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Abstract. A simple framework for autoregressive simulation of stochastic fields is presented.
The autoregressive format leads to a simple exponential correlation structure in the time-dimen-
sion. In the case of scalar processes a more detailed correlation structure can be obtained
by adding memory to the process via an extension to autoregressive moving average (ARMA)
processes. The ARMA format incorporates a more detailed correlation structure by including
previous values of the simulated process. Alternatively, a more detailed correlation structure
can be obtained by including additional ‘state-space’ variables in the simulation. For a scalar
process this would imply an increase of the dimension of the process to be simulated. In the case
of a stochastic field the correlation in the time-dimension is represented, although indirectly, in
the simultaneous spatial correlation.

The model with the shortest memory — the single-step autoregressive model — is analyzed in
detail, and an efficient multi-step calibration procedure is developed. The calibration makes
direct use of conditional correlations and means, expressed explicitly in terms of the zero and
k-step correlation matrices of the stochastic field. The correlation structure of an isotropic tur-
bulent wind field is developed from the generalized vami&n spectrum in terms of the Airy
function, and the simulation procedure is illustrated for turbulent wind with Airy or exponen-
tial function representation of the correlation structure. In spite of the basic simplicity of the
simulation algorithm, the details of the transverse correlation, that should satisfy an integral
condition for consistency, is represented well.
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1 INTRODUCTION

Stochastic fields play an important role in several techmoatexts, notably as models for
loads from wind, waves and earthquakes, and for represamtat spatial properties e.g. of
materials. In the first class of applications there is a tinmeethsion, as well as one or more
spatial dimensions, and this makes it appealing to considefield as a development of a
spatial field in time. Stochastic fields are characterizethieyr correlation, and for stationary
fields a Fourier transformation relates the correlatiorcfiom to a spectral density representa-
tion. For physical processes such as waves and wind thefeers @ background theory, that
is most easily expressed in terms of spectral propertigsttas suggests simulation based on
spectral densities via a Fourier representation of the.fleévever, a Fourier representation is
typically based on a finite time interval, to be selected asdfar the representation before the
simulation, and furthermore computational efficiency ssigthe use of a numbz¥ of equal
intervals in order to enable the use of the FFT formalism.

For stochastic fields with a time dimension there would barckglvantages in the use of
sequential simulation techniques based on recurrencioredan time as expressed in the au-
toregressive moving average (ARMA) format. For scalar psses the details of the correlation
structure is represented via a ‘memory’ that accounts foenehistory. In principle the mem-
ory effect could be represented by including a number ofleuyi‘state-space’ variables. For
scalar processes this would imply an undesirable comput@toverhead, and the ARMA for-
mat is mostly retained. However, in the case of a stochastit ifnfformation of the correlation
of the field may already be present in the correlation betvgg®uoltaneous observations, and
thus it may be possible to obtain a representation of theeladion structure, also in the time
direction, via the additional information contained in engltaneous observation of the field.
This suggests the possibility of using ARMA models with etlshort memory, correspond-
ing to models with only a few coefficient matrices. The preég@Eper deals with the shortest
memory model — the single-step AR model — for stochasticdijeddd develops a direktstep
calibration procedure that overcomes the problem of lagkbifistness associated with single-
step calibration. The model is illustrated for simulatidnacturbulent wind field, where the
along-wind correlation is implicitly contained in the iagtaneous spatial correlation.

2 LOW-ORDER ARMA MODELS

The family of autoregressive (AR) processes with or withmalving average (MA) terms
generates a series, of scalar or vector valued variables from a correspondingsef uncor-
related independent variablés. In the context of stochastic fields the variables are veatbr
dimensionm,

u, = [uhu??"'?um]gv En = [517527"'7§m]£' (1)

These variables are typically associated with individuahfs in space, and the vectors refer to
a section through the field, while the sequencen—1, n moves the section across the field as
illustrated in Fig[L.

