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Abstract. The accurate prediction of the structural response of spacecraft systems during
launch and ascent phase is a crucial aspect in design and verification stages which requires
accurate numerical models. The enhancement of numerical models based on experimental
data is denoted model updating and focuses on the improvement of the correlation between
finite element (FE) model and test structure. In aerospace industry the judgment of the agree-
ment between model and real structure involves the comparison of the modal properties of the
structure. Model updating techniques have to handle several difficulties, like incomplete exper-
imental data, measurement errors, non-unique solutions and modeling uncertainties. To cope
with the computational challenges associated with the large-scale FE-models involving up to
over one million degrees of freedom (DOFs), enhanced strategies are required. A large-scale
numerical example, namely a satellite model, will be used for demonstrating the applicability
of the employed updating procedure to complex aerospace structures.
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1 INTRODUCTION

The dynamic loads acting on a spacecraft during the launch and ascent phase are modeled by
the spacecraft-launcher coupled dynamic analysis. The accuracy of the structural response in
this low-frequency mechanical environment depends on the quality of the underlying mechan-
ical model of the spacecraft. Therefore, it is mandatory to ensure that the FE-model represents
the real structure accurately enough. This level of accuracy to be reached for aerospace struc-
tures is defined in [1] and is based on the agreement of experimentally and computationally
determined modal properties, respectively. Possible sources for discrepancies between test data
and respective computed values are e.g. uncertainties in the modeling process arising from in-
adequate theory for some system behaviors, simplifying assumptions made in order to reduce
the complexity of the model and uncertainties about model parameter values. Hence, the need
for improving the mechanical model based on experimental data arises which is referred to as
model updating and the consecutive corroboration of the model by means of modal properties
is denoted by validation [2, 3, 4].

The use of deterministic updating procedures does not allow for a quantification of the in-
volved uncertainties in the design and verification processes which will subsequently affect the
accuracy of the predictive structural response. Probabilistic methods for model updating pro-
vide a means for tackling these problems and for avoiding a wrong conclusion about the fit of
the experimental data and analytical results [5]. A significant obstacle in the consideration of
uncertainties when performing model updating of complex structures is posed by the associated
computational efforts. Therefore, the most frequently used approaches for model updating per-
formed by industry are deterministic approaches (see e.g. [6, 7, 8, 9]). While stochastic methods
have been developing successfully in this research field, applications in industry are relatively
limited (see e.g. [10]). Hence, in this work it is aimed at a computationally efficient application
of a stochastic model updating procedure to complex aerospace models.

The thereby adopted updating process is the Bayesian approach which is based on updating
the initial engineering knowledge about the ranges of the adjustable parameters using experi-
mental data [11, 12, 13]. In this way, a revised information about the parameters is obtained,
which is expressed by posterior probability density functions. Probability is therefore not in-
terpreted in the usual frequentist sense, where it refers to the relative frequency of occurrence
in case of many events, but it is based on the idea of reasonable expectation, i.e. probability is
interpreted as a measure of plausibility of the hypothesis. This interpretation makes it possible
to extend the application of probability theory to fields where the frequentist interpretation may
not be directly intuitive, as it is the case for one-of-a-kind structures, where no ensemble exists,
and also in the case of limited data, where classical statistics is of limited applicability. There-
fore, Bayesian statistics makes it possible to deal with the usual situation in aerospace industry,
where a large amount of experimental data is infeasible due to the enormous costs associated
with test campaigns, and it provides a means for making decisions based on limited, incomplete
information.

The computational tools for the Bayesian updating procedure are sampling-based algorithms,
where a multi-level Markov chain Monte Carlo algorithm is adopted in this approach [14]. As
a remedy for the large computational efforts associated with the Bayesian updating procedure,
the application of a surrogate model (a so-called “meta-model”) is proposed. This meta-model
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is formulated with respect to the repeated analysis tasks, which are the eigensolutions in case
of model updating based on modal data. Hence, a simple relation between the input data and
output quantity of interest has to be established in order to replace the computationally intensive
evaluation of a full finite element analysis by a function evaluation at low computational costs.
Several techniques, e.g. linear or polynomial regression, kriging and the radial basis functions
have been developed in this context (see e.g. [15]), where in this work neural networks [16] will
be adopted in order to approximate the modal properties of the structure.

