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Abstract. Several uncertainty propagation algorithms are available in literature: (i) Monte-
Carlo simulations based on response surfaces, (ii) approximate uncertainty propagation algo-
rithms and (iii) non probabilistic algorithms. All of these approaches are based on some a 
priori assumptions about the nature of design variables uncertainty and on the models and sys-
tems behavior. Some of these assumptions could misrepresent the original problem and, con-
sequently, could yield to erroneous design solutions, in particular where the prior information 
is poor or inexistent (complete ignorance). Therefore, when selecting a method to solve an 
uncertainty based design problem, several aspects should be considered: prior assumptions, 
non-linearity of the performance function, number of input random variables and required ac-
curacy. It could be useful to develop some guidelines to choose an appropriate method for a 
specific situation. 

In the present work some classical structural problems will be studied in order to investigate 
which probabilistic approach, in terms of accuracy and computational cost, better propagates 
the uncertainty from input to output data. The methods under analysis will be: Univariate Di-
mension Reduction methods, Polynomial Chaos Expansion, First-Order Second Moment me-
thod, and algorithms based on the Evidence theory for epistemic uncertainty. The 
performances of these methods will be compared in terms of moment estimations and proba-
bility density function construction corresponding to several scenarios of reliability based de-
sign and robust design. The structural problems presented will be: (1) the static, dynamic and 
buckling behavior of a composite plate, (2) the reconstruction of the deformed shape of a 
structure from measured surface strains. 
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1 INTRODUCTION 

The design for reliability, as well as robust design, is phased in over last decades in the 
structural design. Although these concepts are well-known in many engineering fields, the 
high computational cost of the mathematical approaches needed to perform these kinds of 
analysis, have set back their application in the aerospace structural design. Although in this 
last field, the problems that deal with the input variable uncertainties are known since the be-
ginning of the aviation history, they are coped with deterministic methods based on the safety 
factor approach. The diffusion of components based on composite materials, in secondary and 
primary aerospace structures, and the dropping of aerospace and aviation companies’ profit 
have reawaken the interest in design philosophies that deal with the uncertainty in a more ef-
fective way. For this reason, mathematicians and researchers have been urged on the study of 
new numerical approaches for an accurate Uncertainty Propagation (UP) from input to output 
data. Traditionally, both the reliability and the robustness of a design configuration have been 
studied using the Montecarlo simulation; although it is the most accurate method, its compu-
tational cost could be prohibitive. For this reason several alternative approaches have been 
developed to face UP. 

Most of the available UP algorithms have particular characteristics that make them appro-
priate for some specific problems but their capabilities are not fully exploited in all kinds of 
applications. First of all it is possible to distinguish between algorithms for the study of alea-
tory uncertainty and approaches that deal with the epistemic uncertainty. This classification 
can be based on the prior hypotheses needed to simulate the prior uncertainty. In order to 
model the epistemic uncertainty by means of probabilistic (aleatory) algorithms, some prior 
hypotheses should be adopted to transform the epistemic information into a probability distri-
bution function (epistemic algorithms do not need such assumptions). On the other hand, a 
probabilistic problem may be studied by means of an epistemic algorithm if the prior proba-
bility density functions are transformed into set-based information. 

The UP algorithms based on the probability theory are usually classified into five catego-
ries [1]: 1) Simulation based methods: these techniques are based on the simulation of the 
problem in proper trial points, selected according to the stochastic characteristics of the input 
variables. MonteCarlo Simulation (MCS) is certainly the most known and used of these me-
thods. 2) Local expansion based methods: these algorithms, also known as perturbation me-
thods, are based on the local series expansion of output functions in terms of input random 
parameters. The methods based on Taylor expansion, such as the FOSM (First Order Second 
Moment) or the SOSM (Second Order Second Moment) methods, belong to this class. 3) 
Most Probable Points (MPP) based methods: this class includes the First and Second Order 
Reliability Methods (FORM and SORM, respectively). 4) Functional expansion based me-
thods: they rely on a stochastic expansion of the performance function. The most known me-
thod of this class is the Polynomial Chaos Expansion (PCE). 5) Numerical integration based 
methods: these techniques are based on the numerical solving of integral equations for the sta-
tistical moments. These methods don’t yield directly the performance joint probability func-
tion, but the corresponding statistical moments; by using the Pearson System and knowing the 
first four statistical moments, the probability distribution function can be obtained.  

Several factors affect the choice of a suitable UP approach: (i) the identification and the 
classification of the input uncertainty, (ii) the definition of the required outputs (the first two 
statistical moments in robust design and the probability density function or the most probable 
points in a reliability based analysis),(iii) and the mathematical characteristics of the studied 
model (if the first order interactions cannot be neglected the Univariate Dimension Reduction 
method does not yield accurate prediction while the performance function is non linear the 
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methods based in Taylor local expansion are not accurate). This last information can be ob-
tained using some numerical tools, such as the sensitivity analysis.  

