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Abstract. Structural response can be affected by randomness under two different points of 
view – either in the forcing process and/or in the structural behaviour. Various approaches 
can be employed to investi-gate the structural response, among which polynomial chaos 
(Ghanem, Spanos [1]) and perturbation approaches (Liu et al. [2], Chiostrini and Facchini 
[3]) can be found. 

Both kinds of approaches require the investigation of the response variation in dependence on 
the (random) structural parameters, thus – often dramatically – increasing the number of de-
grees of freedom of the examined system. 

In case of linearity of the system response, a modal reduction approach can be effectively em-
ployed together with perturbation techniques; on the other hand, for some kind of nonlinear 
systems, such reduction approach (Bucher [4], Geschwindner [5]) might fail to give satisfac-
tory results unless a very large number of modes is employed in the analysis (Betti et al. [6]). 

The task of reducing the number of degrees of freedom of nonlinear systems has therefore to 
be accomplished by means of alternative procedures, such as the introduction of nonlinear 
normal modes. 
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1 INTRODUCTION 

Randomness can affect structural systems by several points of view; in particular, random-
ness can affect the forcing process that a system undergoes, or might as well influence the 
structural parameters. 

The study of disordered systems, as such structures are usually referred to, is a point of 
concern in specialized literature: a fair amount of methods to investigate the dynamics of dis-
ordered structures can in fact be found. 

One of the most common methods is taken into consideration in the present work: the first 
application is described in Liu et al. (1986), and subsequently enhanced in Chiostrini and Fac-
chini (1999); it can be classified as a perturbation method and makes use of sensitivity vectors 
to evaluate the first two moments of the response. 

Unfortunately, a severe drawback of the method is that the number of degrees of freedom 
of the examined structure grows rapidly for increasing number of random parameters, thus 
leading to the solution of very large (non) linear systems. 

The idea that is introduced in the present work is to investigate the possibility to compute 
and apply the concept of nonlinear normal modes in order to reduce the number of degrees of 
freedom of the resulting system, as it has recently been examined by Rizzo (2007). 

It is well known that the normal modes are of fundamental importance in the theory of li-
near dynamic conservative and non conservative systems, as the linear normal modes can be 
used to decouple the equations governing the motion and analytically evaluate the dynamic 
response of the examined system. 

Such procedure is performed making use of modal analyses and the principle of superposi-
tion to express the response of the system as a time-dependent superposition of its modal 
shapes. 

Clearly, such an approach is generally inapplicable in the nonlinear theory. Nevertheless, it 
is possible to define nonlinear normal modes (NNMs) as particular synchronous periodic so-
lutions of the non-linear motion equations, but no link of such motions to the principle of su-
perposition can be considered. 

Several techniques can be found in specialized literature for determining the response of 
nonlinear systems; for free vibration problems system modes can be usefully employed to 
construct reduced order models: such procedures have been well developed for both linear 
and nonlinear systems by Vakakis (1997) and by Vakakis et al. (1996) .  

One such technique, introduced by Shaw and Pierre (1991, 1993, 1993), defines the normal 
mode of a nonlinear oscillatory system in terms of invariant manifolds in the phase space that 
are tangent to the linear eigenmodes at the equilibrium point. In such a formulation, a master 
mode is selected, and the normal mode is constructed by a formulation in which the remaining 
linear modes of the system, i.e., the slave modes, depend on the master mode in a manner 
consistent with the system dynamics. This dependence defines the invariant manifold for the 
nonlinear normal mode (NNM).  

The construction of the NNM invariant manifold is equivalent to the determination of the 
constraint relationships for all of the slave coordinates with the master coordinate; once these 
constraint relationships are obtained, the system dynamics can be restricted to the invariant 
manifold, resulting in a minimalsized model that depends only on the master coordinates. By 
studying the dynamics of the reduced-order model, it is possible to recover the associated 
modal dynamics of the original nonlinear system. 

Pesheck et al. (2002) used numerical solutions of the invariant manifold equations to ex-
tend the invariant manifold approach to more general systems, including strongly nonlinear 
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ones. In this approach, the master coordinates were expressed in polar coordinate form, and a 
Galerkin-based solution technique was introduced to solve the invariant manifold equations. 