This manuscript will demonstrate the feasibility of the application of Bayesian model updat-
ing procedures on spacecraft structures using eigenfrequencies and mode shape vectors. Sec. 2
is devoted to the presentation of the basic steps of Bayesian model updating, and in Sec. 3 the
algorithm for the generation of samples in the solution space is summarized. Computational
aspects will be addressed in the following (Sec. 4), where the basic concepts of neural networks
are discussed. In order to apply these outlined concepts to an FE-model of a spacecraft struc-
ture, the use of a surrogate model within the updating process is adopted for the FE-model of
the GOCE satellite (Sec. 5).

2 BAYESIAN MODEL UPDATING

2.1 Introduction

The fundamental rule that governs the Bayesian updating procedure is Bayes’ Theorem,
which is formulated in general terms as [17]

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
, (1)

where H is any hypothesis to be tested, D denotes the data and I is the available background
information. Bayes’ Theorem provides a means to update the prior probability density function
(PDF) of H , P (H|I), by using the data in the likelihood function P (D|H, I) in order to obtain
the posterior distribution of H , P (H|D, I). The denominator P (D|I) is a normalizing constant
and does not affect the shape of the posterior PDF. All probabilities in Eq. (1) are conditional
on I , which means that the outcome of the updating procedure depends on the available infor-
mation.

2.2 Bayesian updating using modal data

If applying Bayes’ Theorem for structural model updating [11, 12], the hypothesis H is
interpreted as the vector of unknown (i.e. adjustable) parameters, which will be referred to
as θ in the following, and D denotes the experimental data, which consist of the measured
modal properties of the investigated structure. The available information I is interpreted as the
experience and knowledge of the engineer which is reflected by the established model itself and
is therefore denoted asM. This leads to the following form of Eq. (1):

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (2)

The prior distribution p(θ|M) expresses the initial knowledge about the adjustable parameters.
The choice of the distribution can be based on the principle of maximum entropy [18]. In this
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case, the PDF used for describing the initial uncertainty maximizes the uncertainty subject to
the prescribed constraints, which can be given by e.g. imposing moment constraints. The like-
lihood function p(D|θ,M) gives a measure of the agreement between the system data and the
corresponding structural model output. This measure of the data fit of each model defined by
the parameters vector θ, is given by the probability model established for the system output. The
derivation of the likelihood function for modal data will be summarized in Sec. 2.3. The poste-
rior distribution p(θ|D,M) expresses the revised knowledge about the parameters θ conditional
on the initial knowledge and the experimental data.

2.3 Formulation of the likelihood function for modal data

In general terms, the connection between the model output q(θ) and the corresponding sys-
tem output y is given by the prediction error e in the form of

y = q(θ) + e. (3)

The choice for the probability model of the prediction error e, which is the difference between
the model output for a certain value of θ and the corresponding system output, is based on
the maximum entropy principle [18] which yields a multi-dimensional Gaussian distribution
with zero mean and covariance matrix Σ. The Gaussian PDF arises because it gives the largest
amount of uncertainty among all probability distributions for a real variable whose first two
moments are specified. Hence, the predictive PDF for the system output conditional on the
parameter vector θ is given by

p(y|θ,M) =
1

(2π)N/2|Σ|1/2
exp

[
−1

2
(y − q(θ))TΣ−1(y − q(θ))

]
, (4)

where N0 N denotes the length of the vector y, i.e. the number of observed points. If a set of
measured output D = {yj : j = 1, . . . , Ns} is available, then the likelihood function can be
constructed as p(D|θ,M) =

∏Ns

j=1 p(yj|θ,M) if the prediction errors are modeled as statisti-
cally independent.

