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Abstract. Effect algebras ([1], [2]) and D-posets ([3]) are equivalent systems important in
quantum structures. In the paper an independent sequence of observables on these structures
is defined by such a way that a very general version of the law of large numbers may be proved.
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Mária Kuková

1 INTRODUCTION

In multi valued logic the MV algebras play the same role as Boolean algebras in two valued
logic. Therefore probability theory on MV algebras seems to be very important (see ([6]). Of
course, there are interesting generalizations of MV algebras: D-posets ([3]) and equivalent ef-
fect algebras ([1], [2]). Again probability theory can be constructed on D-posets and particularly
on D-posets with product ([4]).

In the paper the law of large numbers is proved for very general D-posets.
In Section 2 some basic notions are defined. The key for the law of large numbers is the

new formulation of independence. It is motivated and presented in Section 3. Also the sum
of independent observables is defined there. The general law of large numbers is formulated
and proved in Section 4. Similarly as in [6] a local representation of a sequence of independent
observables by a sequence of random variables seems to be the main idea of the proof.

2 EFFECT ALGEBRAS AND D-POSETS

The concept of an effect algebra was introduced by Foulis and Bennet [1]. We will work
with an equivalent algebraic structure, called D-poset introduced by Kôpka and Chovanec ([3]).

Definition 2.1. Effect algebra is a system (E,+, 0, 1), where 0, 1 are distinguished elements of
E and + is a partial binary operation on E such that

1. x+ y = y + x if one side is defined,

2. (x+ y) + z = x+ (y + z) if one side is defined,

3. for every x ∈ E there exists a unique x, with x, + x = 1,

4. if x+ 1 is defined then x = 0.

Every effect algebra bears a natural partial ordering given by x ≤ y if and only if y = x+ z
for some z ∈ E. The poset (E,≤) is bounded, 0 is the smallest element and 1 is the largest
element. In every effect algebra, a partial subtraction − can be defined as follows:
x− y exists and is equal to z if and only if x = y + z.
The system (E,≤,−, 0, 1) so obtained is a D-poset defined by Kôpka and Chovanec [3].

Definition 2.2. The structure (D,≤,−, 0, 1) is called D-poset if the relation ≤ is a partial
ordering on D, 0 is the smallest and 1 is the largest element on D and

1. b− a is defined if and only if a ≤ b,

2. if a ≤ b then b− a ≤ b and b− (b− a) = a,

3. a ≤ b ≤ c =⇒ c− b ≤ c− a, (c− a)− (c− b) = b− a.

To build a probability theory we need two important mappings equivalent to probability
measure and random variable. In our concept we call them state and observable.

Definition 2.3. A state on a D-poset D is any mapping m : D → [0, 1] satisfying the following
properties:

1. m(1) = 1, m(0) = 0,
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2. an ↗ a =⇒ m(an)↗ m(a),∀an, a ∈ D,

3. an ↘ a =⇒ m(an)↘ m(a),∀an, a ∈ D.

Definition 2.4. Let J = {(−∞, t); t ∈ R}. An observable on D is any mapping x : J → D
satisfying the following conditions:

1. An ↗ R =⇒ x(An)↗ 1,

2. An ↘ ∅ =⇒ x(An)↘ 0,

3. An ↗ A =⇒ x(An)↗ x(A).

Theorem 2.5. Let x : J → D be an observable, m : D → [0, 1] be a state. Define a mapping
F : R→ [0, 1] by the formula

F (t) = m(x((−∞, t))).
Then F is a distribution function.

Proof. If tn ↗ t, then (−∞, tn) ↗ (−∞, t), hence x((−∞, tn)) ↗ x((−∞, t)) by 3 of Def.
4, and

F (tn) = m(x((−∞, tn)))↗ m(x((−∞, t))) = F (t)

by 2 of Def. 2.3, hence F is left continuous in any point t ∈ R. Similarly

tn ↗∞ =⇒ F (tn)↗ 1

by 1 of Def. 2.4 and 1 and 2 of Def. 2.3. Moreover

tn ↘ −∞ =⇒ F (tn)↘ 0

by 2 of Def. 2.4 and 1 and 3 of Def. 2.3.

Denote by B(R) the family of all Borel subsets of the real line R. Since F is a distribution
function, there exists exactly one probability measure λF : B(R)→ [0, 1] such that

λF ([a, b)) = F (b)− F (a)

for any a, b ∈ R, a < b.
Recall that in the Kolmogorov theory the mean valueE(ξ) of a random variable ξ : (Ω,S, P )→

R is defined as an integral
E(ξ) =

∫
Ω
ξdP

Let g : R→ R be a Borel measurable function. The transformation formula states

E(g ◦ ξ) =
∫

Ω
g ◦ ξdP =

∫
R
gdPξ =

∫
R
g(t)dF (t),

where F is the distribution function of ξ. It motivates the following definition.

