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Abstract. A simple framework for autoregressive simulation of stochastic fields is presented.
The autoregressive format leads to a simple exponential correlation structure in the time-dimen-
sion. In the case of scalar processes a more detailed correlation structure can be obtained
by adding memory to the process via an extension to autoregressive moving average (ARMA)
processes. The ARMA format incorporates a more detailed correlation structure by including
previous values of the simulated process. Alternatively, a more detailed correlation structure
can be obtained by including additional ‘state-space’ variables in the simulation. For a scalar
process this would imply an increase of the dimension of the process to be simulated. In the case
of a stochastic field the correlation in the time-dimension is represented, although indirectly, in
the simultaneous spatial correlation.

The model with the shortest memory – the single-step autoregressive model – is analyzed in
detail, and an efficient multi-step calibration procedure is developed. The calibration makes
direct use of conditional correlations and means, expressed explicitly in terms of the zero and
k-step correlation matrices of the stochastic field. The correlation structure of an isotropic tur-
bulent wind field is developed from the generalized von Kàrmàn spectrum in terms of the Airy
function, and the simulation procedure is illustrated for turbulent wind with Airy or exponen-
tial function representation of the correlation structure. In spite of the basic simplicity of the
simulation algorithm, the details of the transverse correlation, that should satisfy an integral
condition for consistency, is represented well.
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1 INTRODUCTION

Stochastic fields play an important role in several technical contexts, notably as models for
loads from wind, waves and earthquakes, and for representation of spatial properties e.g. of
materials. In the first class of applications there is a time dimension, as well as one or more
spatial dimensions, and this makes it appealing to considerthe field as a development of a
spatial field in time. Stochastic fields are characterized bytheir correlation, and for stationary
fields a Fourier transformation relates the correlation function to a spectral density representa-
tion. For physical processes such as waves and wind there is often a background theory, that
is most easily expressed in terms of spectral properties, and this suggests simulation based on
spectral densities via a Fourier representation of the field. However, a Fourier representation is
typically based on a finite time interval, to be selected as basis for the representation before the
simulation, and furthermore computational efficiency suggests the use of a number2N of equal
intervals in order to enable the use of the FFT formalism.

For stochastic fields with a time dimension there would be clear advantages in the use of
sequential simulation techniques based on recurrence relations in time as expressed in the au-
toregressive moving average (ARMA) format. For scalar processes the details of the correlation
structure is represented via a ‘memory’ that accounts for recent history. In principle the mem-
ory effect could be represented by including a number of auxiliary ‘state-space’ variables. For
scalar processes this would imply an undesirable computational overhead, and the ARMA for-
mat is mostly retained. However, in the case of a stochastic field information of the correlation
of the field may already be present in the correlation betweensimultaneous observations, and
thus it may be possible to obtain a representation of the correlation structure, also in the time
direction, via the additional information contained in a simultaneous observation of the field.
This suggests the possibility of using ARMA models with rather short memory, correspond-
ing to models with only a few coefficient matrices. The present paper deals with the shortest
memory model – the single-step AR model – for stochastic fields, and develops a directk-step
calibration procedure that overcomes the problem of lack ofrobustness associated with single-
step calibration. The model is illustrated for simulation of a turbulent wind field, where the
along-wind correlation is implicitly contained in the instantaneous spatial correlation.

2 LOW-ORDER ARMA MODELS

The family of autoregressive (AR) processes with or withoutmoving average (MA) terms
generates a seriesun of scalar or vector valued variables from a corresponding series of uncor-
related independent variables�n. In the context of stochastic fields the variables are vectors of
dimensionm,

un = [ u1, u2, ⋅ ⋅ ⋅ , um ]Tn , �n = [ �1, �2, ⋅ ⋅ ⋅ , �m ]Tn . (1)

These variables are typically associated with individual points in space, and the vectors refer to
a section through the field, while the sequence⋅ ⋅ ⋅, n−1, n moves the section across the field as
illustrated in Fig. 1.

The general format of the combined autoregressive moving average process is

un = A1un−1 +A2un−2 + ⋅ ⋅ ⋅+Ajun−j

+ B1�n−1
+B2�n−2

+ ⋅ ⋅ ⋅+Bk�n−k, n = 1, 2, ⋅ ⋅ ⋅ (2)

wherej denotes the number of regression terms, andk similarly the number of averaging terms.
Typically, calibration of the process matrices makes use ofdirect matching to the covariance
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Figure 1: Discretized stochastic field as sequence of sections ⋅ ⋅ ⋅ ,un−1,un.

properties of the field to be simulated via the Yule-Walker equations, or use is made of discrete
spectral properties involving the a discrete Fourier transformation, [1].