The formulation of the likelihood function using modal data is derived in [19] and is summa-
rized in the following. The experimental data D from the structure is assumed to consist of Ns

sets of modal data, D = {ω̂1,j . . . ω̂Nm,j, Ψ̂1,j . . . Ψ̂Nm,j}Ns
j=1 comprised of Nm modal frequen-

cies ω̂r and Nm incomplete mode shape vectors Ψ̂r ∈ RN0 , where N0 is the number of observed
DOFs. The model output q(θ) is the set of corresponding modal properties of the structural
model, i.e. eigenfrequencies ωr(θ) and partial eigenvectors ψr(θ), r = 1, . . . , Nm, defined by
the parameter vector θ ∈ Θ ∈ RNp .
The probability model conditional on the parameter vector θ is chosen to have statistical inde-
pendence between the mode shape vectors and modal frequencies, between the different modes,
and between one data set to another. Therefore, the likelihood function can be written as the
product of the probability density functions for the modal frequencies and mode shape compo-
nents:

p(D|θ,M) =
Ns∏
j=1

Nm∏
r=1

p(ω̂2
r,j|θ,M)p(ψ̂r,j|θ,M), (5)

where p(ω̂2
r,j|θ,M) and p(ψ̂r,j|θ,M), r = 1, . . . , Nm and j = 1, . . . , Ns, are, respectively, the

PDFs for the squared modal frequency and the mode shape vector of the rth mode in the jth
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data set.

In the first step, the likelihood function for the mode shape vectors is formulated by rewriting
Eq. (3) as

ψ̂r,j = arψr(θ) + eψr , (6)

where ar is an optimal scaling factor to relate the scaling of the model mode shape vector ψr(θ)
to that of the experimental mode shape vector ψ̂r,j , which is assumed to be normalized so that
its Euclidean norm ‖ψ̂r,j‖ = 1. Since the latter is usually constituted by an incomplete set of
observed DOFs N0, the corresponding model mode shape vector is given by ψr = Γφr , where
the matrix Γ picks the observed degrees of freedom from the complete model eigenvector φr.
Using a Gaussian distribution for the probabilistic characterization of the prediction error for
the mode shape vector, the likelihood function for the mode shape vector, after some algebraic
manipulation, may be written as:

p(ψ̂r,j|θ,M) = c1 exp

(
ψTr (I − ψ̂r,jψ̂Tr,j)ψr

2δ2
r‖ψr‖2

)
(7)

= c1 exp

(
1

2δ2
r

[
1− |ψ

T
r ψ̂r,j|2

(ψTr ψr)
2

])
(8)

where I is the identity matrix of dimensionNm and δ2
rI denotes the mode shape prediction error

covariance matrix for the rth mode. The equality in Eq. (8) shows that the probability density
function for ψ̂r,j involves the MAC (Modal Assurance Criterion) between ψ̂r,j and ψr(θ), the
experimental and model partial mode shapes of the rth mode, respectively.

Secondly, Eq. (3) is formulated for the squared modal frequencies, which yields

ω̂2
r,j = ω2

r(θ) + eω2
r
. (9)

Using again a Gaussian probability model for the prediction error of the modal frequencies, the
likelihood function for the modal frequencies is given by

p(ω̂2
r,j|θ,M) = c2 exp

[
−1

2

(
1− ω̂2

r,j/ω
2
r

εr

)2
]
, (10)

where ε2
r denotes the variance of the prediction error of the squared r-th eigenfrequency, i.e. of

eω2
r
. Using the probability distributions for the mode shape vectors and modal frequencies given

in Eqs. (8) and (10), the likelihood function in Eq. (5) can be written as

p(D|θ,M) = c3 exp

(
−1

2

Nm∑
r=1

Jr(θ)

)
, (11)

where the modal measure of fit Jr(θ) is defined by

Jr(θ) =
Ns∑
j=1

[(
1− ω̂2

r,j/ω
2
r

εr

)2

+

(
1− |ψ

T
r ψ̂r,j|2

(ψTr ψr)
2

)
/δ2
r

]
(12)
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3 TRANSITIONAL MARKOV CHAIN MONTE CARLO ALGORITHM

The evaluation of Eq. (2) requires the computation of high-dimensional integrals for the de-
termination of the normalizing constant of the posterior PDF, which cannot be tackled analyt-
ically or numerically. Recently, efficient stochastic simulation algorithms have been proposed
which generate samples of the posterior distribution and which hence identify the parameter
regions with the highest posterior probability mass. In this work, the so-called Transitional
Markov Chain Monte Carlo (TMCMC) algorithm [14] is applied whose basic steps are dis-
cussed in the following.
The main idea of this algorithm is to iteratively proceed from the prior to the posterior distribu-
tion. It starts with the generation of samples from the prior PDF in order to populate the space
in which also the most probable regions of the posterior distribution lie. Then, some intermedi-
ate PDFs are defined, where the shape does not change remarkably from the intermediate PDF
p[j] to the next p[j + 1]. The small change of the shape makes it possible to efficiently sam-
ple according to p[j + 1] if samples according to p[j] have been generated. The intermediate
distributions are defined by