The general format of the combined autoregressive movieggae process is

u, = Alun,1 + A2un72 +---+ Ajun,]

2
+ BlEnfl + B25n72 +oe Bkénflm n = ]-7 27 te ( )

where; denotes the number of regression terms,/asinilarly the number of averaging terms.
Typically, calibration of the process matrices makes usdir@ct matching to the covariance
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Figure 1: Discretized stochastic field as sequence of sectio ,u,,_1,u,.

properties of the field to be simulated via the Yule-Walkasagpns, or use is made of discrete
spectral properties involving the a discrete Fourier ti@msation, [1].

2.1 First-Order Autoregressive Format

The present simulation algorithm will concentrate on thst farder autoregressive format.
In this format the current vectar, is given as a linear combination of the previous veeigr;
and a random vectd,,_,,

u, = Au,_; + B¢ n=12--- (3)

n—1

The random vector§,, are here taken in the form of uncorrelated normalized nogoalpo-
nents, whereby

E[& &) = o1 (4)
Hereby the role of the matriB is to generate the correlation between the components of the
input in the AR equatiori{4).

The matricesA andB determine the properties of the series, and are deternomegtoduce
desired properties of an underlying stochastic field. Thefémat [3) corresponds to a field
with zero expectation of all vectors,. The properties of the stochastic field are given in terms
of the covariance matrices

Cr = E[u,u’_,]. (5)

The stochastic field is assumed to homogeneous, and thuswhgance matrix is independent
of the subscript:, identifying the section. Furthermore the present algaritrelates to the
first order single-step formaltl(3). This corresponds to $iekdth one-step memory, the so-
called Markov property. The covariance structure of thpgetyf field can be generated from the
single-step covariance properties, contained in the twivices

Co = E[u,u?], C, = E[u,u’ |]. (6)

These two covariance matrices determine the AR coefficiettioesA andB.

2.2 Coefficient matrices and conditional field properties

The matricesA andB can be determined from basic operations involving pre-iplidation
of the AR equation[(4). However, it is illuminating to deritlee expressions directly from the
corresponding conditional expectation and covariancéeiinderlying field. When using the
AR equation[(B), the vectar, is formed as the sum of a deterministic pAnt,, ;, determined
by the previous step, and a stochastic zero-mean comp®&#nt,. Both coefficient matrices
A andB are determined by rewriting the recurrence relation (3heform

u, — Au,; = B§,,_;. (7)

3
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By definition the stochastic variablg, _, is independent ofi,_; and has the expectation zero.
The relation[(¥) then identifies the conditional expectatbu,, as in the full sequence, when
the previous vecton,,_; is known, i.e.

E[un| un—l] = Aun—l- (8)

In the special case of zero-mean variables the conditicarénce ofu,, for givenu,,_; is, see
e.g. [2],
E[un| un,l] = Clcalun,l. (9)

Thus, the regression matriX is identified as the matrix in the conditional mean formula,
whereby
A = C,C;. (10)

This equation gives the regression mattixexplicitly in terms of the covariance matric€
andC; of the stochastic field.

The matrixB is also determined directly from the relation (7). Both sidepresent a vector
variable with zero mean. The vectay,_; is known, and thus the covariance matrix of the right
hand side must correspond to the conditional covarianeg, of

Covlu,uy|u,-1] = BE[E, €, ,]B". (11)

The conditional covariance matrix of two sets of variablesich one is known is given by, see
e.g. [2],
Covu,ul|u, 1] = Cop = Cy — C,C,'CT. (12)

The vectorg,,_, has independent normalized components according to (dxhars the expec-
tation on the right hand side df (11) gives the unit matrixmparison of the two expressions
for the conditional covarianc€; then gives the following equation of the matis

BB” = Gy, = Cy — C,C;'CT. (13)

This equation determines the prodizB”.