Definition 2.6. An observable x : J → D is integrable, if there exists

E(x) =
∫
R
tdF (t),

where F is the distribution function of x.
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3 INDEPENDENCE

As a motivation consider a probability space (Ω,S, P ), where Ω is a non-empty set, S is a
σ-algebra of subsets of Ω and P : Ω → [0, 1] is a probability measure. Two random variables
ξ, η : Ω→ R are independent, if

P (ξ−1(A) ∩ η−1(B)) = P (ξ−1(A)).P (η−1(B))

for any Borel sets A,B ∈ B(R). Let F1 or F2 be distribution functions of ξ or η resp., i.e.

F1(t) = P ({ω; ξ(ω) < t}),

F2(t) = P ({ω; η(ω) < t}).

Define Borel probability measures λF1 , λF2 : B(R)→ [0, 1] by such a way that

λF1([a, b)) = F1(b)− F1(a)

λF2([a, b)) = F2(b)− F2(a)

for any a, b ∈ R, a ≤ b. It is very well known that there exists exactly one probability measure

λF1 × λF2 : B(R2)→ [0, 1]

such that
λF1 × λF2(A×B) = λF1(A).λF2(B)

for any A,B ∈ B(R). We need to characterize the probability distribution of the sum ξ+ η, i.e.

P ({ω; ξ(ω) + η(ω) < t}), t ∈ R.

Theorem 3.1. Let ξ, η : Ω→ R be independent random variables, ∆t = {(u, v) ∈ R2;u+v <
t}, t ∈ R, T = (ξ, η) : Ω→ R2. Then

P (T−1(∆t)) = λF1 × λF2(∆t)

for any t ∈ R.

Proof. We have
P (T−1(∆t)) =

= P

 ∞⋃
n=1

∞⋃
i=−∞

ξ−1([
i− 1

2n
,
i

2n
)) ∩ η−1((−∞, t− i

2n
))

 =

= lim
n→∞

∞∑
i=−∞

P
(
ξ−1([

i− 1

2n
,
i

2n
)) ∩ η−1((−∞, t− i

2n
))
)

=

= lim
n→∞

∞∑
i=−∞

P
(
ξ−1([

i− 1

2n
,
i

2n
))
)
P
(
η−1((−∞, t− i

2n
))
)

=

= lim
n→∞

∞∑
i=−∞

λF1

(
[
i− 1

2n
,
i

2n
)
)
λF2

(
(−∞, t− i

2n
)
)

=
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= lim
n→∞

∞∑
i=−∞

λF1 × λF2

(
[
i− 1

2n
,
i

2n
)× (−∞, t− i

2n
)
)

=

= lim
n→∞

λF1 × λF2

 ∞⋃
i=−∞

[
i− 1

2n
),
i

2n
× (−∞, t− i

2n
)

 =

= λF1 × λF2

 ∞⋃
n=1

∞⋃
i=−∞

[
i− 1

2n
,
i

2n
)× (−∞, t− i

2n
)

 =

= λF1 × λF2(∆t).

If T = (ξ, η) : Ω→ R2 is a random vector, then T−1 : B(R2)→ S is a mapping such that

P (T−1(∆t)) = λF1 × λF2(∆t), t ∈ R.

The idea may be realized also in our general case.

Definition 3.2. Let x1, ..., xn : J → D be observables, ∆n
t = {(u1, ..., un) ∈ Rn;u1+...+un <

t},Mn = {∆n
t ; t ∈ R}. The observables are called to be independent, if there exists a mapping

hn :Mn → D with the following properties:
1.ti ↗ t =⇒ hn(∆n

ti
)↗ hn(∆n

t ).
2.hn(

⋃∞
t=1 ∆n

t ) = 1.
3.hn(

⋂−∞
t=−1 ∆n

t ) = 0.
4.m(hn(∆n

t )) = λF1 × ...× λFn(∆n
t ), t ∈ R.

Theorem 3.3. Define yn : J → D by the equality yn((−∞, t)) = hn(∆n
t ). Then yn is an

observable.

Proof. It follows by properties 1 - 3 of the previous Definition.

Definition 3.4. Let x1, ..., xn : J → D be independent observables. Then the observable yn :
J → D defined in previous Theorem is called the sum of observables x1, ..., xn, yn =

∑n
i=1 xi,

i.e.

(
n∑
i=1

xi)((−∞, t)) = hn(∆n
t ), t ∈ R.

Remark. There has been proved in [5] that in so-called Kôpka D-posets there exists the
mapping hn :Mn → D satisfying the properties stated in previous Definition.

4 THE LAW OF LARGE NUMBERS

Recall first the classical weak law of large numbers.

Theorem 4.1. Let (Ω, S, P ) be a probability space. Let (ζn)∞n=1 be a sequence of independent
random variables having the same distribution function. Let a = E(ζ1) = E(ζ2) = . . .. Then
the sequence of random variables

ζ1 + . . .+ ζn
n

− a (n = 1, 2, . . .)

converges in measure P to 0.
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Of course, we haven’t told yet, what does convergence in measure mean. In classical proba-
bility space (Ω, S, P ) a sequence of random variables (ζn)∞n=1 converges to 0 in measure P , if
for each real ε > 0

lim
n→∞

P
(
ζ−1
n ([−ε, ε))

)
= 1.