p[j + 1] ∝ p(D|θ,M)βjp(θ|M), (13)

with j = 0, . . .m as the step index and 0 = β0 < β1 < . . . < βm = 1. Hence, the exponent βj
can be interpreted as the percentage of the total information provided by the experimental data
which is incorporated in the jth iteration of the updating procedure: β0 = 0 corresponds to the
prior distribution and for βm = 1 the samples are generated from the posterior distribution.
Samples of the subsequent intermediate distribution p[j+1] are obtained by generating Markov
chains where the lead samples are selected from the distribution p[j] by computing their proba-
bility weights with respect to p[j + 1], which are given by

w(θ
(l)
j ) =

p(D|θ,M)βj+1p(θ|M)

p(D|θ,M)βjp(θ|M)
= p(D|θ,M)βj+1−βj , (14)

where the upper index l = 1, . . . , Nj denotes the sample number in the jth iteration step. Each
sample of the current step is generated using the Metropolis-Hastings algorithm [20, 21]: the
starting point of a Markov chain is a sample from the previous step that is selected according to
the probability equal to its normalized weight

w(θ
(l)
j ) =

w(θ
(l)
j )∑Nj

l=1w(θ
(l)
j )

(15)

and the proposal density for the Metropolis-Hastings algorithm is a Gaussian distribution cen-
tered at the preceding sample of the chain and with a covariance matrix Σ0 which is equal to
the scaled version of the estimated covariance matrix of the current intermediate PDF:

Σ0 = c2
Nj∑
l=1

w(θ
(l)
j )(θ

(l)
j − θj)T (θ

(l)
j − θj), (16)

where

θj =

Nj∑
l=1

w(θ
(l)
j )θ

(l)
j . (17)

The parameter c is a scaling parameter that is used to control the rejection rate of the Metropolis-
Hastings algorithm at each step. These steps are repeated until βj = 1 is reached, i.e. until the
samples are generated from the posterior distribution.
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4 COMPUTATIONAL ASPECTS

4.1 General remarks

Due to the repeated execution of the normal mode analysis of the FE-model, the computa-
tional effort of the Bayesian updating method might become infeasible for large FE-models.
Hence, in order to reduce the wall clock time, i.e. the time between submitting the updat-
ing analysis and its completion, a strategy based on the reduction of the computational efforts
associated with the normal mode analysis of the full FE-model is applied in this manuscript.
This strategy is based on the use of neural networks for the modal parameters, which will be
addressed in the following.

4.2 Neural networks

An Artificial Neural Network (ANN) is a machine-learning algorithm that tries to simu-
late the structure and functional aspects of biological networks of neurons in order to approx-
imate a relation f : θ → q by a simple mathematical model at low computational efforts. It
consists of an interconnected group of computational units, called neurons or nodes, and pro-
cesses information using consecutively connected layers of neurons. In the following, the most
widely used neural network, namely the so-called feed-forward neural network, is discussed
(see e.g. [22, 23]). It is composed of a multi-layered structure, with a first layer of nodes, called
input layer, one or more intermediate layers, called hidden, and a final output layer. For sim-
plicity, but without loss of generality, the scheme is discussed when using one single hidden
layer.

Each layer is characterized by a different number of neurons, indicated by Ninp, Nhid and
Nout for the input, hidden and output layers, respectively. Each node of the hidden layer receives
as input a linear combination

∑Ninp

i=1 wi,jθi of the input values θi of all the nodes of the input
layer, scaled by a so-called connection weight wi,j , where j denotes the number of the hidden
node. Then, the node proceeds this function value through a non-linear function K, which is
called activation function and which is of the form gj = K(

∑Ninp

i=1 wi,jθi). This collection of
function values (g1, . . . , gNhid

) is then sent to all the nodes of the subsequent, i.e. output, layer,
where the approximated model output q̂k(θ) = K(

∑Nhid

j=1 wj,kyj)), k = 1, . . . Nout is evaluated.
A schematic representation of this algorithm is shown in Fig. 1.