The present method differs from the work by present authors (2009), because the modal 
forms are only generated regarding the lagrangian coordinates and not regarding the total 
coordinate, including the derived to the first one and second  order. 

2 FORMULATION 

A system endowed with a displacement dependent nonlinear restoring force which can be 
expressed by means of a nonlinear stiffness matrix is taken into consideration. The stiffness is 
affected by randomness in one or more of the defining parameters; such random parameters 
will be grouped together in the vector b. 
In specialised literature a common approach for the study of the dynamic response of nonlin-
ear systems is to express the dependence of the system response on the random parameters at 
each instant of the motion, and eventually combine such dependence with the probability dis-
tribution function of the random parameters themselves. 
Several examples can be found of this approach. In the following, the method proposed by 
Liu et al. (1986) and successively modified and enhanced by Chiostrini and Facchini (1999) 
is considered. 
Let the equation of motion of a N DOF disordered nonlinear system, where the nonlinear re-
storing forces depend on both the system response and the uncertain parameters grouped in 
the vector b, be given in the form: 

( ) ( )tfbxxgxM =+ ,,&&&  (1) 

The system velocity and displacement vectors are expressed by means of a second order ex-
pansion with respect to the mean value of the random parameter vector b: 
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where the overbar denotes that the quantity is evaluated in correspondence of the expected 
value of the random parameters b. A completely analogous equation holds for the system ve-
locity. 
The response and its derivatives up to the second order can be evaluated by means of their 
respective equations of motion, obtained by differentiation of the system equation of motion, 
evaluated in correspondence of the expected values of the random vector b. Thus, the first 
group of equations is given by 

( ) ( )tfbxxgxM =+ ,,&&&  (3) 

while the second and third groups of equations can be obtained deriving equation (1) with re-
spect to each component of vector b and considering again the expected value of the random 
vector: 
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where 
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The symbols CT and KT respectively denote the tangent damping and stiffness matrices, ob-
tained by derivation of the nonlinear restoring function: 
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When the nonlinear restoring function can be expressed by only means of a response-
dependent matrix times the displacement, as in: 

( ) ( ) ( ) xbxKbxgbxxg ,,,, ==&  (7) 

then the components of the tangent stiffness matrix and its derivatives can be obtained as: 
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(8) 

and equation (4) can be simplified in the following form: 
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(9) 

Equation (3) together with (4) or (8) define a set of a total of ( )21 bb NNN ++  scalar equations 

which give the evolution in time of the system response and its derivatives with respect to the 
random parameters. Nb is in fact the number of the random parameters of the system, which 
correspond to the dimension of vector b. 
For systems with many degrees of freedom, affected by randomness in one or more parame-
ters, the number of equations grows in a way that can be hardly manageable by current com-
puters. In order to reduce the number of equations, the non-linear normal modes of the system 
can be introduced. 
The approach followed in the application was introduced by a series of works by Shaw and 
Pierre (1991, 1993, 1993).  

The new formulation, regarding the work by present authors (2009), regards the resolution 
of the equations (7) and (7). This equations can be resolved separately. Only the equations (7) 
can be resolved with the use of non-linear normal mode instead the equations (7), which are 
decoupled from the (7) , with a non linear dynamic analysis.  



L. Facchini, M. Rizzo 

 

 5

The first group of equations can be resolved by a non-linear normal mode approach by 
means of the explicitation of the linear part of the equations of motion. The modal shapes and 
associated eigenfrequencies of the linearized system can be calculated, and the LHS term of 
system Errore. L'origine riferimento non è stata trovata. can be diagonalized, obtaining 

( )ηfΩηη =+&&  (10) 

where ηηηη = ΦΦΦΦy is the vector of the principal coordinates, ΦΦΦΦ is the matrix containing the linea-
rized modal shapes of the system Errore. L'origine riferimento non è stata trovata. and ΩΩΩΩ 
is a diagonal matrix whose elements are 2

kω . 
If ηm denotes the master degree of freedom, its evolution in time is described by the expres-
sion: 
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and the remaining “slave” degrees of freedom are expressed in terms of the master amplitude 
and phase as 
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The time evolution of the master amplitude and phase can be expressed by the relations 
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and also the evolution of functions Pi and Qi in equations (12) can be obtained by the diagona-
lized system (10) in the form 
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Functions Pi and Qi in equations (12) can be expressed in incremental terms, obtaining first 
order differential equations where the independent variable is time: 
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When the system is subject to free oscillations and therefore f(t) = 0 in equations (1) and Er-
rore. L'origine riferimento non è stata trovata., by means of the substitution of equations 
(13) and (14) into (15), first order differential equations are obtained for the first derivatives 
of functions Pi and Qi, which are independent of time. Such equations describe the geometry 
of the considered non normal mode (see Pesheck et al. (2002) for details): 
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(16) 

