correctly to different unfeasible

individuals. For this reason a normalized criteria is here proposed and analyzed with differ-

ent cross over methodology. A comparative analysis using different test cases is performed.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

3

1 INTRODUCTION

Optimization techniques play an important role in many scientific, economical, social and

many other problems, the very purpose of which is to find the best way to do something or

alternatively to help decision makers to derive the maximum benefit from limited available

resources. A common way in many cases has been using past experiences in similar condi-

tions or extending indications from comparable situations. These approaches will not lead in

general to the best solution, but the shortcomings of indirect design can be overcame by

adopting a direct or optimal design procedure.

An optimization problem or an optimal design procedure consists in finding a maximum or a

minimum function problem under some constraint conditions. To deal with this class of prob-

lems many different approaches are possible in theory and many heuristic intelligent algo-

rithms have been developed for different classes of optimization problems.

Within the framework of the soft computing methodologies, an incredible number of non-

conventional paradigms has been explored in order to create efficient and user-friendly opti-

mizers. Nowadays, a wide variety of biological, social and physical metaphors has been ana-

lyzed and tested. Evolutionary Algorithms EAs are stochastic search methods that mimic the

metaphor of natural biological evolution and/or the social behavior of species. EAs are ubi-

quitous nowadays, having been effectively applied to several problems from different do-

mains, including optimization, automatic programming, machine learning, operations research,

bioinformatics, and social systems. Usually grouped under the term Evolutionary Computa-

tion or Evolutionary Algorithms, one can find the domains of Genetic Algorithms, Evolution

Strategies, Evolutionary Programming and Genetic Programming.

These are stochastic search and optimization heuristics derived from the classic evolution

theory, which are implemented on computers in the majority of cases. The basic idea is that if

only those individuals of a population reproduce, which meet a certain selection criteria, and

the other individuals of the population die, the population will converge to those individuals

that best meet the selection criteria. If imperfect reproduction is added, the population can be-

gin to explore the search space and will move to individuals that have an increased selection

probability and that inherit this property to their descendants. These population dynamics fol-

low the basic rule of the Darwinist evolution theory, which can be described in short as the

―survival of the fittest‖ . To solve optimization problems with an evolutionary heuristic the

individuals of a population have to represent a possible solution of a given problem and the

selection probability is set proportional to the quality of the represented solution.

The interest toward this class of optimizers is continuously attracting consensus, substantially

because the objective function and constraints are not required to be differentiable, conti-

nuous or even explicit. In effect, no preliminary assumptions or a priori information are

needed for solving constrained optimization problems by means of EAs.

In these author knowledge, at the moment, there isn’t a unique accepted classification of dif-

ferent EAs proposed in literature, so that a possible non exhaustive one is proposed in the fol-

lowing, where similar techniques differ in the implementation details and in the nature of the

particular applied problem.

 Genetic algorithm: This is the most popular (and older) type of EA. One seeks the solu-

tion of a problem in the form of strings of numbers (traditionally binary, although the

best representations are usually those that reflect something about the problem being

solved), by applying operators such as recombination and mutation (sometimes one,

sometimes both). This type of EA is often used in optimization problems;

 Genetic programming: Here the solutions are in the form of computer programs, and

their fitness is determined by their ability to solve a computational problem.

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Genetic_programming

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

4

 Evolutionary programming: Like genetic programming, only the structure of the pro-

gram is fixed and its numerical parameters are allowed to evolve;

 Evolution strategy - This works with vectors of real numbers as representations of solu-

tions, and typically uses self-adaptive mutation rates;

 Differential evolution: It is based on vector differences and it is therefore primarily

suited for numerical optimization problems.

 Particle swarm optimization: This is based on the ideas of animal flocking behavior

and it is also primarily suited for numerical optimization problems.

 Ant colony optimization: This is based on the ideas of ant foraging by pheromone

communication to form paths. It is primarily suited for combinatorial optimiza-

tion problems.

 Invasive weed optimization algorithm: It is based on the ideas of weed colony behavior

in searching and finding a suitable place for growth and reproduction.

 Harmony search: Based on the ideas of musicians' behavior in searching for better

harmonies. This algorithm is suitable for combinatorial optimization as well as parame-

ter optimization.

 Gaussian adaptation: This is based on information theory. Used for maximization of

manufacturing yield, mean fitness or average information. See for instance Entropy in

thermodynamics and information theory.

Among these approaches one of the more promising one is the Differential Evolution algo-

rithm (DEa): this can be defined a recent stochastic, population-based global optimization me-

thod and was proposed about a decade ago [10][11]. The algorithm is based on the use of a

special crossover-mutation operator, based on the linear combination of three different indi-

viduals and one subject-to-replacement parent. The selection process is performed via deter-

ministic tournament selection between the parent and the child created by it. It is immediate

noting that the general structure of the DEa shares similar features with other evolutionary

algorithms like GAs. For instance, both optimizers adopt the same terminology to define the

key elements of the algorithm (i.e. a collection of solutions is called ―population‖, each solu-

tion is called ―individual‖ and each iteration is called ―generation‖) and incorporate operators

(like mutation, crossover and selection scheme) that work in similar manners. Nonetheless, it

is different in handling distance and direction information to move from the population at the

current generation toward the next one because it has constructive cooperation between indi-

viduals: in this sense, it behaves like Particle Swarm Optimization algorithms (PSOs). Anoth-

er interesting feature of DEa deals with the selection operator that performs very well and

sometimes it is more efficient and faster than other population based algorithms, because of

the one-to-one competition scheme. In more general terms, its fashion can be imputable to

two positive features; firstly, the DEs provides more simple operators in comparison to the

most advanced GAs. Moreover, it requires only few embedded control parameters (typically

the total number of control parameters is less than the adopted ones for GAs and PSOAs), so

that the parameter tuning stage is less time consuming and maybe more practical for non-

experts in the field of soft computing techniques.