The role of the matrixB in the autoregressive relatidd (7) is to generate correlagut from
the uncorrelated components of the random vecfgrs This leaves a certain indeterminacy
of the matrixB as only the producB B” contributes to the mutual correlation correlation
of the components in the equation. A simple and direct smhutionsists in assuming that
the coefficient matrixB is in the form of a lower triangular matrix. The equation](18¢n
immediately identified3 via the Cholesky factorization of the conditional covacammatrix
Cy)1 of the stochastic field. Alternatively, the matdX may be expressed in symmetric form
in terms of the eigenvalues and eigenvector®J of the conditional covariance matrX;,
defined by

ConU = UA. (14)

It then follows from the orthogonality relations of the emgectorsU that the coefficient matrix
B can be expressed as
B = UAY2UT. (15)

This completes the single-step calibration procedure.
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3 MULTI-STEP MODEL CALIBRATION

It is observed that the two parameter matrices of the AR fdterdetermined by the condi-
tional expectation and the conditional covariance withafewious variable,, _; known. Direct
use of these relations is justified, when the correlatiopgrites of the stochastic field are cap-
tured well by the relation between two neighboring vecigys; andu,,. However, the use of
closely spaced vectors may introduce undesirable sehgitivthe calibration, and a more ro-
bust procedure can be obtained by calibrating the modeheigitoperties of vectors with larger
separation. A simple direct procedure using the veaigrs. andu,,, separated by steps, is
described in the following.

3.1 Recurrence matrixA

The single-step recurrence relation may be extended bytisitlrgy u,, from the previous
relation and so forth. This leads to thestep relation

u, = Akunfk + (AkilBénfk + o+ AB5n72 + Bénfl) . (16)

In the previous section the matriX was determined via the conditional expectatiorgffor
knownu, _, i.e. for one-step separation. This formula is now geneedltok-step separation.
First the term containing,,_ is moved to the left side of the equation,

u, — Afu,, = (AM'BE,_, +---+ABE,_, + B¢, ). (17)

The terms on the right are statistically independent wittameero, and thus the conditional
expectation ofi,, for knownu,,_;, is

E[un| un—k] - Akun—k' (18)

The conditional expectation also follows directly from tineconditional covariance between
u,, andu,,_; as
E[un| un_k] = CkCalun_k. (19)

Comparison of these two expressions for khgtep conditional expectation gives the following
expression for thé-power of the recurrence matrix,

AF = C,Cyt. (20)

This relation identifies the recurrence matAxfrom the covariance properties at a separation
of k steps.
In order to extract the matriA from (20) an eigenvalue decomposition is used. To this end
the notation
A, = C.C;! (22)

is introduced. This matrix is non-symmetric and the eigakrevdecomposition takes the form
AP = PT"  A[Q = QT%, (22)

whereP andQ are the right and the left eigenvector matricesAgf respectively. The eigen-
values are contained in the diagonal maifix= [vF,~5,--- ,~4* |. The eigenvector matrices
are normalized to satisfy the bi-orthogonality relations

QP = P'Q =1 (23)

5
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Pre-multiplication of the eigenvalue equatinl(22a) véh and use of orthogonality gives the
representation
QTA.P =T*. (24)

Now, introducingA* = A, and using the orthogonality relatiois {23) this relatioketathe

form
(QTAP)* = I*. (25)

From this relation and the orthogonality relations| (23pltdws that
A = PrQ’. (26)

This formula determines the recurrence magifrom its k-step properties and generalizes the
single-step procedure from Sectionl2.2. Clearly, the shsgp result is recovered fér= 1,
and it is seen that the eigenvalue decomposition becomesfiiqus in that case.

3.2 Input matrix B

The input matrixB is determined from the conditional variance by generajjzhre single-
step procedure form Section R.2. In the relationl (17) botlesirepresent a random vector
with zero mean. Whem,,_;, is known the covariance of the left side is sen to constithée t
conditional covariance ai,, for givenu,,_,, i.e.

Covlu,u} [u, x| = E[(Aklegn_kJr.~-+B£n_1)(A’flegn_k+.-.+Bgn_1)T]. (27)
In this case the conditional variance of the stochastic feetfiven by
Covu,ul|u, ;] = Cop = Gy — C,Cy'CJ. (28)

The expression in terms of the matricAsand B of the model follow from evaluating the
expectation on the right side ¢f (27),

Covu,ul|u, ;] = A¥'BBT(A*HT + ... + ABB"A" + BB”. (29)

The two expressions (28) and {29) for the conditional vax@gaestablish an equation between
the conditional varianc€;, of the stochastic field, and a series expansion in terms oépow
of the matrixA.