The main objective of this work is a comparative study of some of the most common and 
newest UP algorithms for both aleatory and epistemic uncertainties. As far as the first ones, 
the limits and merits of the Univariate Dimension Reduction method (UDR), of the Poly-
nomial Chaos Expansion (PCE), and of the First Order Second Moments algorithm (FOSM) 
will be analyzed and discussed. These methods will be tested and compared on some numeri-
cal test functions and a classical structural problem: the probabilistic study of static, dynamic 
and buckling behavior of a composite plate. The sensitivity analysis has been performed in 
order to study the mathematical characteristics of the model. In the second part of the present 
work a probabilistic approach based on the UDR is compared with an epistemic approach 
based on the evidence theory. The structural application used as a test case for the comparison 
is an inverse problem: reconstruction of the deformed shape of a beam from measured surface 
strains using the inverse Finite elements Method (iFEM) [2][3]. 

2 UNCERTAINTY PROPAGATION ALGORITHMS 

In this section, a review of some uncertainty propagation algorithms will be presented in 
order to set the framework for the assessment and comparison, through some structural appli-
cations, discussed in Sec. 3.  

2.1 The Univariate Dimension Reduction method (UDR) 

This method involves an additive decomposition of a multidimensional integral function 
to multiple one-dimensional integral functions. The technique is suitable for calculating the 
stochastic moments of a system response function, as Rahman and Xu have shown [4]-[6]. 
The stochastic moments of a probability distribution may be calculated as follows 
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where lm  is the lth-order statistical moment (i.e., m=1 is the mean value, m=2 is the variance, 
etc.), )(Xf X  is the system response joint probability density function, )(Xy  is the determi-
nistic response when the input variables assume the values collected in the vector 
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where j  is the first moment of the stochastic variable jx , ),...,,,,...,( 111 Njjj xY    is 
the stochastic response of the system only depending on the jx  random variable, and 

),....,( 1 Ny   is the deterministic response of the system depending on the nominal value of 
the N input variables. Adopting the dimension-reduction procedure, the expression of statis-
tical moments (1) can be rewritten as:  
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To solve the univariate integration  in the context of the UDR method, Xu and Rahman [4] 
suggest the use of the moment based quadrature rule. The evaluation of integration points jx  
involves the solution of the following equation  
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where the coefficients jr  are solution of  the following linear system of equations 
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 , 1,.....,j i i n   represents the ith stochastic moment of the jth input variable. Thus, the un-
ivariate integral can be numerically solved as 
 

                    
     Nj

l
n

i

ijjjXNj

l xywdxxfxy
j

 ,.......,,........,,.......,,........, ,1

1

,,1 







                  (7)         
 
where 

jxf is the probability density function of input variable jx . The weight ijw ,  appearing 
in Eq. (7) are evaluated using the following expression:  
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2.2 The Polynomial Chaos Expansion (PCE) 

The Polynomial Chaos Expansion was introduced by Wiener [7] and is based on the ap-
proximation of each random variable by means of a suitable polynomial expansion about cen-
tered normalized Gaussian variables. 
Any set  T

nxxX ,,.........1  of independent Gaussian variables can be expressed as function 
of a set  n ,,.........1  of independent normal variables 
 

                                                                    fX                                                                  (9)                          
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Hence, a performance function )(XYy   could be transformed into a function expressed in 
terms of   and, afterwards, approximated by means of the Polynomial Chaos Expansion 
(PCE) on the vector space  
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where  naaa ,.....,0  is the vector of the expansion unknown terms and  np  ,......,1  are the 
multidimensional Hermite polynomials (only if the input random variables are defined by a 
normal probability distribution) of order p . 
Cameron and Martin have shown that this kind of series is convergent in the 2L -sense [8]. In 
order to simplify the notation a univocal relation between the functional   and a new func-
tional   is defined. Hence, the PCE expansion, expressed by Eq. (10), can be rewritten as 
follows 
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In the present work the classical convention is adopted: 
 10  : is the 0th-order polynomial 
 k   are the constant coefficients of the expansion  
 k  are multivariate Hermite polynomials, orthogonal in the 2L -space. These polyno-

mials are the product of the proper set of univariate Hermite polynomials [9].  
The expansion is normally truncated at a selected order P 
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The number of unknown coefficients k  (13) can be evaluated using the following expression 
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The procedure described above is general, but the Hermite polynomials can be used only in 
the cases of input variables with Gaussian probability distribution function. Xiu and Karnia-
dakis [9] have extended the PCE applicability to all kinds of input distribution function, 
adopting the Wiener-Askey scheme for non Gaussian input distribution. They have proposed 
to use the Askey scheme to combine the non Gaussian input distribution with orthogonal po-
lynomial family; in this way the expansion convergence for all kind of input PDF. As well as 
the Hermitte polynomials are orthogonal in the Hilbert space, in the same way all polynomials, 
adopted in the Wiener-Askey [9] scheme are orthogonal in the Hilbert space and form an Hil-
bert basis of the corresponding space. 
The set  T

n ,.......0  of the PCE unknown coefficients, can be approximated by a new 
vector ̂ ,  obtained solving the following least squares problem 



M. Corradi, M. Gherlone, M. Mattone and M. Di Sciuva 

 6 

 

                                               
 











N

i

P

k

ikkiXY
1

2

0

minargˆ                                        (12)      

                   
where N  is the training points set size; generally, it is convenient that 1 pN .  