All attractive features of EAs are in opposition to some criticisms. For instance, EAs suffer

the lack of well posed theories about their convergence and a larger computational time is typ-

ically required. Moreover, in their original formulation they was limited to unconstrained

problems and do not include a method to incorporate feasibility information into the fitness

function. In effect, many real-world optimization problems in science and engineering involve

a number of constraints which the optimal solution must satisfy. Actually, due to constraints,

the feasible space might be reduced to some portion, sometimes very narrow if compared with

http://en.wikipedia.org/wiki/Evolutionary_programming
http://en.wikipedia.org/wiki/Evolution_strategy
http://en.wikipedia.org/wiki/Differential_evolution
http://en.wikipedia.org/wiki/Numerical_optimization
http://en.wikipedia.org/wiki/Particle_swarm_optimization
http://en.wikipedia.org/wiki/Numerical_optimization
http://en.wikipedia.org/wiki/Ant_colony_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/wiki/Combinatorial_optimization
http://en.wikipedia.org/w/index.php?title=Invasive_weed_optimization_algorithm&action=edit&redlink=1
http://en.wikipedia.org/wiki/Harmony_search
http://en.wikipedia.org/wiki/Gaussian_adaptation
http://en.wikipedia.org/wiki/Mean_fitness
http://en.wikipedia.org/wiki/Average_information
http://en.wikipedia.org/wiki/Entropy_in_thermodynamics_and_information_theory
http://en.wikipedia.org/wiki/Entropy_in_thermodynamics_and_information_theory

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

5

the overall search space. Sometimes simply finding feasible solutions itself could be a daunt-

ing challenge for some specific practical problems.

As it is know, the ultimate goal of constrained optimization problem is to find the feasible op-

timal solution. To achieve this goal in EAs, it is required that more feasible individuals are

involved in the evolution process. However, on the other hand, some infeasible individuals

may carry some information, sometime important, for the final solution than their feasible

counterparts in some generations. Hence, these two aspects lead to a contradiction in con-

strained evolutionary optimization. To address this contradiction, the main challenge is to

handle the constraints and to optimize the objective function simultaneously. One possible

way is to determinate the tradeoff between the constraint violations and the objective func-

tion.

This has trigger a considerable amount of researches and a wide variety of approaches have

been suggested in the last few years to incorporate constraints into the fitness function of an

evolutionary algorithm. The most popular approach is the use of (mainly exterior) penalty

function [12] where the aim is to decrease the fitness of infeasible solutions in order to favor

the selection of feasible solutions. Several alternative constraint-handling techniques have

been proposed [9].

Actually it is generally accepted that performance of an algorithm largely depends on the un-

derlying mechanism of constraint handling. Motivated by this fact, a number of constraint-

handling techniques have been proposed for evolutionary algorithms, and over last few years

several methods have been proposed.

These methods have been grouped by different authors into the following categories [1][2][4]:

 Methods based on preserving the feasibility of solutions. The idea behind the method

is based on specialized operators which transform feasible parents into feasible

offspring. The method assumes linear constraints only and a feasible starting point or

feasible initial population.

 Methods based on penalty functions. Many evolutionary algorithms incorporate a

constraint-handling method based on the concept of exterior penalty functions which

penalize infeasible solutions. These methods differ in important details, such as how

the penalty function is designed and applied to infeasible solutions.

 Methods which make a clear distinction between feasible and infeasible solutions.

There are a few methods which emphasize the distinction between feasible and infeas-

ible solutions in the search space. One of those methods distinguishes between feasible

and infeasible individuals: for any feasible individual x and any infeasible individual

y: f (x)f (y), i.e. any feasible solution is better than any infeasible one.

 Other hybrid methods. These methods combine evolutionary computation techniques

with deterministic procedures for numerical optimization problems. Most constrained

problems can be handled by the penalty function method. A measure of the constraint

violation is often useful when handling constraints.

According to the no free lunch theorem, it is impossible for a single constraint handling tech-

nique to outperform all other techniques on every problem. In other words, depending on sev-

eral factors such as the ratio between feasible search space and the whole search space, multi-

modality of the problem, the chosen EA and global exploration/local exploitation stages of the

search process, different constraint handling techniques can be effective on different problems

and during different stages of the search process.

The most used techniques incorporate constraints into the fitness function, such as in penalty

functions approach, but they usually eliminate all unfeasible individuals. On the other hand it

is particularly important to maintain diversity in the population and to be able to keep solu-

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

6

tions both inside and outside the feasible region. In fact, several studies have shown that, de-

spite their popularity, traditional (external) penalty functions, even when used with dynamic

penalty factors, tend to have difficulties to deal with highly constrained search spaces and

with problems in which the constraints are active in the optimum. In these situations infeasi-

ble individuals may carry more important information for the final solution than their feasible

counterparts in some generations. Hence, these two aspects lead to a contradiction in con-

strained evolutionary optimization. The use of (exterior) penalty functions is one of the most

popular methods to deal with constrained search spaces when using Constrained optimization

Evolution Algorithms (COEAs).

For these reasons an efficient and adequate constraint-handling technique is a key element in

the design of competitive COEAs to solve complex optimization problems. In this way, this

subject deserves special research efforts, with the main aim of proposing approaches able to

prevent a too fast convergence without an adequate global (feasible and unfeasible space) re-

search process. Some recent proposes in this way investigated modification of what is gener-

ally known as the Constraint Domination Selection (CDS) rule.