In our case, the definition is similar, but at first we need to define an expression x((a, b)), where
x is an observable and a, b ∈ R.

Definition 4.2. Let x : J → D be an observable on a D-poset D and α, β ∈ R. Then

x([a, b)) = x((−∞, b))− x((−∞, a)).

Definition 4.3. Let (xn)∞n=1 be a sequence of independent observables on a D-poset D with a
state m. We say that this sequence converges in measure m to 0 if for each 0 < ε ∈ R

lim
n→∞

m (xn([−ε, ε))) = 1.

We are able now to formulate and prove the main result of the paper. We shall use the
following notation. If y : J → D is an observable and α, β are real numbers, α 6= 0, then
αy + β : J → D is defined by the formula

(αy + β)((−∞, t)) = y((−∞, 1

α
(t− β))).

Theorem 4.4. Let D be a D-poset with a state m : D → [0, 1], let (xn)∞n=1 be an independent
sequence of integrable observables having the same probability distribution, E(xn) = a, (n =
1, 2, ...). Then the sequence ∑n

i=1 xi
n

− a

converges in measure m to 0.

Proof. Denote Pn = λF1× ...×λFn : B(Rn)→ [0, 1]. Then (Pn)n presents a consistent system
of probability measures:

Pn(A×R) = Pn−1(A), A ∈ B(R), n ∈ N

We will use the projection πn : RN → Rn:

πn((ui)
∞
i=1) = (u1, u2, . . . , un).

Let’s take a family of all cylinders C, i. e. sequences with a finite number of members being
fixed:

C = {A ⊂ RN ;A = π−1
n (B), B ∈ B(Rn), n ∈ N}

By the Kolmogorov consistence theorem there exists a probability measure P : σ(C) → [0, 1]
such that

P (π−1
n (B)) = Pn(B) = λF1 × ...× λFn(B) (1)

for any B ∈ B(Rn), n ∈ N . Define ξn : RN → R by the formula

ξn((ui)
∞
i=1) = un.
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We have obtained a Kolmogorov probability space (RN , σ(C), P ), where the mapping ξn presents
a random variable. The next formula will serve as a tool for ”translating” the law of large num-
bers to D-posets:

P (ξ1 + . . .+ ξn < t) = P (π−1
n (∆t

n)) = Pn(∆t
n) =︸︷︷︸

(1)
λF1 × . . .× λFn(∆t

n) =︸︷︷︸
3.2

m(hn(∆t
n)) =︸︷︷︸

3.4

= m

(
(
n∑
i=1

xi)((−∞, t))
)

For simpler notation, let’s introduce new two mappings: a random variable ηn : RN → R and
an observable yn :Mn → D.

ηn =
1

n
(
n∑
i=1

ξi)− a.

yn =
1

n
(
n∑
i=1

xi)− a = (
n∑
i=1

xi)((−∞, n(t+ a))),

Then

m (yn((−∞, t))) = m

(
(
n∑
i=1

xi)((−∞, n(a+ t)))

)
= P (ξ1+. . .+ξn < n(a+t)) = P (η−1

n ((−∞, t)))

The last thing we need before we can use the Theorem 4.1 is to prove, that ξi are independent
and E(ξi) = E(xi) = a ∀i.

P ((ξ1, . . . , ξn) ∈ ((−∞, t1)× . . .× (−∞, tn))) = P (π−1
n ((−∞, t1)× . . .× (−∞, tn))) =

= λF1 × . . .× λFn((−∞, t1)× . . .× (−∞, tn)) = λF1((−∞, t1)). . . . .λFn((−∞, tn)) =

= P (ξ1 < t1). . . . .P (ξn < tn)

E(xn) =
∫ ∞
−∞

tdλFn(t)

E(ξn) =
∫
RN

ξn(u)dP (u) =
∫
Rn
undPn((u1, . . . , un)) =

=
∫
Rn
undλF1 × . . .× λFn((u1, . . . , un)) =

∫
R
undλFn(un) = E(xn)

Now all the assumptions of Theorem 4.1 are satisfied, so for all real ε > 0 there holds:

1 = lim
n→∞

P
(
η−1
n ([−ε, ε))

)
= lim

n→∞
P
(
η−1
n ((−∞, ε))

)
− lim

n→∞
P
(
η−1
n ((−∞,−ε))

)
=

= lim
n→∞

m (yn((−∞, ε)))− lim
n→∞

m (yn((−∞,−ε))) = lim
n→∞

m (yn([−ε, ε))) =

= lim
n→∞

m

(
(
1

n
(
n∑
i=1

xi)− a)([−ε, ε))
)

Hence,
1

n
(
n∑
i=1

xi)− a −→ 0

in measure m and
1

n
(
n∑
i=1

xi) −→ a

in measure m.
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