2.3 The First Order Second Moment algorithm (FOSM)  

In this approach a performance function )(XY  is approximated by means of a first order 
Taylor-series expansion around the design point [10] 
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Substituting Eq. (13) in the expectation definition (mean) 
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and considering that:  
 

                                             























 n

i

ii

Xi

ii

X

n

i i

xxE
x

Y
xx

x

Y
E

11

0                              (15) 

                                                        0 iiiiii xxxxExxE                                    (16) 
                      
the performance function mean value, estimated by means of FOSM, assumes the following 
expression 
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Now, given the variance definition 
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and substituting in it Eq. (13), the variance assumes the following expression 
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where ),( ji xxCOV  is the covariance matrix.           
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2.4 The Evidence Theory  

The Evidence Theory is a non probabilistic approach, used to characterize the effect of ep-
istemic uncertainty on a system. 
Given a design variable 1x , the prior information, or evidence, consists of n  intervals, ob-
tained from s  sources  u

i

l

i xx ,1,1 , (with si ,......1 ) that enclose the supposed true value. Clear-
ly, the traditional probability theory cannot handle this type of evidence, without making 
some assumptions that can pervert the nature of the information. Several combination rules 
have been formulated to handle this kind of prior information [11],[12]; in this work, the 
Dempster-Shafer combination rule is adopted.         
When a source provides a set information, this means that the variable can assume any value 
inside the interval. The probability that a variable 1x  assumes the value 1x   is not defined by a 
probability distribution function but is included between a maximum probability (plausibili-
ty), and a minimum probability (belief). In order to define the plausibility and the belief, the 
basic probability assignment  m  must be introduced; m defines a mapping of the variable 
prior information. Formally the basic probability assignment function is defined by means of 
the following expressions 
 
                                                                    ]1,0[)(: 1  xm                                                  (20) 
                                                                         0)( m                                                        (21) 
                                                             siwithSxifm i ,.......,11 1                              (22)  

 
where )( 1x  represents the power set of 1x  (defined, according to the axiomatic set theory 
[12] as the set of all subset of S ), while   is the null set and iS  is the i-th evidence set. Ac-
cording to the previous equations, the basic probability assignment assumes any value in-
cluded between 0 and 1; if 1x  does not belong to any subset, the basic probability assignment 
assumes value 0 , while if 1x  belongs to every subset, it assumes the value 1. Once defined 
the basic probability assignment m, the plausibility and belief probability measures can be in-
troduced. Given a set   ],[ 11 xxDC


 , where 1x  is a generic value of the variable 1x  on its 

domain  1xD , while  1xD  represents the lower domain boundary, the plausibility can be 
expressed by 
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while the belief is defined as: 
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In other words, the plausibility is the sum of all basic probability assignments of the sets  i

xS
1  

which intersect the set of interest 1C , hence it represents the maximum probability that a vari-
able 1x  assumes a given value 1x . On the other hand, the belief is defined as the sum of all 



M. Corradi, M. Gherlone, M. Mattone and M. Di Sciuva 

 8 

basic probability assignments of the sets i

xS
1
 that 11

CS i

x   hence it is a measure of the mini-
mum probability that a variable 1x  assumes a given value 1x . 
The probability lies between the plausibility and the belief 
 
                                                               111 CPlCPCBel                                                (26) 

 
and, only when plausibility and belief are overlapped, it can be univocally defined. 
In a problem with n  input variables there is the need to transfer the basic probability assign-
ment values 

jxm , evaluated for each variable, into an equivalent information in the n-
dimensional design variables space. Assuming that all the variables are uncorrelated, the 
probability of each elementary set in the design variables space is defined by 
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  Once defined the uncertainty acting on the design variables, its effects on the performance 
function can be evaluated. Given a generic function  XYy  , linking the output with the in-
put variables  nxxX ,........1 , the evidence about y  must be estimated from the joint body 
of evidence previously described in Eq. (27). By means of two optimization problems, for 
each evidence-set of the input variables space, the lower and upper boundary of the corres-
ponding set into the output space are evaluated 
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The above optimization problems yield an evidence set on output-space j

yS  for each set j   
of the joint body of evidence (Fig 4.5). Hence, in order to propagate the uncertainty from in 
put to output two optimizations for each set j  have to be performed. 
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3 NUMERICAL EXAMPLES  

In this section some numerical examples will be presented in order to verify the accuracy 
of the UP methods described above. Some test functions and a structural problem (static, dy-
namic and buckling behavior of a composite plate) will be the test cases considered for assess-
ing the methods for stochastic uncertainty. A comparison between stochastic and epistemic 
approaches when applied to a structural shape sensing problem will be then discussed. 