This methodology was initially proposed by Deb [3] as a modification of Powell and Skolnick

method which gives a dynamic penalty to each element so that at each generation the best un-

feasible element has a rank that is better than the worst unfeasible one. The Deb's method uses

a tournament selection operator, where two solutions are compared. In this method, any feasi-

ble solution is preferred to any infeasible solution; among two feasible solutions, the one hav-

ing a better objective function value is preferred and among two infeasible solutions, the one

having smaller constraint violation is preferred. Moreover all these method are static applica-

tion of a Constraint Domination Selection (CDS) rule, that practically prefers feasible solu-

tions to unfeasible ones. Finally this was implemented on different types of Evolution

Strategies in which the results were very promising [7][6]

The main motivation of this work was to increase this selection criteria to better perform con-

strained optimization by correctly using selection criteria with specific crossover operators.

Standard differential evolution algorithms in unconstrained Optimum Design

The feature of the optimal design is that it consists of only logical decisions in a mathematical

way, setting out constraints, and minimizes or maximizes an objective function, that is gener-

ally either cost, benefit or a generic merit function. Many of the methods give rise to local

minimum/maximum. This, however, depends on the mathematical nature of the optimization

problem, that generally can be described as follows:

Find the best vector x Ω that minimizes ()f x (1)

Satisfying the following constraints

() 0 i 1,2,..,i gg n x (2)

() 0 1,2,..,j hh j n x (3)

in which x = {x1,…,xj,…,xn} is a vector whose components are real numbers, f(x) is the objec-

tive function (OF) to be minimized and Ω is a box-type search space. For instance, if [x
l
j, x

u
j]

is the admissible interval for the j
th

 variable (x
l
j and x

u
j are its lower and the upper bounds, re-

spectively), then:

1 1 2 2
, , , ,l u l u l u l u

j j n n
x x x x x x x x                Ω

 (4)

where the symbol  denotes the Cartesian product between intervals.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

7

The constraints of the optimization problems can be both inequalities gi(x) or equalities hj(x).

Without loss of generality, all equalities can be converted into inequalities using the transfor-

mation   0, 1,2,..,j hh j n  x , where  is a tolerance parameter.

Therefore, in the following we will refer only to inequalities-based constraints, e.g. gp(x) ≤ 0

with p = 1,…,ng, ng+1,…,ng+nh.

A solution x is regarded as feasible if:

  
1

max 0, 0
pn

k

k

g


 x (5)

otherwise it is called as unfeasible.

A general optimization problem can be formulated as a typical minimization problem in the

form

  min

s.t. l u

f

 

x
x

x x x

 (6)

in which x = {x1,…, xj,…,xn}

is the design vector (for example the collection of n system pa-

rameters to be identified), x
l
 = {x1

l
,…, xj

l
,…,xn

l
} and x

u
 = {x1

u
,…, xj

u
,…,xn

u
}are its lower and

upper bounds, respectively. The shape of the objective function may have many local optima

and high complex topology, therefore, when preliminary information are not available it may

not always be convex. In these circumstances special optimizers have to be used.

In the following it is illustrated the state of the art of DEa for problems in form (6).

Differential evolution is a simple but powerful population-based stochastic search technique

for solving global optimization problem which is characterized by simplicity, effectiveness

and robustness. Its main idea is to construct at each generation, for each element of the popu-

lation a mutant vector. This mutant vector is constructed trough a specific mutation operation

based on adding differences between randomly selected elements of the population to another

element. The original DE algorithm is described in the following briefly. The main variation

introduced for constrained problems is in selection process, where use of CDS gives to algo-

rithms for unconstrained problem a natural extension for constrained ones. Moreover the CDS

is also applied to evaluation of ―best‖ individual over the entire population. This because

some proposed DE algorithm present a mutation that take into account information about the

―best‖ individual over the entire population. In this case a ―direction‖ to escape from con-

strained space is available at each iteration.

The general structure of a DE is typically for evolutionary algorithms, the particularity of the

algorithm being related with the mutation and crossover operators. By combining different

mutation and crossover operators various schemes have been developed. In literature different

DE schemes are denoted using the convention DE/a/b/c where a denotes the way of construct-

ing the mutant vector, b denoted the number of differences in the construction of the mutant

vector and, finally, c denotes the crossover type.

The working of DEa depends on the manipulation and the efficiency of three main operators:

mutation, crossover and selection.

2 MUTATION

The main idea of DEa is to construct at each generation for each element of the population a

mutation vector. The mutant vector is constructed through a specific mutation operation

based on adding differences between randomly selected element of the population to another

element.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

8

DEa uses the differences betiween two randomly selected individuals as the source of random

variations for a third indivdual referred to as the target vector. Trial solutions are generated

by adding weighted difference vectors to the target vector. This process is referred to as the

mutation operator: its main goal is to enable diversity in the current population as well as to

direct the individuals in such a way a better result is expected. By computing the differences

between two individuals randomly chosen from the population, the algorithm estimates the

gradient in that zone rather than in a point. Let consider
k
xi = {

k
xi1,…,

k
xij,…,

k
xin} the i

th
 indi-

vidual (for i = 1,…,N) at iteration k. The initial population
0
xi for i = 1,…, N is defined by ge-

nerating pseudo-randomly the collection of N solutions within the specified search space. In

this study the Latin Hypercube Sampling (LHS) technique has been iteratively used to gener-

ate the best initial population with minimum correlation between samples [8]. At iteration k+1,

for each individual
k
xi a mutation vector

(k+1)
vi is computed by means of one of the following

alternatives:

rand /1/bin
   1 1

1 2 3

k k k k

i r r r
F


  v x x x

 (7)

best /1/bin
   1 1

1 2

k k k k

i best r r
F


  v x x x

 (8)

current-to-best /1/bin
     1 2 1

1 2

k k k k k k

i i best i r r
F F


    v x x x x x

 (9)

best /2/bin
     1 2 1

1 2 3 4

k k k k k k

i best r r r r
F F


    v x x x x x

 (10)

rand /2/bin
     1 2 1

1 2 3 4 5

k k k k k k

i r r r r r
F F


    v x x x x x

 (11)

