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Abstract. In this paper we propose the results of an experimental investigation addressed
to identify mass, stiffness and damping matrices of a two-story building model. The goal of
our research is to set up a quick procedure to design control laws for mitigating structural
vibrations and/or detecting damage of structure itself. We placed on each floor a 4507 Bruel &
Kjaer accelerometer connected to 6160 Bruel & Kjaer Pulse spectrum analyzer, then we excited
the structure by 8202 Bruel & Kjaer impact hammer and through the recorded I/O data we
identified the modal model. Once obtained the system modal parameters, we identified mass,
stiffness and damping matrices of the structure. We are going to exploit these experimental
results for designing a virtual passive controller. This apparatus is composed of an electric
actuator placed on the top of the building connected to a NI-CompactRio System.
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1 INTRODUCTION

System identification is the art of determining a mathematical model of a physical system
by combining information obtained from experimental data with that derived from an a priori
knowledge. There are several types of system identification algorithms in relation to differ-
ent goals one wants to pursue. In mechanical engineering, applied system identification al-
lows to get modal parameters of a dynamical system using force and vibration measurements.
These parameters are typically used to design optimal control laws whereas in the field of struc-
tural health monitoring they are used to detect and evaluate system damage. A very powerful
algorithm to perform system identification is Eigensystem Realization Algorithm with Data
Correlation using Observer/Kalman Filter Identification (ERA/DC OKID) [1, 2, 3, 4]. This
numerical procedure is able to construct a state-space representation of a mechanical system
starting from input and output measurements even in presence of process and measurement
noise. On the other hand, when all degrees of freedom are instrumented with a force and/or
an acceleration transducer, an efficient numerical procedure can be implemented to construct a
second-order model of the mechanical system starting from state-space representation (MKR)
[5, 6, 7]. Experimental investigations show that ERA/DC OKID correctly determines system
natural frequencies and damping ratios whereas MKR method properly identifies mass and stiff-
ness matrices but it fails in esteeming damping matrix because actual measurements are never
noise-free. Nevertheless, if the real system is lightly damped, authors propose an efficient pro-
cedure [8, 9] for identifying in a direct way system damping matrix from state-space realization
by assuming proportional damping hypothesis.

2 MATHEMATICAL BACKGROUND

2.1 System Modelling

Consider a multiple degrees of freedom mechanical system. Let M ∈ Rn2×n2 , K ∈ Rn2×n2

and R ∈ Rn2×n2 be the mass, stiffness and damping matrices, respectively. The system equa-
tions of motion can be expressed in matrix notation as:

M ẍ(t) + R ẋ(t) + K x(t) = F(t) (1)

where x(t) ∈ Rn2 , ẋ(t) ∈ Rn2 , ẍ(t) ∈ Rn2 are vectors of generalized displacement, velocity
and acceleration, respectively, and F(t) ∈ Rn2 is the vector of forcing functions.

On the other hand, if the response of the dynamic system is measured by the m ∈ N output
quantities in the output vector y(t) ∈ Rm, then the output equations can be written in a matrix
form as follows:

y(t) = Cd x(t)+Cv ẋ(t)+Ca ẍ(t) (2)

where Cd ∈ Rm×n2 , Cv ∈ Rm×n2 and Ca ∈ Rm×n2 are respectively the output influence
matrices for displacement, velocity and acceleration. These output influence matrices simply
describe the relation between the vectors x(t), ẋ(t), ẍ(t) and the measurement vector y(t),
which in general can be a linear combination of system generalized displacement, velocity and
acceleration.