3.1 Test functions 

Two test functions are used to compare the performance of the UP methods introduced in 
the previous paragraphs (Table 1). 

 
Function PDF PDF Parameters 

4

1 2 32 2,3,5k ky x x x k    Gaussian 
 1,1,1  

8.0,4.0,2.0,1.0  

1

4

32

2

1 sinsinsin xbxxaxy   Gaussian 
 4, 4, 4     

5.0,2.0,1.0,05.0   
Table 1: Test functions used to test the UP methods 

 
The first example is a three-variate function, chosen to compare the performance of the UP 

algorithms against the first order interaction of the input variables. The input variables follow 
a Gaussian distribution centered in  1,1,1X  and four values of standard deviation are tested 
( 8.0,4.0,2.0,1.0 ). In addition, the effect of the interactions among the variables is studied 
changing the value of k . The analysis of the accuracy of each method is performed compar-
ing the predicted values of the statistical moments with those evaluated using a MonteCarlo 
Simulation, based on 106 observations. In this example the effect of an increasing input varia-
bility is combined with that of an increasing interaction effect. 
In Table 2 the main effects and the interactions are listed for each value of k . These indices 
are evaluated by means of the Polynomial Chaos Expansion [13]. We can observe that chang-
ing the value of k  the interaction 21xx  increases its effect on the output, becoming gradually 
the most important factor. 
 

  Main Effects and Interactions 

  k=2 k=3 k=5 
X1 0,011 0,0838 0,0575 
X2 0,011 0,0838 0,0572 
X3 0,9587 0,4734 0,0006 

X1X2 0,01927 0,359 0,8808 
X1X3 9,60E-25 8,78E-25 5,82E-04 
X2X3 4,84E-26 8,34E-25 1,22E-03 

Table 2: Main effects and interaction 
 
In Fig (1) the errors in the estimation of the mean value are plotted in function of the input 
variables standard deviation and against different values of k . As a general rule, when the 
input variability increases, all the UP methods here discussed become less accurate. This phe-
nomenon is negligible if the first order interactions are marginal; on the contrary, in problems 



M. Corradi, M. Gherlone, M. Mattone and M. Di Sciuva 

 10 

where the interaction effects are more important ( 3k  or 5k ) the results become more 
sensitive to the input variability. 
As shown in Fig (1A) the UDR yields a good estimation of the mean values when the interac-
tion between the variables is low  2k , also in the case of high input variability  8.0 . 
Increasing the effect of interaction, the accuracy of this method greatly decays, in particular 
for higher values of input variability.  

Similar behaviors are shown in Fig (1B-D); the output function is approximated with the Po-
lynomial Chaos Expansion, truncated at different orders. Also in this case, for higher values 
of k  and for a higher input uncertainty, the mean value is poorly approximated. When using 
the PCE, however, the reduced accuracy is not due to the interaction effects, but it is caused 
by the non-linearity of the output function: for example, if 2k  we have a 4th order function, 
while if 3k  we have a 6th order function. Hence, it is clear that a Polynomial Chaos Expan-
sion truncated at the 5th order better describes the problem than an expansion trounced at the 
2nd order, but, for 5k , it does not guarantee adequate accuracy. Increasing the order of the 
expansion, the error in the prediction gradually vanishes.  

 

Fig 1 Error in the extimation of the output mean value: A) Error due to the Univariate dimension reduction 
method (UDR) B-D) Error due to the Polinomial Chaos Expansion (PCE) respectivelly of 2nd, 3rd and 5th order.  
E) Error due to the FOSM alghorithm 

Therefore, there is a substantial difference between the UDR and the PCE. In the UDR the 
lack of accuracy, is inherent to its mathematical formulation and cannot be reduced. On the 
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other hand, the accuracy of the PCE results can be improved increasing the order of the ex-
pansion. 
In Fig (1E) the errors are shown on the output function mean value when computed using the 
FOSM algorithm. In this case the approximation is based on the hypothesis that the output 
function has a linear behavior in the studied domain; the errors are quite high also for small 
input variability levels.  

 
Fig 2 Error in the extimation of the output variance: A) Error due to the Univariate dimension reduction method 
(UDR) B-D) Error due to the Polinomial Chaos Expansion (PCE) respectivelly of 2nd, 3rd and 5th order. 