When the evaluation of the non normal mode is completely performed, the corresponding 
vector y can be evaluated by means of 
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The projection in the lagrangian coordinates x  and the resolution of the second group of equ-
ations (13) gives the desired approximation for the dependence of the system response x on 
the random parameters vector b. 
As outlined in the works of Liu et al. (1986) and Chiostrini and Facchini (1999), the response 
statistics can be obtained by 
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3 APPLICATION 

The method’s  application in the present work is make with the use of a multidimensional 
Duffing equation: 

 0Cx)Kx(xKxxM t =++ λ&&  (19) 

 
In the 2DOF system used M=[1 0;0 2], K=[10 -5;-5 5],  C=[1 -0.5;-0.5 1] and λm=0.001 and 
0.01.  
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(22) 

The groups of equations (13), (13) and (13) are solved separately; in the first is solved the sys-
tem (13) and the linear system associated gives ω1=1.047 rad/s, ω2= 3.377 rad/s and ΦΦΦΦ=[0.369 
-0.929; 0.657 0.261].  
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The non-linear mode shapes are generated for the first group of equation while the second and 
third group of equations are solved directly integrating the differential equations. this is possi-
ble because the first group of equations does not depend from the derivate ones of x. A possi-
ble future development of the method is to resolve also according to group and the third by 
means of use of the NNMs. 
The application is made with λm=0.001 and are showed in figure 1, while the application with 
λm=0.01 in figure 2. The numeric simulation for the free oscillation are showed in figure 3 
and 4 for λm=0.001 and for λm=0.01. 

 

Figure 1. Non linear modal shape P2 Q2 for λm =0.001 and Na=2, Nφ=4. 

 

Figure 2. Non linear modal shape P2 Q2 for λm =0.01 and Na=2, Nφ=4. 
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Figure 3. Numerical simulation of the amplitude a and φ and the system response x(t)  

obtained imposing λm=0.001. 

 

Figure 4. Numerical simulation of the amplitude a and φ and the system response x(t)  

obtained imposing λm=0.01. 

The method that uses the NNM's and the exact simulations in figure 3 and 4 gives results in-
distinguishable. In order to gain the expected value and the standard deviation of the variable 
ones x1 and x2 the following approximations in the works of Liu et al. (1986) and Chiostrini 
and Facchini (1999) are used: 
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In the following figures the variations of x1 are brought back and x2 regarding λ and variable t. 
The variation coefficient used in the numerical simulations is 50%. 

 

 Figure 5. Numerical simulation of the system response x1(t, λ) and x2(t, λ) obtained with λm =0.01 . 

In order to confront the method we have been simulated 1000 dynamic analyses with λm=0.01 
and coefficient of variation 50%. In figure 6 the corresponding probability distribution is 
brought back. 

 

Figure 6. Normal probability distribution for the numerical simulation with λm =0.01 and CV 50% . 

The comparison between the adopted method and the simulations random is shown in the fol-
lowing figures. The method that uses the NNM's and the simulations random gives results in-
distinguishable. 
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Figure 7. Numerical simulation of the expected value system response Ex1 and Ex2 obtained with λm =0.01 . 

 

Figure 8. Numerical simulation of the standard deviation of the system response σx1 and σx2                          
obtained with λm =0.01 . 

4 CONCLUSIONS 

In the present formulation is developed a new approach that can be effectively used for the 
solution of the non linear dynamics of large disordered structures, when the number of de-
grees of freedom considerably increase owing to the presence of randomness. 

The most severe problem in the present formulation is to obtain numerically the non linear 
modal shapes, therefore future developments of the present method will be devoted to finding 
a more efficient numerical method to obtain the NNM’s. 
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