It follows from thel-factor product of the eigenvalue representation (26)tthat'th power
of A can be expressed as

Al = PrQ7?...PrQT = Pr'qQf, (30)

where the orthogonality relation (23) has been used to ¢taéme@ner matrix products. Substi-
tution of this representation into the expresslon (29) ier¢onditional covariance matrix leads
to the equation

Co. = PT*'Q"BB”Qr*'p* + ... + PTQ"BB’QIr'P” + BB”. (31)

The factor® andP” are now eliminated by pre-multiplication with” and post-multiplication
with Q. This gives the relation

k—1
Q'CoxQ = ) T'[Q"BB'Q]I". (32)

=0
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It is seen that the right side of the equation is a summationhith the components of the
symmetric matrix
D = Q"BBTQ. (33)

are multiplied by powers of the eigenvalugs s, - - - ,v,». The summation is conveniently
carried out by using the sum oftaterm series with geometric progression. In component form

e
—_

[QTCO\kQLj = 1 [(%”Yj)lDij] = %DU- (34)

I
o

This equation gives the components of the maldias

1 — (v) T
D = ——=
ij 1— ('Yf}{y)k [Q CO\kQLJ (35)
When the components @ have been computed from this relation, the input ma#is deter-

mined from [38). Pre-multiplication witF® and post-multiplication witlP? gives the equation

BB” = PDP”. (36)

This is an equation of the same form @s|(13) for the singlp{stecedure.

It is noted that in the case= 1 the first factor in[(3b) is unity, and eigenvalue decompositi
becomes superfluous, as the matrix on the left sidé_df (36@jriplg equal to the conditional
covariance matrixCy; in that case. In the multi-step case the input dvsteps has components
occurring at different times, and the memory effect is aoted for by the dependence on the
eigenvaluegd’ as illustrated in[(35).

4 WIND FIELD SIMULATION

An application area of considerable current interest isdha turbulent wind field. Specific
applications range from structures like towers, high-bsédings and long bridges to wind
turbines. Traditionally, the level of ambition regardirmg trepresentation of the turbulent wind
load in these applications has been very different, witlicstiral applications often making use
of simple analytical approximations for the resulting Ipadhile wind turbine design typically
makes use of rather detailed wind field simulation, ofteredam FFT techniques, see eld. [3].

4.1 Isotropic wind field correlation

The turbulent wind field used in the present paper is reptedein the form of isotropic
incompressible turbulence as described by Batchelor follows from invariance to coor-
dinate transformations that the general form of the comagabetween the turbulent velocity
components at two points separated by the spatial ve@srshown in Fid.]2 is of the form

T

R(r) = E[v(ro +1) v(ro)"] = o2([f() = g(r) |5 + 9(1)1)), (37)

wherer = |r| is the distance between the two points, afjds the variance of a single compo-
nent at a point. The function&r) andg(r) describe the lengthwise and transverse correlation,
respectively.
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Figure 2: Two-point correlation of isotropic wind field.

At the typical wind speeds in the natural wind the flow can suased to be incompressible.
It then follows from the incompressibility conditioR? v that the correlation functions are
related by

r d
or) = J(r) + 52 f (). (39)

Thus, the isotropic incompressible stochastic field is diesd entirely in terms of a single
scalar correlation function, e.g. the lengthwise corietatunction f(r). The lengthwise cor-
relation functionf (r) is often represented in terms of its spectral density foncki(k), where
k is the wavenumber,

alf(r) = / h F(k)€*rdr. (39)

Analytically tractable results are obtained, when usiregghlneralized form of the von Karman
spectral density, [%,/6],

1 T oyl
VT T(y = 3) [1+ (kO

Here/ is a length-scale of the turbulence, and the Kolmogorovaidestheory implies that the
exponentisy = 5/6. The analytical details of this case has been investigatédistensen and
Jensen([7], and it was demonstrated that coherence andatmmeunctions can be expressed
in terms of modified Bessel functions of the second kind widittional index. In the present
context it is convenient to use an alternative represemtati the correlation functions in terms
of Airy functions [8]. This formulation makes use of a nomadinsional transformed variable
to represent the distance,

o2F (k) = (40)