Hence, the connection weights act as parameters of the meta-model which have to be adapted
through a calibration procedure of supervised learning, called also training, by means of e.g.
the error back-propagation algorithm. In this calibration phase, the network, which is initial-
ized with random weights, is fed with a set of input/output values which is called calibration
set and which is obtained from the target physical model. The network processes the inputs and
produces then an estimation of the outputs; such outputs are compared with the real outputs
through a predefined error measurement (typically, a sum of the squared errors of each output).
The training consists thus of an optimization problem which aims to minimize the error of the
network in the output prediction. Such optimization is carried out by computing the gradient
of the error with respect to the connection weights, and it is interrupted when a target error is
reached or when a certain number of input/output pairs have been processed.

An important indicator of the goodness of the network after training is the coefficient of
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Figure 1: Schematic representation of the concept of neural networks

determination R2, defined as

R2 = 1−

Ndata∑
i=1

(qi − q̂i)2

Ndata∑
i=1

(qi − qi)
2

(18)

where qi are the real outputs of the physical model, qi = 1
Ndata

∑Ndata

i=1 qi and q̂i are the output
values predicted by the meta-model. The accuracy of the output prediction of the neural net-
work can be judged by the closeness of the value R2 to the target value of 1.0, which expresses
an exact match of the network prediction and the output of the full model. This quantity is
computed both using the calibration set and a new set of input/output values, called validation
or verification set. In the latter case, a qualitative indication of the generalization capabilities of
the network is obtained.

The freely available Fast Artificial Neural Network (FANN) library [24], which is an imple-
mentation of the here discussed Neural Network and learning algorithm, has been used for the
approximation of the modal properties in the following numerical example.

5 NUMERICAL EXAMPLE: GOCE SATELLITE

5.1 Problem statement

The use of a meta-model within the Bayesian updating procedure is illustrated using the
Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite. The mission of
the GOCE satellite is to determine the geoid and to measure the gravitational field of Earth
with a very high degree of accuracy in a low Earth orbit. The particularities of the GOCE are
its arrow-shape with winglets and its ion propulsion engine, used to compensate the air-drag
induced orbit-decay. The total length of the satellite is 5.3 m, and the mass amounts to approx-
imately 1,000 kg including the fuel of the propulsion system.
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Figure 2: FE model of the GOCE satellite (courtesy of Thales Alenia Space Italy)

Fig. 2 shows the FE model of the satellite, provided by Thales Alenia Space (Italy) for use
within the commercial FE code MSC.Nastran [25]. Approximately 360,000 DOFs and 74,000
elements compose the FE model, with half of the elements used in the main satellite platform
and half in the gravitational gradiometer.
In the main GOCE platform, quadrilateral (QUAD4) and triangular (TRIA3) shell elements are
used to model the body panels, the wings and the winglets, the internal floors and the solar
panels. Beam elements (BAR, ROD and BEAM) constitute the connections of the wings to the
main structure and of the instrumentation to the floors. Solid elements (HEXA and PENTA) are
used in the Launch Vehicle Adapter (LVA) ring, and scalar spring elements (CELAS2) represent
the connection between the solar panels and the structure, as well as the fixing of the wing to
the main octagonal body.

A total number of 18 groups combining 3047 structural parameters are defined according to
the type and location of the respective materials or geometric specifications (see Tab. 1). This
grouping is carried out with the purpose of remarkably reducing the number of parameters to be
used within the Bayesian updating procedure since an independent processing of all involved
parameters might become infeasible. Hence, the updating procedure is carried out with the goal
of identifying as to which changes have to be performed to the single parameter groups in order
to obtain a better agreement of the numerical model with the real satellite structure.