 
The decay of UDR accuracy in the prediction of the statistical moments (due mainly to the 
first order effects) is more evident in the evaluation of the variance Fig (2-A) and of the high-
er order moments: Skewness (Fig 3-A) and Kurtosis (Fig 4-A). As already observed in the 
evaluation of mean value, for quite small interaction effects ( 2k ), the UDR approximation 
does not affect the accuracy of the results. This is not true for the higher order moments.  
Results regarding higher order statistical moments (Figs. 6.4B-D, 6.5B-D, 6.6B-D) confirm 
that the interaction between the variables does not affect the accuracy of the Polynomial 
Chaos Expansion; anyhow, a higher order expansion is required in order to have a good esti-
mation of the variance, skewness and kurtosis.  
 

 
Fig 3:  Error in the extimation of the output skewness: A) Error due to the Univariate dimension reduction 
method (UDR) B-D) Error due to the Polinomial Chaos Expansion (PCE) respectivelly of 2nd, 3rd and 5th order.   
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Fig 4: Error in the extimation of the output kurtosis: A) Error due to the Univariate dimension reduction method 
(UDR) B-D) Error due to the Polinomial Chaos Expansion (PCE) respectivelly of 2nd, 3rd and 5th order.   

 
In Table 3 the number of observation points needed to perform each analysis are listed. The 
UDR methods needs only 16 observed data (it requires only 15 n , where n  are the stocastic 
input variables). 
  

FOSM UDR PCE 2nd PCE 3rd PCE 5th 

49 16 31 61 168 

Tab 3: Number of observations for each methods 
 
The UDR method is the cheapest one and, as seen in the present example, if there is a negligi-
ble interaction between the input variables it yields a good estimation of the statistical mo-
ments. The computational cost of the PCE grows considerably increasing the order of 
expansion and the problem dimension. 

The second function here considered (see Tab (1)) is the Ishigami function, commonly 
used to test the uncertainty propagation algorithms and the sensitivity in order to understand 
their behavior with non-linear and non-monotonic functions. The three variables follow a 
Gaussian distribution, centered in  4, 4, 4X    ; the standard deviation ranges from 
0.05 to 0.5. The accuracy of each method is assessed comparing the predicted values of the 
statistical moments with those evaluated using a MonteCarlo Simulation, based on 106 obser-
vations. 
In Table 6.5 the percentage errors on the estimation of the mean value and variance are listed 
for different values of the input standard deviation. All methods yield a good estimation of the 
mean value (the error is always less than 1%). The differences between the methods are more 
evident when considering the variance evaluation. The FOSM method yields a very poor es-
timation in particular for high values of input variability: for example, the error with an input 
standard deviation of 2.0  is around 12.3%, while with 5.0  is around 56%. The UDR 
method leads to a good estimation of the variance (error around 2%); there is no evident cor-
relation between the input variability and the estimation error. The PCE is very accurate, if the 
order of the expansion is sufficient to describe the problem; we can observe that a 5th order 
expansion is very accurate in the prediction of variance, and that the 7th order expansion 
yields the exact solution. 
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Standard Deviation 

Input 

FOSM UDR PCE 2nd 

Mean Variance Mean Variance Mean Variance 

0,05 3,336E-02 1,204E+00 2,515E-02 1,934E+00 2,363E-03 2,398E-01 
0,1 7,351E-02 1,968E+00 4,734E-02 1,952E+00 2,837E-02 1,997E+00 
0,2 1,609E-01 1,235E+01 7,092E-02 2,162E+00 1,754E-01 2,334E+00 
0,5 5,364E-01 5,575E+01 3,560E-01 1,818E+00 5,596E-01 6,521E+00 

Standard Deviation 

Input 

PCE 3rd PCE 5th PCE 7th 

Mean Variance Mean Variance Mean Variance 

0,05 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 0,000E+00 
0,1 0,000E+00 2,058E-02 0,000E+00 0,000E+00 0,000E+00 0,000E+00 
0,2 4,731E-03 3,456E-02 0,000E+00 3,456E-02 0,000E+00 0,000E+00 
0,5 1,189E-01 2,878E+00 4,749E-03 1,641E-02 0,000E+00 2,553E-02 

Tab 4: Mean values and variance estimation errors 

 

 
Fig 5: Probability density function in the case that all input variables have a standard deviation of   0.2 

 

 

Fig 6: Probability density function in the case that all input variables have a standard deviation of   0.5. 