2.1 First-Order Autoregressive Format

The present simulation algorithm will concentrate on the first order autoregressive format.
In this format the current vectorun is given as a linear combination of the previous vectorun−1

and a random vector�n−1
,

un = Aun−1 + B�n−1
, n = 1, 2, ⋅ ⋅ ⋅ (3)

The random vectors�n are here taken in the form of uncorrelated normalized normalcompo-
nents, whereby

E[ �i �
T
j ] = �ij I . (4)

Hereby the role of the matrixB is to generate the correlation between the components of the
input in the AR equation (4).

The matricesA andB determine the properties of the series, and are determined to reproduce
desired properties of an underlying stochastic field. The ARformat (3) corresponds to a field
with zero expectation of all vectorsun. The properties of the stochastic field are given in terms
of the covariance matrices

Ck = E[un u
T
n−k]. (5)

The stochastic field is assumed to homogeneous, and thus the covariance matrix is independent
of the subscriptn, identifying the section. Furthermore the present algorithm relates to the
first order single-step format (3). This corresponds to fields with one-step memory, the so-
called Markov property. The covariance structure of this type of field can be generated from the
single-step covariance properties, contained in the two matrices

C0 = E[un u
T
n ], C1 = E[un u

T
n−1

]. (6)

These two covariance matrices determine the AR coefficient matricesA andB.

2.2 Coefficient matrices and conditional field properties

The matricesA andB can be determined from basic operations involving pre-multiplication
of the AR equation (4). However, it is illuminating to derivethe expressions directly from the
corresponding conditional expectation and covariance of the underlying field. When using the
AR equation (3), the vectorun is formed as the sum of a deterministic partAun−1, determined
by the previous step, and a stochastic zero-mean componentB�n−1

. Both coefficient matrices
A andB are determined by rewriting the recurrence relation (3) in the form

un − Aun−1 = B�n−1
. (7)
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By definition the stochastic variable�n−1
is independent ofun−1 and has the expectation zero.

The relation (7) then identifies the conditional expectation of un as in the full sequence, when
the previous vectorun−1 is known, i.e.

E[un∣un−1] = Aun−1. (8)

In the special case of zero-mean variables the conditional variance ofun for givenun−1 is, see
e.g. [2],

E[un∣un−1] = C1C
−1

0
un−1. (9)

Thus, the regression matrixA is identified as the matrix in the conditional mean formula,
whereby

A = C1C
−1

0
. (10)

This equation gives the regression matrixA explicitly in terms of the covariance matricesC0

andC1 of the stochastic field.
The matrixB is also determined directly from the relation (7). Both sides represent a vector

variable with zero mean. The vectorun−1 is known, and thus the covariance matrix of the right
hand side must correspond to the conditional covariance ofun,

Cov[unu
T
n ∣un−1] = BE[ �n−1

�T
n−1

]BT . (11)

The conditional covariance matrix of two sets of variables of wich one is known is given by, see
e.g. [2],

Cov[unu
T
n ∣un−1] = C0∣1 = C0 − C1C

−1

0
CT

1
. (12)

The vector�n−1
has independent normalized components according to (4), and thus the expec-

tation on the right hand side of (11) gives the unit matrix. Comparison of the two expressions
for the conditional covarianceC0∣1 then gives the following equation of the matrixB,

BBT = C0∣1 = C0 − C1C
−1

0
CT

1
. (13)

This equation determines the productBBT .
The role of the matrixB in the autoregressive relation (7) is to generate correlated input from

the uncorrelated components of the random vectors�n. This leaves a certain indeterminacy
of the matrixB as only the productBBT contributes to the mutual correlation correlation
of the components in the equation. A simple and direct solution consists in assuming that
the coefficient matrixB is in the form of a lower triangular matrix. The equation (13)then
immediately identifiesB via the Cholesky factorization of the conditional covariance matrix
C0∣1 of the stochastic field. Alternatively, the matrixB may be expressed in symmetric form
in terms of the eigenvaluesΛ and eigenvectorsU of the conditional covariance matrixC0∣1,
defined by

C0∣1U = UΛ. (14)