5.2 Experimental modal data

The experimental data used for model updating consists of Ns = 1 set of 7 modal frequen-
cies and partial mode shapes vectors (83 components) which have been determined from the
vibration responses during the GOCE structural model qualification test. The dynamic qualifi-
cation test was performed on the multi-axis vibration test facility of ESA/ESTEC in Noordwijk
(The Netherlands). The correlation of the experimental and computed eigenvectors of the initial
model is shown by means of the MAC matrix in Fig. 3 and the initial comparison of the eigen-
frequencies can be found in Tab. 2. The large discrepancies, especially for the first two modes,
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Group no. Parameters
1 Young’s modulus of isotropic materials
2 Poisson’s ratio of isotropic materials
3 Young’s modulus in the principal direction of orthotropic materials
4 Young’s modulus in the secondary direction of orthotropic materials
5 Poisson’s ratio of orthotropic materials
6 In-plane shear modulus of orthotropic materials
7 First out-of-plane shear modulus of orthotropic materials
8 Second out-of-plane shear modulus of orthotropic materials
9 Densities of the materials

10 Thicknesses of the shells
11 Linear elastic connections of panels to the main satellite structure
12 Linear elastic connections of panels to the satellite wings

13-18 Linear elastic connections of the wings to the main satellite structure
Table 1: Definition of the groups of parameters of the GOCE satellite

arise the need for model updating which will be discussed in the following.

Mode no. fa [Hz] fe [Hz] ∆ [%]
1 18.43 15.98 13.29
2 18.37 16.40 10.69
3 28.84 29.59 -2.60
4 34.96 33.33 4.66
5 46.90 48.91 -4.28
6 49.13 51.61 -5.04
7 65.81 61.35 6.77

Table 2: Comparison of the analytical eigenfrequencies fa and the experimental data fe

5.3 Accuracy analysis of the neural network

A set of Ndata = 2, 000 finite element simulations have been performed using Gaussian
distributions with the mean values equal to the nominal values and coefficients of variation of
10%. Out of these samples, 1,900 have been dedicated to calibrate the neural networks, and
100 have been kept to verify the generalization capabilities of the networks after training. Each
of the 14 neural networks, constituted by Ninp = 18 inputs and Nout = 1 output, predicts either
one of the eigenfrequencies or one of the diagonal terms of the MAC matrix.
An automated training procedure has been implemented such that various network topologies
are tested and the best networks, characterized by the highest R2 value (see Eq. (18)) obtained
with the verification data, are kept. As an indication of the accuracy of the network, Fig. 4 shows
the regression plots for the neural network of the first eigenfrequency, using the calibration and
verification data, respectively. Moreover, the values of R2 of all the networks obtained with the
verification data are listed in Tab. 3.

5.4 Bayesian model updating

The prior distributions assigned to the 18 groups of parameters to be updated are all Gaussian
with the moments as specified for the calibration of the neural networks. For these ranges, the
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Figure 3: Initial MAC values obtained with the nominal model and the experimental data ψ̂

(a) (b)

Figure 4: Regression plot of the output of the neural network of the first eigenfrequency for (a) calibration data

and (b) verification data.
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Neural network output R2 of verification data
Frequency 1 0.99960
Frequency 2 0.99966
Frequency 3 0.99968
Frequency 4 0.99957
Frequency 5 0.88299
Frequency 6 0.97804
Frequency 7 0.95822

MAC1,1 0.99886
MAC2,2 0.99782
MAC3,3 0.99577
MAC4,4 0.99861
MAC5,5 0.94947
MAC6,6 0.97623
MAC7,7 0.82779

Table 3: R2 values of the 14 neural networks

neural networks of the considered modal properties show high accuracy as discussed in the
previous section and are therefore applied for substituting the full FE-analysis when evaluating
the likelihood function within the updating process.
The results of the updating procedure are shown exemplarily for three parameter groups, namely
the thickness, the Young’s moduli of the orthotropic materials and the group of stiffnesses of
joints between the wings and the main structure (groups no. 10, 3 and 14 in Tab. 1). The prior
and posterior histograms of these parameters, which are all transformed in standard normal
space, are depicted in Figs. 5-7. This representation in standard normal space is advantageous
due to the fact that these figures do not show one single parameter each but a parameter group,
where the members of each group may have different initial values. Hence, in order to obtain the
posterior values in physical space, a back-transformation has to be performed for each parameter
of a group, which is achieved by

θi = θ∗i σi + θi,nom, (19)

where θi denotes the i-th parameter in the physical space, θ∗i the value in the standard normal
space, σi the prior standard deviation and θi,nom the prior (nominal) mean of this parameter.