Let z(t) ∈ Rn be the state vector of the system:

z(t) =

[
x(t)
ẋ(t)

]
(3)
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where n ∈ N is the dimension of the system state vector. The forcing function F(t) over
the period of interest at a certain specific location can be expressed using a vector u(t) ∈ Rr

containing r ∈ N input quantities according to this relation:

F(t) = B2 u(t) (4)

where B2 ∈ Rn2×r is an input influence matrix characterizing the locations and type of
inputs. The equations of motions and the output equations can both be respectively rewritten in
terms of the state vector as follows:

ż(t) = Ac z(t)+Bc u(t) (5)

y(t) = C z(t)+D u(t) (6)

where Ac ∈ Rn×n is the state transition matrix, Bc ∈ Rn×r is the state influence matrix,
C ∈ Rm×n is the measurements influence matrix and D ∈ Rm×r is the direct transmission
matrix. These matrix can be computed in this way:

Ac =

[
O I

−M−1 K −M−1 R

]
(7)

Bc =

[
O

M−1 B2

]
(8)

C =
[

Cd−Ca M−1 K Cv−Ca M−1 R
]

(9)

D = Ca M−1 B2 (10)

Equations (5) and (6) constitute a continuous-time state-space model of a multiple degrees
of freedom dynamical system. Using the preceding definitions, the state-space complex eigen-
values problem can be stated as follows:

(Ac − λc I)ψ = 0 (11)

where λc,j ∈ C , j = 1, 2, . . . , n and ψj ∈ Cn , j = 1, 2, . . . , n will be referred as
system modal parameters. State-space model eigenvectors can be usefully grouped according
to the following matrix notation:

Ψ =
[
ψ1 ψ2 . . . ψn

]
(12)

where Ψ ∈ Cn×n is a matrix constituted of system eigenvectors stacked by columns. Multi-
body model eigenvectors W ∈ Cn2×n obtained from equation (1) and state-space model eigen-
vectors Ψ ∈ Cn×n obtained from equation (5) are mathematically interconnected by the fol-
lowing formula:

Ψ =

[
W

W Λc

]
(13)

where Λc ∈ Cn×n is a diagonal matrix whose elements are system eigenvalues.
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2.2 Eigensystem Realization Algorithm with Data Correlation (ERA/DC) using Observer/Kalman
Filter Identification (OKID)

The basic development of the state-space realization is attributed to Ho and Kalman. The Ho-
Kalman procedure uses the generalized Hankel matrix to construct a state-space representation
of a linear system form noise-free data. This methodology has been modified and substantially
extended by Juang [1, 2] to develop the Eigensystem Realization Algorithm with Data Correla-
tion (ERA/DC) to identify modal parameters from noisy measurement data. Recently, a method
named Observer/Kalman Filter Identification (OKID) has been developed by Juang [3, 4] to
compute the Markov parameters of a linear system from which the state-space model and a
corresponding observer are determined simultaneously. This method is entirely formulated in
time-domain and it is capable of handling general response data.

Conventional time-domain system identification methods use only the system Markov pa-
rameters [4] to determine A, B, C and D. On the other hand, OKID uses the combined system
and observer gain Markov parameters [4]. These parameters are computed directly from time-
domain input and output measurements and are used to identify A, B, G, C and D by the
time-domain method named ERA/DC [4].

Basically, the ERA/DC OKID procedure consists in three steps: 1) computation of Markov
parameters; 2) realization of state-space model; 3) modal parameters identification.

2.3 Modal Parameters Identification

The ERA/DC OKID procedure is a time-domain identification method which compute a
minimum realization of system and the observer gain matrix starting from the combined system
and observer gain Markov parameters [4]. A realization is a triplet of matrices

{
Â , B̂ , Ĉ

}
that satisfies the discrete-time state-space equations. Obviously, the same system has an infinite
set of realizations which will predict the identical response for any particular input. Minimum
realization means a model with the smallest state space dimension among all the realizable
systems that have the same input-output relations.