In a robust design framework it is important the accurate evaluation of the first two statistical 
moments (mean and variance), but for the evaluation of the reliability degree this information 
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is not enough. Hence, the knowledge of the probability distribution function is needed. One of 
the main problems of the UDR approach is that it does not yield directly the probability dis-
tribution, but only the statistical moments. Anyway, it is possible to obtain the PDF, knowing 
the first four statistical moments, by means of the Pearson System. In fig (5) and fig (6) the 
probability distribution function, evaluated with the UDR and the Pearson System, is com-
pared with the PDF obtained using the PCE with different expansion orders and the one ob-
tained by means of MCS (106 training points). The curves plotted in Fig (5) and in Fig (6) are 
referred, respectively, to the case of an input standard deviation of 2.0   and of  5.0 . 
In the first case (fig 5) a good agreement among all plotted curves can be observed. The UDR 
method coupled with the Pearson System yields a very good approximation of the probability 
density function. There is only a small discrepancy in the description of the tails: the tails of 
PDFs, obtained with the UDR method and the 2nd order PCE, end with an asymptotic beha-
vior, while in the one obtained with MCS the tails are limited. On the contrary there is a per-
fect correspondence between the probability function obtained with a 3rd order PCE and the 
one obtained with the MonteCarlo Simulation. 
In the second case  5.0  it is possible to appreciate a bigger discrepancy among the me-
thods (fig 5-A). Although the UDR method is able to predict with a good accuracy the mean 
and the variance of the output, it fails in the estimation of the PDF. This is mainly due to the 
fact that the higher order moments are predicted with low-accuracy and, as well known, the 
Pearson System is based on the relation between skewness and kurtosis. Also the 3rd order 
PCE gives not an accurate probability distribution. Only by means of a 5th order PCE a good 
PDF approximation can be obtained. 
In this example we have seen that, although the UDR approach is adequately accurate to be 
used in a robust design problem, it cannot be used in a reliability based problem.  

3.2 Composite plate mechanical behavior 

In this example the performances of UDR and PCE are tested on the static and dynamic re-
sponse analysis of a symmetric composite plate   0/90/90/0  with all edges clamped. 
The material properties, the fiber angles, and the plies thickness are considered affected by 
uncertainty and are described by means of Gaussian distributions. In tab (5) all plate proper-
ties are reported in terms of mean value and standard deviation. The stochastic moments of 
the maximum deflection (w), the first natural frequency (f), the maximum Von Misses stress 
(VM), the maximum xz  and the maximum yz  are evaluated by means of the UDR and of the 
PCE. The static and dynamic responses of the plate have been obtained using the Refined 
Zigzag plate Theory (RZT) [14]-[18]; a Rayleigh-Ritz solution procedure has been adopted to 
find maximum deflection, first natural frequency and stresses distribution. The results are 
compared with those obtained using a MCS based on 105 observations.  
Finally, the first four statistical moments, evaluated using the UDR and PCE, are compared 
with those obtained by a MonteCarlo Simulation (Tab 6). In Tab (6) one can observe that ap-
proximately all approaches give the same results, the main difference between the UDR and 
the 2nd order PCE is in the computational cost needed to perform the analysis, indeed are 
needed 71 observations and 360 training points, respectively. 
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  Mean PDF SD 

Mechanical 

properties 

E11 [Mpa] 1,58E+05 Gaussian 7,895 
E22 [Mpa] 9,58E+03 Gaussian 0,4792 
E33 [Mpa] 9,58E+03 Gaussian 0,4792 
G12 [Mpa] 5,93E+03 Gaussian 0,2965 
G13 [Mpa] 5,93E+03 Gaussian 0,2965 
G23 [Mpa] 3,23E+03 Gaussian 0,1613 

v12 0,32 Deterministic - 
v13 0,32 Deterministic - 
v23 0,49 Deterministic - 

 [T/mm^3] 1,90E-09 Deterministic - 

Orientation 

angles 

1 0 Gaussian 3 
2 90 Gaussian 3 
3 90 Gaussian 3 
4 0 Gaussian 3 

Thicknesses 

t1 [mm] 1 Gaussian 0,05 
t2 [mm] 1 Gaussian 0,05 
t3 [mm] 1 Gaussian 0,05 
t4 [mm] 1 Gaussian 0,05 

Tab 5: Plate properties: 1 is the fiber orientation of the first ply, 1t is the ply thickness   

 
  w f VM yz  

xz  

MCS 

Mean 21,37 434,24 2194,65 28,76 14,01 
Variance 3,36 200,36 13570,68 0,70 0,45 

SD 1,84 14,15 116,49 0,84 0,67 
SKW 0,01 0,04 0,23 0,15 0,16 

KURT 3,05 3,03 3,06 3,01 3,03 

UDR 

Mean 21,36 434,24 2194,50 28,76 14,01 
Variance 3,35 201,67 13570,68 0,78 0,45 

SD 1,83 14,20 116,49 0,88 0,67 
SKW 0,00 0,00 0,23 0,15 0,16 

KURT 3,03 3,03 3,00 3,02 3,03 

2nd PCE 

Mean 21,37 434,24 2194,64 28,76 14,01 
Variance 3,34 205,67 13570,68 0,72 0,45 

SDY 1,83 14,34 116,49 0,85 0,67 
SKW 0,01 0,00 0,23 0,15 0,16 

KURT 3,03 3,03 3,00 3,02 3,03 
Tab 6: Stochastic moments: SD is the standard deviation, SKW is the skewness, KURT is the 
curtosis, w is the maximum deflection, f is the first modal frequency , VM is the maximum 
Von Mises stress. 