In Fig. 5, the prior and posterior histograms of the thickness of shell elements are depicted.
This figure leads to the conclusion that the information contained in the experimental data sug-
gests a decrease of these values. A reduction of approximately 10% of the mean value of the
prior distribution leads to a better fit with the experimental modal properties. Also for the
Young’s modulus of the orthotropic material in the longitudinal direction (material card MAT8
in the MCS.Nastran input file), the updating process suggests a decrease of the mean values
(see Fig. 6). As opposed to these two parameter groups, all other 16 out of 18 parameter groups
used in the updating process show small changes if compared to the prior distribution. As an
example, the stiffness values of the joints of the main structure to the wings (used for the speci-
fication of the CELAS2 elements in the MCS.Nastran input file) is shown in Fig. 7. Due to the
information extracted from the experimental values, the prior uncertainty about these parame-
ters could be reduced which is visible through the smaller variation of the posterior distribution.

The effect of the choice of the prior on the posterior distribution has not been investigated
in this example, however a few remarks will be added in this context: in general, the influence
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Figure 5: Histograms of the prior and posterior samples of the group of thicknesses (group no. 10 in Tab. 1)

of the prior distribution on the results decreases with increasing amount of experimental data.
This is due to the fact that the likelihood function becomes the dominant term in comparison to
the prior distribution in Eq. (2). In this case, also values in the tails of the prior distribution can
be identified and only values with zero probability (e.g. values out of the interval of uniform
distributions) cannot be reached since they are excluded from the possible solution space due
to the prior knowledge. In case of limited data the selection of the prior distribution clearly
has an influence on the results. The prior distribution can therefore be seen as a means to
incorporate initial knowledge about parameter ranges into the identification process and it is
subjective in the sense that people with different experience may use different priors leading
to broader ranges of the solution in case smaller amount of prior information is available. The
selection can therefore be seen as part of the modeling process since also the model itself is
affected by a certain amount of subjectivity of the designer. However, the probability content of
the prior PDF is updated by the data and if one felt uncomfortable with the choice of the prior
distribution the effect of different prior PDFs on the posterior PDF can be studied.

5.5 Effect on the correlation of modal data

The effect of the updating procedure on the correlation of the experimental and computed
modal properties is shown exemplarily for the two lowest and highest considered modes. Figs. 8-
11 are devoted to the eigenfrequencies and Fig. 12 to the corresponding diagonal MAC-values.
The figures show that a successful shift of the PDFs towards the experimental values could be
achieved, as it can be seen for modes 1, 2 and 7, where it shall be annotated that the correlation
of the eigenvector no. 7 with respect to the corresponding experimental data reveals to be high
already for the initial model (initial MAC7,7=0.92).

However, for the 6th eigenfrequency and eigenvector no improvement could be achieved.
The reasons might lie in the fact that there is no parameter combination possible which affects an
improvement of the fit with respect to all 14 target values defined by the first 7 modal frequencies
and mode shape vectors. Only a revision of the model itself might lead to the situation where the
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Figure 6: Histograms of the prior and posterior samples of the group of Young’s moduli of the orthotropic materials

(group no. 3 in Tab. 1)

Figure 7: Histograms of the prior and posterior samples of the group of stiffnesses of the joints between wings and

main structure (group no. 14 in Tab. 1)
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Figure 8: Prior (dashed-dotted line) and posterior (shaded bars) histograms of the 1st eigenfrequency with experi-

mental value (solid line) and nominal value (dashed line)

prior distributions span the full solution space, meaning that posterior samples provoke a high
correlation with all targets. As opposed to the first numerical example, where a perturbed model
is used for the generation of the target modal data, the present example uses real experimental
data and hence a fit with respect to all targets might not be possible without revising the FE-
model itself.