Two new possible mutation strategy candidates are thus here reported to evaluate their effec-

tiveness in

rand /1/bin (based on tournament selection

     1

3, 3 1, 2 1 2

 0.5

k k k k k k k k

i i r i r i r r r r
F F

if k L


    



v x x x x x (12)

rand/1/bin (based on attraction-repulsion paradigm)

     1

1 , 1, 2 1 2

 0.5

k k k k k k k k

i r best i best i r r r r
F F

if k L


    



v x x x x x

 (13)

The mutation coefficients in (12) and in (13) are calculated as follows:

   3

3,

max min

max ,0.5

k k

r ik

r i k k

f f
F

f f

  
  

  

x x (14)

   

   

1 2

max min

1, 2

1 2

max min

max ,0.5 0.5

 0.5

k k

r r

k k

k

r r
k k

r r

k k

f f
if k L

f f
F

f f
if k L

f f

   
  

    
 






x x

x x

 (15)

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

9

 min

,

max min

k k

ik

best i k k

f f
F

f f






x (16)

in which

     min max
1,..., 1,...,

min maxk k k k

i i
i N i N

f f f f
 

 x x (17)

From Equation (7) to Equation (11) r1, r2, r3 and r4 denote integers randomly selected within

the set {1,…,i-1,i+1,…,N} and r1 ≠ r2 ≠ r3 ≠ r4. The individual
k
xbest is the best performer in

the population at the iteration k. The coefficients F
1
 and F

2
 are the so-called mutation coeffi-

cients and they are real positive constants. These parameters control the amplification level

due to the mutation operator (for this reason they are also dubbed scale factors). Any alterna-

tive mutation operator leads to different versions of DEAs [10]: rand/1/bin, best/1/bin, cur-

rent-to-best/1/bin, best/2/bin, rand/2/bin, respectively. Storn and Price shown that the usage of

two difference vectors may improve the diversity of the population, especially when the popu-

lation size is high enough.

As before stated, only mutation in (8), (9) and (10) are used in the following for constrained

handling problems. This because they are specifically implemented with a ―best‖ selection

based on a CDS rule.

3 CROSSOVER

The perturbed individual
 1k

i


v and the current population

k

i
x are then subject to crossover

operation. The crossover follows the mutation phase and for each mutated vector
(k+1)

vi a trial

vector
(k+1)

ui

(offspring) is generated by using the binomial crossover formalized in Equation

(18).

 
   1

1 for 0,

k c

k ij

ij k

ij

v if u p j randint n
u

x otherwise




  

 


 (18)

In Equation (18) u is a pseudo-random number generated by using the uniform probability

density functions in the range [0,1]. The parameter p
c
 is the probability of crossover (or cros-

sover ratio or probability of reproduction) and it takes values between 0 and 1 and it is set by

the user. Moreover, randint(0,n) is a pseudo-randomly integer selected within the set

{1,…,j,…,n}: based on its realization, an additional condition is introduced to ensure that at

least one parameter is taken into account for constructing the vector
(k+1)

ui.

4 SELECTION

The selection operator in case of unconstrained problems employs a very simple one-to-one

competition scheme between
(k+1)

ui and
(k+1)

xi as follows

 

       1 1 1

1

k k k

i i ik

i
k

i

if f f

otherwise

  


 

 


u u x
x

x
 (19)

Therefore, the winner in the selection stage is the best performer between the parent individu-

al and its trial one. The output of this operator is a new population for the next generation, if a

stopping criteria has not been satisfied. Likely to the evolutionary algorithms, the required

number of iterations L is not known a priori and therefore a stopping criterion is needed. In

more general terms, the stopping criteria can be the same typically adopted for GAs, see for

instance[8] and its references. In this study, we stop the search once a maximum number of

iterations L is achieved.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

10

A general way the most used way to deals with constraint handling problems consists in re-

placing standard selection criteria with one that considers not only performance (OF) of solu-

tion but feasibility too. In this sense, this selection criteria is obtained by operating a solutions

ranking by a generalized domination concept between different individuals: given two solu-

tions, namely
(k+1)

ui and
(k+1)

xi the concept of dominance can be introduced:
   1 1k k

i i

 
x u

 (20)

that denotes that
(k+1)

ui is dominated by
 (k+1)

xi

In a constrained based selection the concept of domination must be expressed in a wider sense

than those obtained considering simply the OF. Taking into account individuals feasibility,

violation function for the i
th

 individual is evaluated by the violation function:

    
1

max 0, 0
q hn n

k k

i p i

p

g





  x x

 (21)

so that its value is zero if and only if all constrains are satisfied (the i
th
 individual lies in the

feasible design variable space); differently (the i
th

 individual lies in the unfeasible design vari-

able space) the violation function is a positive scalar number.