It then follows from the orthogonality relations of the eigenvectorsU that the coefficient matrix
B can be expressed as

B = UΛ1/2UT . (15)

This completes the single-step calibration procedure.
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3 MULTI-STEP MODEL CALIBRATION

It is observed that the two parameter matrices of the AR filterare determined by the condi-
tional expectation and the conditional covariance with theprevious variableun−1 known. Direct
use of these relations is justified, when the correlation properties of the stochastic field are cap-
tured well by the relation between two neighboring vectorsun−1 andun. However, the use of
closely spaced vectors may introduce undesirable sensitivity in the calibration, and a more ro-
bust procedure can be obtained by calibrating the model via the properties of vectors with larger
separation. A simple direct procedure using the vectorsun−k andun, separated byk steps, is
described in the following.

3.1 Recurrence matrixA

The single-step recurrence relation may be extended by substituting un from the previous
relation and so forth. This leads to thek-step relation

un = Akun−k +
(

Ak−1B�n−k + ⋅ ⋅ ⋅+AB�n−2
+B�n−1

)

. (16)

In the previous section the matrixA was determined via the conditional expectation ofun for
knownun−1, i.e. for one-step separation. This formula is now generalized tok-step separation.
First the term containingun−k is moved to the left side of the equation,

un − Akun−k =
(

Ak−1B�n−k + ⋅ ⋅ ⋅+AB�n−2
+B�n−1

)

. (17)

The terms on the right are statistically independent with mean zero, and thus the conditional
expectation ofun for knownun−k is

E[un∣un−k] = Akun−k. (18)

The conditional expectation also follows directly from theunconditional covariance between
un andun−k as

E[un∣un−k] = CkC
−1

0
un−k. (19)

Comparison of these two expressions for thek-step conditional expectation gives the following
expression for thek-power of the recurrence matrix,

Ak = CkC
−1

0
. (20)

This relation identifies the recurrence matrixA from the covariance properties at a separation
of k steps.

In order to extract the matrixA from (20) an eigenvalue decomposition is used. To this end
the notation

Ak = CkC
−1

0
(21)

is introduced. This matrix is non-symmetric and the eigenvalue decomposition takes the form

AkP = PΓk, AT
kQ = QΓk, (22)

whereP andQ are the right and the left eigenvector matrices ofAk, respectively. The eigen-
values are contained in the diagonal matrixΓk = ⌈
k

1
, 
k

2
, ⋅ ⋅ ⋅ , 
k

m⌋. The eigenvector matrices
are normalized to satisfy the bi-orthogonality relations

QTP = PTQ = I. (23)
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Pre-multiplication of the eigenvalue equation (22a) withQT and use of orthogonality gives the
representation

QTAkP = Γk. (24)

Now, introducingAk = Ak and using the orthogonality relations (23) this relation takes the
form

(QTAP)k = Γk. (25)

From this relation and the orthogonality relations (23) it follows that

A = PΓQT . (26)

This formula determines the recurrence matrixA from itsk-step properties and generalizes the
single-step procedure from Section 2.2. Clearly, the single-step result is recovered fork = 1,
and it is seen that the eigenvalue decomposition becomes superfluous in that case.

3.2 Input matrix B

The input matrixB is determined from the conditional variance by generalizing the single-
step procedure form Section 2.2. In the relation (17) both sides represent a random vector
with zero mean. Whenun−k is known the covariance of the left side is sen to constitute the
conditional covariance ofun for givenun−k, i.e.

Cov
[

unu
T
n ∣un−k

]

= E
[(

Ak−1B�n−k + ⋅ ⋅ ⋅+B�n−1

)(

Ak−1B�n−k + ⋅ ⋅ ⋅+B�n−1

)T ]
. (27)

In this case the conditional variance of the stochastic fieldis given by

Cov[unu
T
n ∣un−k] = C0∣k = C0 − CkC

−1

0
CT

k . (28)

The expression in terms of the matricesA andB of the model follow from evaluating the
expectation on the right side of (27),

Cov[unu
T
n ∣un−k] = Ak−1BBT (Ak−1)T + ⋅ ⋅ ⋅ + ABBTAT + BBT . (29)

The two expressions (28) and (29) for the conditional variance establish an equation between
the conditional varianceC0∣k of the stochastic field, and a series expansion in terms of powers
of the matrixA.