5.6 Computational aspects

In the first example, the most time-consuming task of the updating algorithm, namely the
parts involving eigensolutions, have been parallelized. In the present example, the eigensolution
of the full FE-model is replaced by an approximate relation at low computational costs which is
given by a neural network for each modal property. If considering that on the above described
dual quad-core Xeon server i) the replacement of the nominal parameter values θnom by the
current value θ in the FE-input file, the normal mode analysis of the full model performed
with MSC.Nastran and the import of the modal quantities into Matlab [26] requires 220 sec
(see Appendix A for details on the interaction of Matlab with MSC.Nastran), ii) the updating
process of the present model involves approximately 32 iterations × 2,000 eigensolutions and
iii) the remaining part of the updating process lasts for about 96 min, then the total time amounts
up to a theoretical value of

tfull = 64, 000 · 220 sec + 96 · 60 sec ≈ 160 days.

In the present example, the computational time of 220 sec of a normal mode analysis of
the full FE-model is replaced by the evaluation of the neural networks which takes 0.0014 sec.
Hence, in this way the analysis time can be remarkably reduced to

tNN = 64, 000 · 0.0014 sec + 96 · 60 sec ≈ 100 min.

However, it shall be noted that in addition 2,000 calibration samples have been generated (see
Sec. 5.3), which require evaluations of the full FE-model lasting for a total time of approx-
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Figure 9: Prior (dashed-dotted line) and posterior (shaded bars) histograms of the 2nd eigenfrequency with exper-

imental value (solid line) and nominal value (dashed line)

Figure 10: Prior (dashed-dotted line) and posterior (shaded bars) histograms of the 6th eigenfrequency with exper-

imental value (solid line) and nominal value (dashed line)
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Figure 11: Prior (dashed-dotted line) and posterior (shaded bars) histograms of the 7th eigenfrequency with exper-

imental value (solid line) and nominal value (dashed line)

Figure 12: Prior (dashed-dotted line) and posterior (shaded bars) histograms of the diagonal terms of the MAC

matrix corresponding to modes no. 1, 2, 6 and 7 and nominal values (dashed lines)
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imately 5 days if performed sequentially (see Appendix A for the interaction with 3rd party
software).

6 CONCLUSIONS

In this manuscript, the basic steps of model updating within the Bayesian framework using
modal data have been summarized and strategies for reducing the analysis time are proposed.
The numerical example shows the applicability of the Bayesian updating procedure on com-
plex aerospace structures. It demonstrates that ill-conditioned inverse problems in the high-
dimensional parameter space can be tackled and that the limited, incomplete data can be used
for reducing the initial uncertainty about the adjustable parameters. As a remedy for the large
computational efforts of model updating the establishment of a surrogate model has been pro-
posed which approximates the modal properties at a low computational cost. In this way, model
updating of a finite element model of a full satellite structure of a size of approximately 360,000
DOFs becomes feasible as shown in the numerical example.
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A INTERACTION WITH 3RD PARTY SOFTWARE

FE models are defined uniquely by one or more ASCII input files. These files contain the
definition of the nodes and elements constituting the model, as well as the structural param-
eters and boundary and loading conditions in form of fixed numerical values. However, in a
stochastic analysis some of these values change, since they are samples from a given probabil-
ity distribution function. Thus, it is envisioned to automatically manipulate the input files such
that in each simulation the respective sample values are inserted into the FE-input file. For this
purpose, XML-like tags, called identifiers, are inserted into the master input files in order to
define the parameters which have to be changed in each simulation, as shown in Fig. 13. An
identifier defines the name of the random variable used within the stochastic analysis, the format
in which the number is written into the file as well as the original value of the parameter.

MAT1, 1, <cossan name="E" format="%8.2e" original="7.e+10"/>,,

<cossan name="nu" format="%8.2e" original="0.33"/>,

<cossan name="rho" format="%8.2e" original="2000."/>,

2.40E-5, 20.0000

Figure 13: Excerpt of a master input file with identifiers

The code used to drive the simulation is COSSAN-X, a software for computational stochastic
structural analysis [27]. This code parses the master input files in order to identify the positions
and the insertion formats of all variables. In each analysis, these identifiers are replaced by
sampled numerical values, obtaining a valid input file which is then used for the finite element
analyis (see Fig. 14). It shall be noted that this software is not restricted to a particulare FE-
code, but it is applicable to any FE-solver which uses ASCII input files.

MAT1, 1, 6.13e+10,, 3.98e-01, 2.22e+03, 2.40E-5, 20.0000

Figure 14: Excerpt of a stochastic analysis input file with sampled values.
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