3.3 Structural shape sensing 

The inverse Finite Element Method (iFEM), developed by Tessler for plate and shell struc-
tures [18] and specialized by Gherlone for beams and frames [19], is aimed at the reconstruc-
tion of the displacement field of a structure starting from in situ measurements of surface 
strains [19]; this represents an inverse problem [20].  
In the present work a cantilevered aluminum beam with a circular thin-walled cross-section, 
subjected to different load conditions, has been studied. In lieu of the experimental measures 
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of surface strains, high-fidelity forward FE analyses (MSC/NASTRAN) have been carried out 
for the example problem (Table 7). These results have also been used to verify the accuracy of 
the nodal displacements and rotations obtained by iFEM. 
 

Element type 
(name) 

N° of elements 
along the external 

circumference 

N° of elements along 
the beam length 
(L = 20) [dm] 

N° of ele-
ments N° of nodes 

Shell ele-
ment 

(QUAD4) 
114 360 41,040 41,156 

Tab 7: Sensor configuration: 1 

 
The position of a strain gauge, used to measure surface strains, is defined by three coordi-

nates: the first one, x, indicates the position along the longitudinal beam axis, the second one, 
, is an angle representing the circumferential position on the beam and the coordinate  indi-
cates the strain gauge orientation (i.e., it represents the rotation of the strain gauge with re-
spect to the beam axis (Fig 7). For the current application, six strain gauges are used; their 
nominal positions are reported in Table 8 and their location is also represented in Figure8. 
 

 

Fig 7. Location of a strain gauge on the beam external surface. [20] 
 

Strain gauges x  β 

1 10 -120 0 
2 10 -120 45 
3 10 0 0 
4 10 0 45 
5 10 120 0 
6 10 120 45 

Tab 8 Strain gauge nominal positions  
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Fig 8 Sensors position [20] 

 

In this example three different load conditions are considered (Fig (9-A)): 1) a shear force 
applied along y-axis, 2) the torque moment and 3) the bending moment around the z-axis. The 
free end displacements and rotations (Fig (9-B)) are computed by means of the iFEM and are 
compared with the ones obtained using the forward FEM solution. Hence, the iFEM accuracy 
is evaluated by means of the following error: 
 

                                              )(

)()(

FEMValue

iFEMValueFEMValue
E




                                             (29)
 

 

Fig 9 (A)Applied load, (B) Studied degrees of freedom. 
 

The aim of the present application is to verify the robustness of the iFEM in evaluating the 
displacement field when the sensor positions are considered affected by uncertainty. For this 
purpose a probabilistic approach is compared with a non-probabilistic method based on the 
evidence theory. The main issue is the definition of the uncertainty that affects the coordinate 
values describing the sensors position. In order to obtain this kind of information, three tech-
nicians have been interviewed. They have given three different estimations of the error in the 
strain gauge location; all these experts are equally trusted. The second expert (see Tab 9) de-
fined the errors using disjoint sets. 

 
 

  

A B 



M. Corradi, M. Gherlone, M. Mattone and M. Di Sciuva 

 18 

Expert 
x [mm]  

LOWER UPPER LOWER UPPER LOWER UPPER 
1 -5 5 -5 5 -4 4 

2 
-5 -1 -5 5 -4 -1,5 
1 5 -5 5 1,5 4 

3 -1 1 -5 5 -1,5 1,5 
Tab 9: Sensor coordinates defined by means of interval sets 

In order to use a probabilistic approach to propagate the uncertainty from input to output, 
there is the need to transform the input epistemic uncertainty into probabilistic information. 
Several hypotheses are then needed about the shape of the probability distribution and its stan-
dard deviation. In the present example we have assumed that the uncertainty in the sensor po-
sition is described by means of a Gaussian distribution, having the standard deviations listed in 
Tab (10). 
 

Input variables PDF Standard Deviation 

x  Gaussian 0,0233 
  Gaussian 1,1666 
  Gaussian 1,3333 

Tab 10: Probabilistic assumptions of sensor position 

 
The information obtained by the sensitivity analysis [21] are used to select which input va-

riables should be considered and which could be neglected during the uncertainty propagation 
process, performed both using the evidence theory and a probabilistic approach (the UDR me-
thod, having verified that there are not significant interactions between variables).. Then, once 
the first four statistical moments are known, the corresponding probability distribution func-
tion is evaluated by means of the Pearson System. 
The probability that the iFEM error on the FEM reference displacements and rotations is 
greater than a given threshold value, is finally evaluated. 
 