All minimum realizations have the same set of eigenvalues and eigenvectors, which are the
modal parameters of the system itself. Assume that the state matrix Â has a complete set of
linearly independent eigenvectors ψ̂j , j = 1, 2, . . . , nwith corresponding eigenvalues λ̂j , j =
1, 2, . . . , n:

Â Ψ̂ = Ψ̂ Λ̂ (14)

where Λ̂ ∈ Rn×n is the diagonal matrix of the eigenvalues and Ψ̂ ∈ Cn×n is a matrix formed
by the eigenvectors stacked per columns. The realization

{
Â , B̂ , Ĉ

}
can be transformed in

the realization
{
Λ̂, Ψ̂−1 B̂ , Ĉ Ψ̂

}
by using spectral decomposition. The diagonal matrix Λ̂

contains the informations of modal damping rates and damped natural frequencies. The matrix
Ψ̂−1 B̂ defines the initial modal amplitudes and the matrix Ĉ Ψ̂ the mode shapes at the sensor
points. All the modal parameters of a dynamic system can thus be identified by the unique triplet{
Λ̂, Ψ̂−1 B̂ , Ĉ Ψ̂

}
. This discrete-time realization can be transformed to its continuous-time

counterpart
{
Λ̂c, Ψ̂

−1 B̂c , Ĉ Ψ̂
}

by using the zero-order-hold assumption. Finally, assuming
that all the identified system modes are underdamped, modal damping rates and damped natural
frequencies can be computed from the diagonal matrix Λ̂c ∈ Cn×n as follows:

ω̂n,i =
√
ε̂2i + ω̂2

d,i , i = 1, 2, . . . , n2

ξ̂i = −ε̂i√
ε̂2i+ω̂2

d,i

, i = 1, 2, . . . , n2
(15)
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where ε̂i , i = 1, 2, . . . , n2 and ω̂d,i , i = 1, 2, . . . , n2 are respectively the real and imaginary
part of the system eigenvalues λ̂c,j , j = 1, 2, . . . , n.

In many practical applications the hypothesis of proportional damping can be assumed as
satisfied, especially in the case of structural systems in which damping is small and no a priori
informations about its nature are available. Proportional damping assumption is the following:

R = αM + βK (16)

where M and K are the mass and stiffness matrices, respectively, whereas α and β are
proportional coefficients. If the system is lightly damped, authors propose a simple and efficient
method to identify damping matrix starting from identified state space representation [8, 9]. The
proportional damping assumption implies that the identified modal damping are related to the
identified natural frequencies according to the following equations:

ξ̂i =
α̂

2ω̂n,i

+
β̂ ω̂n,i

2
, i = 1, 2, . . . , n2 (17)

where ωn,i , i = 1, 2, . . . , n2 are the identified natural frequencies. These equations can be
grouped in a matrix from to yield:

1
2ω̂n,1

ω̂n,1

2
1

2ω̂n,2

ω̂n,2

2
...

...
1

2ω̂n,n2

ω̂n,n2

2


[
α̂

β̂

]
=


ξ̂1
ξ̂2
...
ξ̂n2

 (18)

At this point the proportional coefficients α and β that optimal fits the identified natural
frequencies ωn,i , i = 1, 2, . . . , n2 in the least-square sense can be computed taking the
pseudo-inverse matrix:

[
α̂

β̂

]
=



1
2ω̂n,1

ω̂n,1

2
1

2ω̂n,2

ω̂n,2

2
...

...
1

2ω̂n,n2

ω̂n,n2

2



† 
ξ̂1
ξ̂2
...
ξ̂n2

 (19)

This approximation represents a simple and useful mathematical tool to deals with real ex-
perimental data.

3 CONSTRUCTION OF SECOND ORDER MODEL FROM IDENTIFIED STATE-
SPACE REPRESENTATION

Consider the following matrices:

Vc =

[
R M
M O

]
(20)

Sc =

[
−K O
O M

]
(21)

B3 =

[
B2

O

]
(22)
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Using these definitions, a symmetric formulation of system continuous-time state-space
model can be developed:

Vc ż(t) = Sc z(t) + B3 u(t) (23)

y(t) = C z(t)+D u(t) (24)

where the matrices Vc ∈ Rn×n, Sc ∈ Rn×n and B3 ∈ Rn×r are all symmetric matrices. The
symmetric formulation of system state-space model can be easily reconnected to the typical one
(5) noting that the output equations are unchanged and that system transition matrix and state
influence matrix can be computed in this way:

Ac = V−1c Sc (25)