3r\2/3
= (5) 41
whereby
FO) =g o) = f0) + S5 2)

HereAi(z) is the Airy function andAi’(z) its derivative.
A simpler approximate formulation can be obtained by usivegexponent = 1, whereby

= gl = (155 e (43)
Here the parameteris the integral spatial length-scale of the turbulence neeffioy
A= / f(r)dr. (44)
0

When substituting the representatidnl(42) of the cormtfinctions in terms of the Airy func-
tion in the definition of the integral length-scale, it is falthat/ = 1.339).

8
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Figure 3: Correlation functiong(r) andg(r): Airy (dots), Exponential (full).

The lengthwise and the transverse correlation functioaslistrated in Figs.|3a arid 3b,
respectively. The exponential representation (43) is shioviull line, while the Airy function
representation is shown by a dotted curve. It is seen thatthves from the two representations
cross atr ~ . The AR simulation format format is closely related to exgotial attenuation,
and the curves suggest the the distance \ may be appropriate for calibration of the AR
model.

4.2 Simulated wind field

The AR field simulation is based on selecting a number of goima plane, e.g. thez-plane.
The coordinates of these points are arranged in a globabvect

XT = [r{vrgf“ rT ]n (45)

n rTm

and the corresponding velocities are similarly arrangetierglobal vector

ul = [VlT,v2T,~-~,V7Tn]n. (46)

The global covariance matrix is then given by

Cr = Bluaw ] = |1 Blviov?, ] i = | i Rlra—ryme) |- @7

where the final form consists of tB&3 block matrices representing the covariance between the
pointr; in layern and the point; in layern—k. The simulation procedure consists of-atep
calibration of the matriceA andB, based on the covariance matriéésandC,;, as described

in Sectior 8, followed by sequential use of the single-séspirencel(7).

Simulation of a turbulent wind field by the present proceduas used in [9] for wind turbine
response analysis. The field is represented by 24 radia bhéength 43 m with 8 points in
each. In the example the integral length-scale s 120 m. The simulation is based on sections
separated byAy = 0.5m, and the calibration distance is taken to be the integnagjttescale\,
corresponding t& = 240. The model is calibrated by use of the exponential reprasentof
the wind field correlation. Lengthwise and transverse d¢atian for points with axial separation
y are shown in Fid.]3. Itis seen that the lengthwise corratagpresented by(y) retains much
of the exponential form, while the simulated transverseatation represented hy(y) closely
follows the theoretical Airy-function representationrfriche von Karman spectrum.

9
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5 CONCLUSIONS

A simple framework for autoregressive simulation of statltafields has been presented.
The autoregressive format leads to a simple exponentiedledion structure in the time-dimen-
sion. In the case of scalar processes a more elaborateatamnestructure can be obtained by
adding memory to the process via an extension to autoregees®ving average (ARMA)
processes. The ARMA format incorporates a more detailegtladion structure by including
previous values of the simulated process. Alternativelyyae detailed correlation structure
can be obtained by including additional ‘state-space’aldas in the simulation. For a scalar
process this would imply an increase of the dimension of tieegss to be simulated. In the
case of a stochastic field the correlation in the time-dinmens represented indirectly in the
simultaneous spatial correlation.

The model with the shortest memory — the single-step autessiye model — has been an-
alyzed, and an efficient multi-step calibration proceduae heen developed. The calibration
makes direct use of conditional correlations and meansegssgpd explicitly in terms of the zero
andk-step correlation matrices of the stochastic field. Theatation structure of an isotropic
turbulent wind field is developed from the generalized vari{an spectrum in terms of the
Airy function, and the simulation procedure is illustrafed turbulent wind with Airy or ex-
ponential function representation of the correlationdtrte. In spite of the basic simplicity of
the simulation algorithm, the details of the transverseatation, that should satisfy an integral
condition for consistency, is represented well.
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