The selection method able to consider properly feasibility in dominance should be formulated

in the following way:

   

              

       

     

1 1 1 1

1 1 1 1

1 1

0 0

0 0

k k k k

i i i i

k k k k

i i i i

k k

i i

f f and

or

and

or

   

   

 

      




    




  

x u x u

x u x u

x u

 (22)

These should be summarized in simply words by the following rule:
 1k

i


x

 dominates
 1k

i


u

 if :


   1 1k k

i i
and

 
x u are both feasible solutions, and

 1k

i


x has the minimum value of OF

 (k+1)
xi is feasible and (k+1)

ui is unfeasible


   1 1k k

i i
and

 
x u are both unfeasible solutions, and

 1k

i


x has the minimum value of violation.

This domination criterion should be simply expressed in words as the rule that “feasible solu-

tions survive to the infeasible in any cases”.

Moreover, selection scheme (20) based on (22) is well defined in cases 1 and 2. The first is

nothing else than standard selection (both two individuals are feasible, so that the selection

can’t deal with constraints. The second simply defines that when are compared two individu-

als that are one feasible and the other unfeasible, the feasible survives.

The third case presents some drawbacks because it is not so well defined as the first two. Ac-

tually, because of number of constraints involved in a optimization problem (usually greater

than one) it is impossible to correctly ranking violation levels of unfeasible individuals by us-

ing directly the violation function presented in (21). To properly clarify this point, in a generic

search space selecting between two unfeasible individuals, we have to prefer those more clos-

er to the feasible space; unfortunately the violation function, as it has been obtained in (21) is

not able to evaluate this distance, so that it isn’t able to ranking solutions according their dis-

tance to the feasible space because it is obtained simply adding violation levels of different

constraints that are not homogeneous according their effective distance from the feasible

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

11

space. In simply words it means that, once two solutions are both unfeasible, it isn’t possible

evaluating correctly which of them is the “less far” from the feasible space boundary. This

piece of information is needed in evolutionary search algorithms to properly select the best

solution among a group of unfeasible ones. So that, the dominance based selection criterion

for two unfeasible individuals is still an open question and there isn’t a metric measure to eva-

luate what is the ―less worst‖.

In order to overcome this limitation, modified versions of the standard rule are here proposed,

to evaluate if and how they increase algorithm performance in convergence to a feasible space.

This aspect is extremely important especially in engineering optimizations, where the necessi-

ty of a feasible solution is priority respect to those of a performance ones.

A first variation of standard Deb’s Dominance Selection rule consists in using a normalization

of violation function in (21). In this way, one scraps from the effective numerical value of the

violated constraint, whose value should be very different regardless of the effective distance

of individual from the admissible domain. The final goal in this manner is to obtain a ranking

in which individuals nearest

to the admissible domain work better.

For this aim, each constraint violation is normalized according to:

 
max

max 0, k i

rk i

r

r

g

g
 

 (23)

where:

 max

1,
max

p

k j

r r
j n

g g



 (24)

being pn the number of the population.

It is clear that  0,1k i

r 

for all k considered, so that having a normalized weight for all con-

straints considered.

The violation function is thus defined as

1

vn
k i k i

r

r




 
 (25)

5 NUMERICAL ANALYSIS

The proposed domination-based selection schemes have been applied to eleven mathematical

and three engineering benchmark optimization problems.

A complete presentation of these benchmark problems is given in Appendix. The optimiza-

tion problems are solved fifty times by using the NDS_DE and the final results are recorded.

The initial population is different for each run. The best, the worst, the mean value of the OF

at hand as well as its standard deviation are calculated over the fifty simulated runs. For better

understanding the inner work of the proposed selection schemes, the behaviors of an addition-

al indicator is also analyzed.

With this aim, a measure of the difficulty of solving each test problem, a metric measure 

(as suggested by Koziel and Michalewicz [4]) was introduced as the ratio of the feasible and

total population number at each generation, so that considering the following set:

  0 1, ,k k k

i p i q rS g p n n     x Ω x
 (26)

whose cardinality is denoted #(
k
S) ≤ N , the ratio

k  is:

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

12

 
 

#
0,1

k

k
S

N
  

 (27)

whose value is 0 when no individual lies in feasible space, and is 1 when all of them are feas-

ible. To properly measure the ratio between feasible and infeasible space dimension, in table 1

it is reported the value of  for the mathematical test functions here analyzed, using 10
6
 in-

dividuals randomly generated [7].

The different values of  for each of the functions chosen are shown in Table 1, where n is

the number of decision variables, LI is the number of linear inequalities, NI the number of

nonlinear inequalities, LE is the number of linear equalities and NE is the number of nonli-

near equalities.

A standard and a normalized domination-based selection scheme have been adopted and they

are indicated in Table 2.

6 RESULTS ANALYSIS

This study takes into consideration designers basic rule that is to prefer a feasible but not eco-

nomuc solution to a more economic but unfeasible ones. This is an important point in struc-

tural and seismic design, where constraints violations usually are associated to an unaceptable

low safety level. So that, differently from standard analysis to constrained optimization prob-

lems, in this research is analysed firstly the ability of alghoritms to produce feasible solutions

and only after is analised their performances. In this research are analyzed 12 test functions

from literatures [3].