It follows from thel-factor product of the eigenvalue representation (26) thatthe l’th power
of A can be expressed as

Al = PΓQT ⋅ ⋅ ⋅PΓQT = PΓlQT , (30)

where the orthogonality relation (23) has been used to cancel the inner matrix products. Substi-
tution of this representation into the expression (29) for the conditional covariance matrix leads
to the equation

C0∣k = PΓk−1QTBBTQΓk−1PT + ⋅ ⋅ ⋅ + PΓQTBBTQΓPT + BBT . (31)

The factorsP andPT are now eliminated by pre-multiplication withQT and post-multiplication
with Q. This gives the relation

QTC0∣kQ =

k−1
∑

l=0

Γl
[

QTBBTQ
]

Γl. (32)
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It is seen that the right side of the equation is a summation inwhich the components of the
symmetric matrix

D = QTBBTQ. (33)

are multiplied by powers of the eigenvalues
1, 
2, ⋅ ⋅ ⋅ , 
m. The summation is conveniently
carried out by using the sum of ak-term series with geometric progression. In component form

[

QTC0∣kQ
]

ij
=

k−1
∑

l=0

[

(
i
j)
lDij

]

=
1− (
i
j)

k

1− (
i
j)
Dij. (34)

This equation gives the components of the matrixD as

Dij =
1− (
i
j)

1− (
i
j)k
[

QTC0∣kQ
]

ij
. (35)

When the components ofD have been computed from this relation, the input matrixB is deter-
mined from (33). Pre-multiplication withP and post-multiplication withPT gives the equation

BBT = PDPT . (36)

This is an equation of the same form as (13) for the single-step procedure.
It is noted that in the casek = 1 the first factor in (35) is unity, and eigenvalue decomposition

becomes superfluous, as the matrix on the left side of (36) is simply equal to the conditional
covariance matrixC0∣1 in that case. In the multi-step case the input overk steps has components
occurring at different times, and the memory effect is accounted for by the dependence on the
eigenvaluesΓ as illustrated in (35).

4 WIND FIELD SIMULATION

An application area of considerable current interest is that of a turbulent wind field. Specific
applications range from structures like towers, high-risebuildings and long bridges to wind
turbines. Traditionally, the level of ambition regarding the representation of the turbulent wind
load in these applications has been very different, with structural applications often making use
of simple analytical approximations for the resulting load, while wind turbine design typically
makes use of rather detailed wind field simulation, often based on FFT techniques, see e.g. [3].

4.1 Isotropic wind field correlation

The turbulent wind field used in the present paper is represented in the form of isotropic
incompressible turbulence as described by Batchelor [4]. It follows from invariance to coor-
dinate transformations that the general form of the covariance between the turbulent velocity
components at two points separated by the spatial vectorr as shown in Fig. 2 is of the form

R(r) = E[v(r0 + r)v(r0)
T ] = �2

v

(

[ f(r)− g(r) ]
r rT

rTr
+ g(r) I

)

, (37)

wherer = ∣r∣ is the distance between the two points, and�2

v is the variance of a single compo-
nent at a point. The functionsf(r) andg(r) describe the lengthwise and transverse correlation,
respectively.
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Figure 2: Two-point correlation of isotropic wind field.

At the typical wind speeds in the natural wind the flow can be assumed to be incompressible.
It then follows from the incompressibility condition∇T

r
v that the correlation functions are

related by

g(r) = f(r) +
r

2

d

dr
f(r). (38)

Thus, the isotropic incompressible stochastic field is described entirely in terms of a single
scalar correlation function, e.g. the lengthwise correlation functionf(r). The lengthwise cor-
relation functionf(r) is often represented in terms of its spectral density functionF (k), where
k is the wavenumber,

�2

vf(r) =

∫ ∞

−∞

F (k) eikrdr. (39)

Analytically tractable results are obtained, when using the generalized form of the von Kàrmàn
spectral density, [5, 6],

�2

vF (k) =
1√
�

Γ(
)

Γ(
 − 1

2
)

�2

u ℓ

[ 1 + (kℓ)2]

. (40)

Hereℓ is a length-scale of the turbulence, and the Kolmogorov cascade theory implies that the
exponent is
 = 5/6. The analytical details of this case has been investigated by Kristensen and
Jensen [7], and it was demonstrated that coherence and correlation functions can be expressed
in terms of modified Bessel functions of the second kind with fractional index. In the present
context it is convenient to use an alternative representation of the correlation functions in terms
of Airy functions [8]. This formulation makes use of a non-dimensional transformed variablez
to represent the distance,

z =
(3r

2ℓ

)2/3

, (41)

whereby

f(r) =
Ai(z)