  
Fig 10 Shear load (Fy): Probability that the error E about Uy (A) and z (B) is bigger than a given threshold val-
ue. Three curves are plotted: the first one represents the maximum model reliability (labeled with MAX R), the 
second one represents the minimum reliability of the model (labeled with min R), the red one represents the 
curve obtained using the assumption of the Gaussian distribution.  
 

A B 
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Fig 11 Torque Moment Probability that the error E about  x (B) is bigger than a given thre-
shold value. Three curves are plotted: the first one represents the maximum model reliability 
(labeled with MAX R), the second one represents the minimum reliability of the model (la-
beled with min R), the red one represents the curve obtained using the assumption of the 
Gaussian distribution.  

 

 
 

Fig 12 Bending Moment (z): ): Probability that the error E about Uy (A) and z (B) is bigger than a given thre-
shold value. Three curves are plotted: the first one represents the maximum model reliability (labeled with MAX 
R), the second one represents the minimum reliability of the model (labeled with min R), the red one represents 
the curve obtained using the assumption of the Gaussian distribution.  
 

The evidence theory does not furnish a unique measure of the probability, but it gives two 
different probability curves: the plausibility, that describes the curve of the maximum reliabil-
ity of the system and the belief, that describes the minimum reliability of the system (fig 10-
12). According to what it was said in Section 2.4, the true reliability curve is included be-
tween the plausibility and the belief. Actually, the area included between the maximum relia-
bility curve and the minimum one represents a region of uncertainty; this means that, without 
further information, no prediction about the actual behavior of the model can be made (we 
only know that the true error is included between the two probability curves). For this reason, 
the belief curve, that represents a conservative estimation of the model behavior, is used dur-
ing the design phase. In this study we have compared the results obtained assuming that the 
position error is described by means of Gaussian distributions with those obtained assuming 
that each sensor is located inside an interval. In this last case no hypothesis has been made 
about the probability that a sensor is in a given point (inside the region). As shown in Fig (10-
12) the maximum reliability curves give almost null prediction errors, otherwise the minimum 

A

 A  

B 
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reliability curves indicate bigger probability to have large errors; in particular the evaluation 
of the y-displacement and z-rotation is quite sensible to the sensor position uncertainty Fig 
(10) and Fig (12). In most cases the reliability curves, based on the Gaussian distribution hy-
pothesis, underestimate considerably the prediction errors. In particular the Gaussian hypothe-
sis furnishes probability values close to those given by the maximum reliability curves.  
 

4. Conclusion 

In the present work a comparative study of some uncertainty propagation algorithms is 
performed and discussed. 

Methods for both aleatory and epistemic uncertainty are considered; in particular, a brief 
review of Univariate Dimension Reduction method (UDR), Polynomial Chaos Expansion 
(PCE), and First Order Second Moments algorithm (FOSM) - for aleatory uncertainty - and of 
Evicence Theory – for epistemic uncertainty - is presented. 

Then, selected example problems are considered to assess and compare the available me-
thods; some test functions are used as preliminary test cases, then structural applications are 
studied, ranging from the mechanical behavior of a composite plate to the shape sensing of a 
beam starting from measured surface strains. As for the latter application, an epistemic uncer-
tainty propagation approach (Evidence Theory) has been compared with a probabilistic uncer-
tainty propagation algorithm (UDR); the considered problem is a classical example of 
epistemic uncertainty, therefore probabilistic approaches may be applied after introducing 
some prior assumptions whose correctness may not be guaranteed. 

Although this study is limited to some particular examples, interesting general conclusions 
can be drawn. 

If there is no significant interaction between variables, the UDR is the most efficient me-
thod for statistical moments estimation. Its accuracy decreases when the interactions cannot 
be neglected; in particular, the evaluation of the 3rd and 4th statistical moments is more sensi-
tive to the interaction effects and, therefore, also the evaluation of the corresponding Probabil-
ity Distribution Function (PDF), by means of the Pearson System, can be compromised. The 
accuracy and the computational cost of the PCE depend on the truncation order of the expan-
sion. However, the PCE is a useful approach when the knowledge of the PDF is desired. 
Moreover, the UDR method leads to the best compromise between accuracy and computa-
tional cost when performing a probabilistic study of the mechanical behavior of a composite 
plate.  

The transformation of the epistemic knowledge into a probabilistic knowledge could often 
cause a loss of information and consequently the underestimation of the uncertainty effects. 
The evidence theory, in the particular case of the shape sensing problem, seems to be the 
more robust and conservative approach. The use of a probabilistic approach is not wrong but 
it requires too strong prior assumptions. In other words, the correct use of the probabilistic 
approach would require the experimental probabilistic characterization of the sensors position. 
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