Bc = V−1c B3 (26)

The advantages of reformulating system state-space model in this way is that now the asso-
ciated eigenvalues problem is kept symmetric. Indeed:

Sc Ψ = Vc Ψ Λc (27)

In general, these eigenvectors can be arbitrarily scaled but if the scaling is chosen such that:

ΨT Vc Ψ = I (28)

ΨT Sc Ψ = Λc (29)

then, for a proportionally damped system, the real and imaginary parts of the components
of these complex eigenvectors are equal in magnitude. Once that the symmetric eigenvalues
problem has been solved, it can be proved [5, 6, 7] that a transformation matrix can be com-
puted in order to extract multibody model eigenvectors matrix Ŵ from state-space realization{
Â , B̂ , Ĉ

}
. Finally, using this method it is possible to construct a second-order model of the

mechanical system by using the following formulae:
M̂ = (Ŵ Λ̂c ŴT )

−1

K̂ = −(Ŵ Λ̂−1c ŴT )
−1

R̂ = −M̂ Ŵ Λ̂2
c ŴT M̂

(30)

This numerical procedure is referred as MKR algorithm [5, 6, 7].

4 SYSTEM IDENTIFICATION OF A TWO-STORY BUILDING MODEL

We have set up a two-story building model composed of four steel pillars and two aluminum
beams as showed in figure (??). The first floor pillars have a section 1mm x 35mm and are
300mm long while the second floor pillars have a section 1mm x 35mm and are 350mm long.
The two beams are 200mm long with a square section 45mm x 45mm. On the first and on the
second floor there are two piezoelectric accelerometers as showed in figure (1). The 4507 Bruel
& Kjaer accelerometers are connected to 6160 Bruel & Kjaer Pulse spectrum analyzer. The
excitation signal is produced by the 8202 Bruel & Kjaer impact hammer, which is connected to
the spectrum analyzer too.
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Figure 1: Experimental Apparatus

4.1 CASE-STUDY 1

We have studied two experimental configuration. In the first case, we analyzed the two-story
building frame. In the second case, we placed an additional mass on the first floor. In figure (2)
is showed the force measurement applied on the first floor and in figure (3) there is the system
response corresponding to the input. In order to get statistically meaningful results, we repeated
the experimental acquisition ten times but in the figures (2), (3) is showed only the first test.

Once the acquisition has been performed, we used ERA/DC OKID to get a state-space rep-
resentation of the system. The following matrices represent the realization corresponding to the
input and output measurements, figures (2), (3):

Â =


0.6220 −0.7789 −0.0003 −0.0021
0.7839 0.6191 0.0031 −0.0012
−0.0036 0.0061 0.9623 0.2616
0.0041 0.0044 −0.2676 0.9634

 (31)

B̂ =


0.0541
−0.0268
0.0412
0.0363

 (32)

Ĉ =

[
−37.8710 −5.0124 −5.8513 1.8479
26.5700 3.2700 −7.2966 2.2001

]
(33)

D̂ =

[
3.6387
0.0739

]
(34)
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Figure 2: CASE 1 - Force Measurement
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Figure 3: CASE 1 - Acceleration Measurements

Examining the singular value Σ̄n of the Hankel matrix H̄(0) showed in figure (4) it is possible
to determine the order of the system. Indeed, there are only 4 singular values whose magnitude
is not negligible: it means that the system state has dimension n̂ = 4. Obviously, the same sys-
tem has an infinite set of realizations which will predict the identical response for any particular
input. Minimum realization means a model of the smallest state space dimensions among all
realizable systems that have the same input-output relation. All minimum realizations have the
same set of eigenvalues and eigenvectors, which are the modal parameters of the system itself:

Λ̂ = diag(0.6205 + 0.7814i, 0.6205− 0.7814i, 0.9629 + 0.2646i, 0.9629− 0.2646i) (35)