Tree main efficience indicators are used to evaluate performances, with references to differ

selection criteria and cross over alghoritms; the performane indives are :

 Objective Function

 Stagnation

 ratio between Unfeasible individuals and total population size 

Due to random nature of DE, performanes are evaluatred as statistically over 100 indepene-

dent runs, and in particolar as:

 Best

 Worst

Problem N Type of function  LI NI LE NE

g01 13 quadratic 0,0003% 9 0 0 0

g02 20 nonlinear 99,9973% 2 0 0 0

g03 10 nonlinear 0,0026% 0 0 0 1

g04 5 quadratic 27,0079% 4 2 0 0

g05 4 nonlinear 0,0000% 2 0 0 3

g06 2 nonlinear 0,0057% 0 2 0 0

g07 10 quadratic 0,0000% 3 5 0 0

g08 2 nonlinear 0,8581% 0 2 0 0

g09 7 nonlinear 0,5199% 0 4 0 0

g10 8 linear 0,0020% 6 0 0 0

g11 2 quadratic 0,0973% 0 0 0 1
Table 1: Values of  (evaluated in a pure random way) for the 11 mathemat-

ical test problems chosen

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

13

 Mean

 Standard Deviation

The first analysis is performer over a population of 50 individuals and a number of 300 gener-

ations. As first analyzed index the ration between unfeasible and total population size  .

This ratio  is evaluated with reference to how many iterations are necessary to reach two

different goals: the first is to have at least one feasible individual over all independent runs

(figure 1) and the second is to have at least one feasible individuals over all independent runs.

From a pragmatic point of view the first indication concerns performance while the second

concerns robustness of algorithms with reference to ability to reach feasible solutions.

Smaller is number of generations needs to reach both to indicators, and greater is effective-

ness of algorithms in reaching feasible solutions. If finally generations number is 300, than

any feasible solution is reached at all.

Figura 1: number of steps necessary to have that all runs gives at least one feasible solution. Mutation are

those reported in table XX, while blu bars are for normalised approach, while red ones are for standard

approach

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

14

Figura 2: number of steps necessary to have that at least one runs presents a single feasible solution. Mu-

tation are those reported in table XX, while blu bars are for normalised approach, while red ones are for

standard approach

Mutation type denomination Equation reference

1 rand/1/bin (7)

2 best/1/bin (8)

3 current-to-best/1/bin (9)

4 best/2/bin (10)

5 rand/2/bin (11)

6 Proposed 1 (12)

7 Proposed 2 (13)

8 Random (1-7) (7) - (13)

Table 2: mutation type used in the analysis.

It is immediate that the function g5 is the more difficult to deal with. From figure 2 it appears

that without any combination of cross over and selection criteria we have all independent runs

with at all a single feasible solution. That means that the worst case is that after 300 genera-

tions we are not able to reach any feasible individual.

To better understand performances for ratios  are reported for each test function, for all

considered combinations of cross over and selection criteria, that are Normalized (on the left)

and Standard (on the right). Results are reported after 100, 200 and 300 generations (to eva-

luate efficiency under different number of generations) in best case (minimum value) in table

3 and worst case (maximum value) in table 4. When rho is equal to one means that no feasible

solution are present, and when is equal to 0 means that all solutions are feasible.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

15

N S N S N S N S N S N S N S N S

1 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,02 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0,92 0,9 0,88 0,86 0,22 0,84 0,2 0,18 0,9 0,9 0,9 0,9 0,92 0,94 0,86 0,92

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 0 0 0 0,06 0 0,34 0 0,42 0 0 0,84 0 0,98 0,46 0,98

7 0 0 0 0 0 0 0,12 0 0,36 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0,02 0 0 0 0,1 0,2 0 0,06 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,02 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0,88 0,88 0,82 0,74 0,08 0,74 0,06 0,04 0,86 0,86 0,86 0,84 0,88 0,9 0,78 0,84

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 1 0,04 1 1 1 1 1 1 1 1 1 0,48

6 0 0 0 0 0,04 0 0 0 0 0 0 0 0 0,98 0 0,98

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,02 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0,84 0,84 0,7 0,64 0,06 0,6 0,04 0 0,8 0,78 0,78 0,76 0,86 0,86 0,74 0,8

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0,22 0 1 1 1 1 1 1 1 1 0,08 0

6 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0,98 0 0,98

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

current-to-best/1/binbest/2/bin rand/2/bin rand/1/bin

300

200

100

mutation

te
st

 f
u

n
ct

io
n

ge
n

er
at

io
n

s

rand/1/bin randomrand/1/bin best/1/bin

table 3: ratio , best solutions over 100 independent runs

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

16

N S N S N S N S N S N S N S N S

1 0 0 0 0 0,08 0 0,02 0 0 0 0,04 0 0 0 0,08 0

2 0,02 0,02 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0,04 0 0 0,02 0,02 0,04 0,02

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0,56 1 1 1 0,54 0,3 0,86 1 0,88 1 0,86 1 1 1 0,92 1

7 0,18 0 0,08 0 0,1 0,02 0,64 0,16 0,82 0,26 0,06 0 0,22 0 0,24 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0,02 0 0,02 0 0,02 0 0,02 0 0,02 0 0 0 0 0 0,02 0

10 0,42 0,44 0,12 1 0,4 0,08 0,66 0,36 0,86 0,9 0,98 1 0,44 0,48 1 1

11 0 0 0,54 0 0,1 0,12 0 0 0 0 0 0 0,02 0,02 0,12 0

12 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,04 0

1 0 0 0 0 0,06 0 0,02 0 0 0 0,02 0 0 0 0,08 0

2 0 0 0,02 0,02 0,02 0,02 0,04 0,04 0,04 0,04 0 0 0 0,02 0,02 0

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 1 1 1 0,44 0,12 0,54 1 0,66 1 0,32 1 1 1 0,62 1