Ai(0)
, g(r) = f(r) +

z

3

Ai′(z)

Ai(0)
. (42)

HereAi(z) is the Airy function andAi′(z) its derivative.
A simpler approximate formulation can be obtained by using the exponent
 = 1, whereby

f(r) = e−r/�, g(r) =
(

1− 1

2

r

�

)

e−r/�. (43)

Here the parameter� is the integral spatial length-scale of the turbulence, defined by

� =

∫ ∞

0

f(r) dr. (44)

When substituting the representation (42) of the correlation functions in terms of the Airy func-
tion in the definition of the integral length-scale, it is found thatℓ = 1.339�.
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Figure 3: Correlation functionsf(r) andg(r): Airy (dots), Exponential (full).

The lengthwise and the transverse correlation functions are illustrated in Figs. 3a and 3b,
respectively. The exponential representation (43) is shown in full line, while the Airy function
representation is shown by a dotted curve. It is seen that thecurves from the two representations
cross atr ≃ �. The AR simulation format format is closely related to exponential attenuation,
and the curves suggest the the distancer ≃ � may be appropriate for calibration of the AR
model.

4.2 Simulated wind field

The AR field simulation is based on selecting a number of points in a plane, e.g. thexz-plane.
The coordinates of these points are arranged in a global vector

xT
n = [ rT

1
, rT

2
, ⋅ ⋅ ⋅ , rTm ]n . (45)

and the corresponding velocities are similarly arranged inthe global vector

uT
n = [vT

1
,vT

2
, ⋅ ⋅ ⋅ ,vT

m ]n . (46)

The global covariance matrix is then given by

Ck = E[unu
T
n−k] =

⎡

⎢

⎣

...
...

...... E[vi,nv
T
j,n−k]

...
...

...
...

⎤

⎥

⎦
=

⎡

⎢

⎣

...
...

...... R(ri,n−rj,n−k)

......
...

...

⎤

⎥

⎦
. (47)

where the final form consists of the3×3 block matrices representing the covariance between the
pointri in layern and the pointrj in layern−k. The simulation procedure consists of ak-step
calibration of the matricesA andB, based on the covariance matricesC0 andCk as described
in Section 3, followed by sequential use of the single-step recurrence (7).

Simulation of a turbulent wind field by the present procedurewas used in [9] for wind turbine
response analysis. The field is represented by 24 radial lines of length 43 m with 8 points in
each. In the example the integral length-scale is� = 120m. The simulation is based on sections
separated byΔy = 0.5m, and the calibration distance is taken to be the integral length-scale�,
corresponding tok = 240. The model is calibrated by use of the exponential representation of
the wind field correlation. Lengthwise and transverse correlation for points with axial separation
y are shown in Fig. 3. It is seen that the lengthwise correlation represented byf(y) retains much
of the exponential form, while the simulated transverse correlation represented byg(y) closely
follows the theoretical Airy-function representation from the von Kàrmàn spectrum.
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5 CONCLUSIONS

A simple framework for autoregressive simulation of stochastic fields has been presented.
The autoregressive format leads to a simple exponential correlation structure in the time-dimen-
sion. In the case of scalar processes a more elaborate correlation structure can be obtained by
adding memory to the process via an extension to autoregressive moving average (ARMA)
processes. The ARMA format incorporates a more detailed correlation structure by including
previous values of the simulated process. Alternatively, amore detailed correlation structure
can be obtained by including additional ‘state-space’ variables in the simulation. For a scalar
process this would imply an increase of the dimension of the process to be simulated. In the
case of a stochastic field the correlation in the time-dimension is represented indirectly in the
simultaneous spatial correlation.

The model with the shortest memory – the single-step autoregressive model – has been an-
alyzed, and an efficient multi-step calibration procedure has been developed. The calibration
makes direct use of conditional correlations and means, expressed explicitly in terms of the zero
andk-step correlation matrices of the stochastic field. The correlation structure of an isotropic
turbulent wind field is developed from the generalized von K`armàn spectrum in terms of the
Airy function, and the simulation procedure is illustratedfor turbulent wind with Airy or ex-
ponential function representation of the correlation structure. In spite of the basic simplicity of
the simulation algorithm, the details of the transverse correlation, that should satisfy an integral
condition for consistency, is represented well.
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