Ψ̂ =


0.0013 + 0.7059i 0.0013− 0.7059i −0.0007− 0.0019i −0.0007 + 0.0019i

0.7082 0.7082 0.0016 + 0.0008i 0.0016− 0.0008i
−0.0069− 0.0030i −0.0069 + 0.0030i −0.0015 + 0.7031i −0.0015− 0.7031i
0.0016− 0.0071i 0.0016 + 0.0071i −0.7111 −0.7111


(36)

System eigenvectors are graphically showed in figure (5). The discrete-time realization can
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Figure 4: CASE 1 - Hankel Matrix Singular Values

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

Degrees of Freedom

M
ag

ni
tu

de

f n 9.1638 [Hz]    ERA DC OKID Eigenvector

← Phase 0

← Phase −3.1368

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Degrees of Freedom

M
ag

ni
tu

de

f n 2.7314 [Hz]    ERA DC OKID Eigenvector

← Phase 0
← Phase 0.013887

Figure 5: CASE 1 - System Eigenvalues and Eigenvectors

be transformed to its continuous-time counterpart by using the zero order hold assumption and
subsequently modal damping rates and natural frequencies can be computed from the diagonal
matrix Λ̂c ∈ Cn×n to yield:

f̂n,1 = 2.7314 [Hz] (37)

f̂n,2 = 9.1638 [Hz] (38)

ξ̂1 = 0.0054 [\] (39)

ξ̂2 = 0.0025 [\] (40)

The optimally damping coefficients α̂ and β̂ that fit identified natural frequencies in the
least-square sense can be computed according to equations (19) to yield:

α̂ = 0.1755 (41)

β̂ = 3.2283 · 10−5 (42)
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Finally, using the MKR algorithm a mechanical model of system mass, stiffness and damping
matrices can be computed:

Φ̂ =

[
−0.1317 + 0.0758i 0.1582− 0.1057i
0.0927− 0.0527i 0.2034− 0.1319i

]
(43)

M̂ =

[
0.2913 0.0153
0.0153 0.3387

]
[kg] (44)

K̂ =

[
630.44 −425.83
−425.83 439.01

]
[kg/s2] (45)

R̂ =

[
6.9208 −3.6833
−3.6833 5.6759

]
[kg/s] (46)

where Φ̂ is system eigenvectors matrix scaled according to equations (28), (29). While in
the case of mass M̂ and stiffness K̂ matrices the experimental results of the MKR algorithm are
acceptable, the identified damping matrix R̂ appears to be incongruous. Authors propose a dif-
ferent estimation of damping matrix (??optimal damping)) based on the identified proportional
coefficients α̂ and β̂. The resulting R̂ matrix is the following:

R̂ =

[
0.0715 −0.0111
−0.0111 0.0736

]
[kg/s] (47)

this damping matrix is a better estimation of actual system damping.

4.2 CASE-STUDY 2

In the second case, we placed an additional mass on the first floor. In figure (6) is showed
the force measurement applied on the first floor and in figure (7) there is the system response
corresponding to the input. Even in this case, in order to get statistically meaningful results, we
repeated the experimental acquisition ten times but in the figures (6), (7) is showed only the first
test.
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Figure 6: CASE 2 - Force Measurement
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Figure 7: CASE 2 - Acceleration Measurements

Once the acquisition has been performed, we used ERA/DC OKID to get a state-space repre-
sentation of the system. The following is the realizations corresponding to the input and output
measurements, figures (6), (7):

Â =


0.7776 −0.6220 0.0041 −0.0044
0.6205 0.7848 0.0014 −0.0011
−0.0116 0.0064 0.9799 0.1867
0.0072 −0.0023 −0.1848 0.9824

 (48)

B̂ =


−0.0524
−0.0317
−0.0561
0.0124

 (49)

Ĉ =

[
−5.4178 −3.7972 −1.9582 1.7973
12.0353 8.4148 −1.8316 1.9635

]
(50)

D̂ =

[
−2.7906
−0.0621

]
(51)

Indeed, examining the singular value Σ̄n of the Hankel matrix H̄(0) showed in figure (8) it
is possible to determine the order of the system. In fact, there are only 4 singular values whose
magnitude is not negligible: it means that the system state has dimension n̂ = 4. Now system
modal parameters can be computed to yield:

Λ̂ = diag(0.7812 + 0.6213i, 0.7812− 0.6213i, 0.9812 + 0.1857i, 0.9812− 0.1857i) (52)

Ψ̂ =


0.7075 0.7075 0.0015 + 0.0008i 0.0015− 0.0008i

−0.0041− 0.7065i −0.0041 + 0.7065i 0.0044− 0.0057i 0.0044 + 0.0057i
−0.0046 + 0.0161i −0.0046− 0.0161i 0.7089 0.7089
−0.0047− 0.0081i −0.0047 + 0.0081i 0.0049 + 0.7053i 0.0049− 0.7053i


(53)

System eigenvectors are graphically showed in figure (9). The discrete-time realization can
be transformed to its continuous-time counterpart by using the zero order hold assumption and
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Figure 8: CASE 2 - Hankel Matrix Singular Values
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Figure 9: CASE 2 - System Eigenvalues and Eigenvectors

subsequently modal damping rates and natural frequencies can be computed from the diagonal
matrix Λ̂c ∈ Cn×n to yield:

f̂n,1 = 1.9056 [Hz] (54)

f̂n,2 = 6.8439 [Hz] (55)

ξ̂1 = 0.0075 [\] (56)

ξ̂2 = 0.0028 [\] (57)

Now it is straightforward to note that the effect of the additional mass is the reduction of
system natural frequencies whereas the damping ratios are roughly unaffected. At this point the
optimal damping coefficients α̂ and β̂ that fits in the least-square sense the identified natural
frequencies can be computed according to equations (19) to yield:

α̂ = 0.1752 (58)

β̂ = 3.4355 · 10−5 (59)
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This parameters have almost the same magnitude compared to the preceding case. Finally,
using the MKR algorithm a mechanical model of system mass, stiffness and damping matrices
can be computed to yield:

Φ̂ =

[
0.0168 + 0.0824i −0.0579− 0.1785i
−0.0395− 0.1840i −0.0705− 0.1657i

]
(60)

M̂ =

[
1.3771 0.0119
0.0119 0.5566

]
[kg] (61)

K̂ =

[
630.44 −425.83
−425.83 439.01

]
[kg/s2] (62)

R̂ =

[
59.9062 −34.1418
−34.1418 38.4897

]
[kg/s] (63)

where Φ̂ is system eigenvectors matrix scaled according to equations (28), (29). Even in
this case, while the identified mass M̂ and stiffness K̂ matrices are satisfactory acceptable, the
identified damping matrix R̂ appears to be in some way incongruous. On the other hand, by
using the proposed formulae (19), the result is the following:

R̂ =

[
0.2739 −0.0223
−0.0223 0.1231

]
[kg/s] (64)

this damping matrix is a better estimation of actual system damping. Note that there is a
marked difference between results of case-study 1 and case-study 2. Indeed, the introduction of
the additional mass on the first floor increases the magnitude of the first element of identified
mass matrix M̂.

5 CONCLUSIONS

In this paper we performed an experimental investigation on a two-story frame in order to
identify a second-order mechanical model, that is to derive system mass, stiffness and damping
matrices. First, we identified system modal parameters through Eigensystem Realization Al-
gorithm with Data Correlation using Observer/Kalman Filter Identification (ERA/DC OKID)
[4]. Then we obtained mass, stiffness and damping matrices using a numerical method (MKR)
proposed by [5, 6, 7]. Authors also proposed a new method to identify damping matrix from
modal parameters [8, 9]. The structure was excited by an impulse yielded by 8202 Bruel &
Kjaer impact hammer and the response was recorded by 4507 Bruel & Kjaer accelerometers
connected to 6160 Bruel & Kjaer Pulse spectrum analyzer. The identification procedure was
carried out several times, changing system mass and stiffness, and the results obtained are in
good agreement with our FEM simulations. This work is the first step of our research project
aimed at setting up a new virtual passive controller in order to regulate structural vibrations.
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