7 0,02 0 0,02 0 0,04 0 0,1 0 0,16 0 0,02 0 0,02 0 0,04 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0,02 0 0 0 0 0 0 0

10 0,02 0 0,04 0,08 0,16 0,04 0,08 0,02 0,04 0,04 0,04 1 0,02 0,02 1 1

11 0 0 0,06 0 0,06 0,1 0 0 0 0 0 0 0,02 0 0,08 0

12 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,04 0

1 0 0 0 0 0,06 0 0,02 0 0 0 0,02 0 0 0 0,06 0

2 0 0 0 0,02 0,02 0 0,04 0,04 0,04 0,04 0 0 0 0 0 0

3 1 0,98 0,96 0,96 0,98 0,96 1 1 1 1 0,98 1 1 1 0,98 1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 0 1 1 1 0,42 0,08 0,42 1 0,4 1 0 1 1 1 0,48 1

7 0,02 0 0,02 0 0,02 0 0,02 0 0,04 0 0,02 0 0,02 0 0,02 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0,02 0 0,16 0,04 0,04 0,02 0 0 0,02 1 0 0 1 1

11 0 0 0 0 0,04 0,06 0 0 0 0 0 0 0 0 0,06 0

12 0 0 0 0 0,02 0 0 0 0 0 0 0 0 0 0,02 0

mutation

100

200

300

rand/2/binbest/2/bincurrent-to-best/1/binbest/1/bin

ge
n

er
at

io
n

s

te
st

 f
u

n
ct

io
n

rand/1/bin randomrand/1/binrand/1/bin

table 4: ratio , worst solutions over 100 independent runs

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

17

Figure 3: mean values of OF

Finally an aveluation of OF is reported in figure 3, where are reported

Figura 4: mean values of OF using a normalised selection criteria

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

18

Figure 5: mean values of OF using a standard selection criteria

Figure 6: mean values of stagnations using a standard selection criteria

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

19

Figura 7 mean values of stagnations using a Normalized selection criteria

A deeper analysis of the two more difficult functions to be optimized - from the feasibility

point of view - is thus developed. In details two more selection criteria have been used, in ad-

dition to the Standard - eq. (21) - and Normalized - eq. (25) - before considered.

In details the first one is a Normalized modified to take into consideration number of active

violations in each selection, that means violation table search

1

1
vn

k i k i

m a r

r

n 


 
   

 
 (28)

where na is the number of active constraints. Finally a complete different criteria is considered,

based on the Kreisselmeier–Steinhsauser (KS) function that was first presented by G. Kreis-

selmeierand R. Steinhauser in [5], that is in the following form:

1

ln
v

k i
r

n
k i

KS

r

e




 
   

 
 (29)

The selection used for a deep analysis og functions g3 and g5 are thus reported in table

Violation type Denomination Equation reference

Standard A (25)

Normalized B (21)

Normalized

modified
C (28)

Kreisselmeier–

Steinhsauser
D (29)

Table 5: mutation type used in the analysis.

In table 6 and 7 are reported results obtained for the four selection criteria. Are reported the

results in terms of best, worst, mean and standard deviation of the OF, evaluated over 2000

generations using 100 independent runs. Results in terms of mean and standard deviation are

reported only if all 100 independent runs produce at least a single feasible solution. As reprted

results of g5 presents only few positive results. In details considering this function's results

(table 5) only mutation current-to-best/1/bin type - eq (9) - gives positive results (all indepen-

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

20

dent runs produce at least one feasible solution) associated with selection C and D. Moreover

in tables 4 and 5 are reported the better four combinations in green, and the worsted four in

red. The best one is thus underlined to be well recognizable from the others.

An interesting observation is done in terms of the worst results, that deals directly with ro-

bustness of the algorithms. In this since we should notice that the here proposed mutation cri-

teria (eq 12) presents in all analyzed cases the best results, independently from the specific

selection criteria used.

1 -0.590085 -0.5166404 -0.5104957 -0.4439761

2 -0.8749872 -0.8037016 -0.7836352 -0.8001065

3 -0.8250566 -0.7726869 -0.9282868 -0.8733928

4 -0.141305 -0.1859609 -0.1059074 -0.1886541

5 -0.3008128 -0.1389607 -0.0194375 -0.0587828

6 -0.8889512 -0.9072688 -0.90685 -0.9351505

7 -0.945052 -0.2654813 -0.0521805 -0.9321886

1 -0.0878921 -0.0981476 -0.1108218 -0.1014194

2 -0.2492862 -0.2529975 -0.2851858 -0.2946302

3 -0.3248937 -0.3045726 -0.3084063 -0.3298275

4 -0.0047889 -0.0080551 -0.0023269 -0.0028046

5 -0.0049531 -0.0019552 -0.0005526 -0.0017174

6 -0.7156717 -0.7066208 -0.7563377 -0.773117

7 -0.7230272 -0.0065023 -0.0016844 -0.7615129

1 -6.731E-05 -0.0001251 -0.0004741 -1.921E-05

2 -0.0003809 0 0 -0.0034442

3 -0.0056007 -0.007803 -0.0073629 -0.0138165

4 0 0 0 0

5 0 0 0 0

6 -0.5242883 -0.4700976 -0.5002015 -0.536492

7 -0.4452317 0 0 -0.425281

1 0.0872463 0.1027619 0.1094379 0.0962279

2 0.2139432 0.1894743 0.2145767 0.2263379

3 0.215557 0.2118199 0.2321309 0.2112057

4 0.0182519 0.0306952 0.0113859 0.0191684

5 0.0313684 0.0141752 0.0027731 0.0070985

6 0.0863034 0.0845136 0.0843159 0.0901844

7 0.0983988 0.02907 0.0081292 0.0931918

violation type

A B C D

st
d

w
o

rs
t

b
e

st
m

e
a

n

m
u

ta
ti

o
n

 t
y

p
e

Table 4: Objective Functions results evaluated using 2000 generations for test function g3

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

21

1 5167.1009 5134.2465 5126.4989 5126.4971

2 5126.4967 5126.4967 5126.4967 5126.4967

3 5126.4967 5126.4967 5126.4967 5126.4967

4

5

6 5126.4967 5126.4967 5126.4967 5126.4967

7

1

2

3 5484.539 5422.7768

4

5

6

7

1 5716.0382 5853.421 5696.6796 5560.2758

2 6112.2237 6112.2238 6112.2237 6112.2237

3 6111.1807 6076.805 6041.9826 6055.8937

4

5

6 5127.7672 5126.5732 5155.8446 5126.4988

7

1

2

3 357.31161 345.25123

4

5

6

7

st
d

w
o

rs
t

b
es

t
m

ea
n

m
u

ta
ti

o
n

 t
yp

e violation type

A B C D

Table 5: Objective Functions results evaluated using 2000 generations for test function g3

7 CONCLUSIONS

With the aim of better explore possibilities of Differential Evolutionary (DE) algorithms in

solving structural and seismic optimization problems, a numerical analysis has been con-

ducted over standard test functions with the aim of compare different DE strategies using

combinations of selection criteria and cross over. The constrained nature of the problem has

been approached by using a number of selection criteria able to take into consideration ele-

ments feasibility starting from the original Deb's proposal in this way. Main advantages of

this technique is inner simplicity due to absence of additional parameters to be opportunely

regulated by tray and error initial procedure. Tree variations of original Deb's one are pro-

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

22

posed, using each of them with different cross over criteria. Five are just proposed in literature,

while 2 are here proposed to evaluate their performances in accordance with selection criteria.

A first numerical analysis has been carried on a reduced number of generations (300) and us-

ing a small population size over 12 standard test functions. Algorithms performances in reach-

ing feasible solutions has been evaluated over a set of 100 independent runs,; best mean and

worst conditions have been analyzed. Finally a deeper analysis has been evaluate over the two

more problematic functions , using a more wide number of possible cross over - selection cri-

teria . Using a greater number of generations (2000), results have been carried on using four

selections and seven cross over different criteria (for 28 different DE). Results have indicated

that results are strongly influenced by proper selection of those two DE elements, and that a

modified Deb's selection criteria shows a general higher performance instead of the original

one.

REFERENCES

[1] C.A. Coello Coello, Theoretical and numerical constraint handling techniques used with

evolutionary algorithms: a survey of the state of the art, Computer Methods in Applied

Mechanics and Engineering, 2002, N. 191 (11–12), pp.1245–1287.

[2] N. Cruz-Cortés, Handling constraints in global optimization using artificial immune

systems, E. Mezura-Montes (Ed.), Constraint-Handling in Evolutionary Optimization,

Studies in Computational Intelligence Series, 2009, N. 198, Springer-Verlag, ISBN

978-3-642-00618-0, pp. 237–262.

[3] K. Deb, An efficient constraint handling method for genetic algorithms, Computer

Methods in Applied Mechanics and Engineering, 2000, N. 186 (2–4), pp. 311–338.

[4] Koziel S., Michalewicz Z., Evolutionary Algorithms, Homomorphous Mappings, and

Constrained Parameter Optimization, Evolutionary Computation, 1999, N. 7(1), pp.

19–44.

[5] G.KreisselmeierandR.Steinhauser.Systematiccontroldesignbyoptimizingavectorperform

ance index.In International Federation of Active Controls Syposium on Computer Aided

Design of Control Systems, Zurich, Switzerland, 1979.

[6] E. Mezura-Montes (Ed.), Constraint-Handling in Evolutionary Optimization, Studies in

Computational Intelligence, 2009, N. 198, Springer-Verlag.

[7] E. Mezura-Montes, C.A. Coello Coello, Constrained optimization via multiobjective

evolutionary algorithms, J. Knowles, D. Corne, K. Deb (Eds.), Multiobjective Problems

Solving from Nature: From Concepts to Applications, Natural Computing Series,

Springer-Verlag, 2008, ISBN 978-3-540- 72963-1, pp. 53–76.

[8] Monti G, Quaranta G, Marano GC, Genetic-algorithm-based strategies for dynamic

identification of nonlinear systems with noise-corrupted response, Journal of Comput-

ing in Civil Engineering ASCE, 2009

[9] A. Oyama, K. Shimoyama, K. Fujii, New constraint-handling method for multi-

objective and multi-constraint evolutionary optimization, Transactions of the Japan So-

ciety for Aeronautical and Space Sciences, 2007, N. 50 (167), pp. 56–62.

J Avakian, A. Fiore, D. Serio, R. Greco and G.C. Marano

23

[10] Storn R, Price K, Differential evolution – A simple and efficient heuristic for global op-

timization over continuous spaces, Journal of Global Optimization, 1997, N. 11(4), pp.

359–431.

[11] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Approach to Global

Optimization, Natural Computing Series, Springer-Verlag, 2005.

[12] A.E. Smith, D.W. Coit, Constraint handling techniques—penalty functions, T. Bäck,

D.B. Fogel, Z. Michalewicz (Eds.), Handbook of Evolutionary Computation, Oxford

University Press, Institute of Physics Publishing, 1997. pp. C 5.2:1–C 5.2:6.

