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Abstract. Structural response can be affected by randomness under two different points of
view — either in the forcing process and/or in the structural behaviour. Various approaches
can be employed to investi-gate the structural response, among which polynomial chaos
(Ghanem, Spanos [1]) and perturbation approaches (Liu et al. [2], Chiostrini and Facchini
[3]) can be found.

Both kinds of approaches require the investigation of the response variation in dependence on
the (random) structural parameters, thus — often dramatically — increasing the number of de-
grees of freedom of the examined system.

In case of linearity of the system response, a modal reduction approach can be effectively em-
ployed together with perturbation techniques; on the other hand, for some kind of nonlinear
systems, such reduction approach (Bucher [4], Geschwindner [5]) might fail to give satisfac-
tory results unless a very large number of modes is employed in the analysis (Betti et al. [6]).

The task of reducing the number of degrees of freedom of nonlinear systems has therefore to
be accomplished by means of alternative procedures, such as the introduction of nonlinear
normal modes.
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1 INTRODUCTION

Randomness can affect structural systems by sepeiratls of view; in particular, random-
ness can affect the forcing process that a systahergoes, or might as well influence the
structural parameters.

The study of disordered systems, as such strucareesisually referred to, is a point of
concern in specialized literature: a fair amouninathods to investigate the dynamics of dis-
ordered structures can in fact be found.

One of the most common methods is taken into censiin in the present work: the first
application is described in Liu et al. (1986), antbsequently enhanced in Chiostrini and Fac-
chini (1999); it can be classified as a perturbatieethod and makes use of sensitivity vectors
to evaluate the first two moments of the response.

Unfortunately, a severe drawback of the methodhas the number of degrees of freedom
of the examined structure grows rapidly for incnregsnumber of random parameters, thus
leading to the solution of very large (non) linegstems.

The idea that is introduced in the present worloigvestigate the possibility to compute
and apply the concept of nonlinear normal modewder to reduce the number of degrees of
freedom of the resulting system, as it has recdrggn examined by Rizzo (2007).

It is well known that the normal modes are of fumeatal importance in the theory of li-
near dynamic conservative and non conservativesstas the linear normal modes can be
used to decouple the equations governing the matnehanalytically evaluate the dynamic
response of the examined system.

Such procedure is performed making use of moddy/s@s and the principle of superposi-
tion to express the response of the system as exdependent superposition of its modal
shapes.

Clearly, such an approach is generally inapplicablbe nonlinear theory. Nevertheless, it
is possible to define nonlinear normal modes (NNt )particular synchronous periodic so-
lutions of the non-linear motion equations, butlink of such motions to the principle of su-
perposition can be considered.

Several techniques can be found in specializethtiiee for determining the response of
nonlinear systems; for free vibration problems eystmodes can be usefully employed to
construct reduced order models: such procedures haen well developed for both linear
and nonlinear systems by Vakakis (1997) and by kialet al. (1996) .

One such technique, introduced by Shaw and Pig8@1( 1993, 1993), defines the normal
mode of a nonlinear oscillatory system in termgagériant manifolds in the phase space that
are tangent to the linear eigenmodes at the equitibpoint. In such a formulation, a master
mode is selected, and the normal mode is consthiogt@ formulation in which the remaining
linear modes of the system, i.e., the slave modegend on the master mode in a manner
consistent with the system dynamics. This depereldeé@ines the invariant manifold for the
nonlinear normal mode (NNM).

The construction of the NNM invariant manifold iguévalent to the determination of the
constraint relationships for all of the slave caonaties with the master coordinate; once these
constraint relationships are obtained, the systgnamlics can be restricted to the invariant
manifold, resulting in a minimalsized model thapededs only on the master coordinates. By
studying the dynamics of the reduced-order modeak possible to recover the associated
modal dynamics of the original nonlinear system.

Pesheck et al. (2002) used numerical solutiondi@firtvariant manifold equations to ex-
tend the invariant manifold approach to more gdngystems, including strongly nonlinear
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ones. In this approach, the master coordinates @gyeessed in polar coordinate form, and a
Galerkin-based solution technique was introducegbtee the invariant manifold equations.

The present method differs from the work by presarihors (2009), because the modal
forms are only generated regarding the lagrang@rdinates and not regarding the total
coordinate, including the derived to the first @m&l second order.

2 FORMULATION

A system endowed with a displacement dependenirneanl restoring force which can be
expressed by means of a nonlinear stiffness miatteken into consideration. The stiffness is
affected by randomness in one or more of the dejiparameters; such random parameters
will be grouped together in the vectar
In specialised literature a common approach forsthey of the dynamic response of nonlin-
ear systems is to express the dependence of ttarsyssponse on the random parameters at
each instant of the motion, and eventually comBingh dependence with the probability dis-
tribution function of the random parameters thenesl
Several examples can be found of this approacithdrfollowing, the method proposed by
Liu et al (1986) and successively modified and enhance@tigstrini and Facchini (1999)
is considered.

Let the equation of motion ofld DOF disordered nonlinear system, where the noatine-
storing forces depend on both the system respam$e¢h& uncertain parameters grouped in
the vectolb, be given in the form:

Mx +g(x,x,b) =f(t) @)

The system velocity and displacement vectors apeessed by means of a second order ex-
pansion with respect to the mean value of the nanplarameter vectdr:

)+ 1 9°X, 2)

Eabiab,. (bi ‘E)(bi _Bj)

where the overbar denotes that the quantity isuewadl in correspondence of the expected
value of the random parametérsA completely analogous equation holds for theesysve-
locity.

The response and its derivatives up to the secothel @an be evaluated by means of their
respective equations of motion, obtained by difidegion of the system equation of motion,
evaluated in correspondence of the expected vati#se random vectob. Thus, the first
group of equations is given by

b

x, (t,b) O%, (t)+ =2

M% +g(%,%,b)=f(t) (3)

while the second and third groups of equationsheanbtained deriving equation (1) with re-
spect to each component of vedboand considering again the expected value of théama
vector:

MX, +C X, +K X, =f,(t) 4)

M;X'Im -'-CT)_.(’Im-'-K TY’Im f2(t)

where
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0 5)
fl(t) = _a_g
b,
2
fz(t): _GCT );(,I_GKT i,l _GCT ;’m_GKT i,m— 0 g
b, " ab. ' ab oy ™ abab,

The symbol<C+ andK+ respectively denote the tangent damping and ss&rmatrices, ob-
tained by derivation of the nonlinear restoringdtion:

6
c,=%; k=% ©
0X 0X

When the nonlinear restoring function can be exgmé@sby only means of a response-
dependent matrix times the displacement, as in:

g(%,x,b)=g(x,b) =K (x,b) x (7)
then the components of the tangent stiffness matrekits derivatives can be obtained as:
_ _ 8
KTij :% :—aK'h Xh+Kij ( )
ox; 0x
agi — aKij . azgi — azKiJ

= X X.

dh b ' dnob.  opob

OKry _ 0Ky o, 0Ky 0%,
o ohax, " ox.0x o

L 0Ky, 9%, 0Ky OK; ox,
ox b o  ox, dh

and equation (4) can be simplified in the followfogm:

M%, +K X, =99 ®
ah
- _ oK. _ 0K, _ 0°
M5 +K oy = =3 % = =55

Equation (3) together with (4) or (8) define a gka total ofN(1+ N, + Nj) scalar equations

which give the evolution in time of the system m@sge and its derivatives with respect to the
random parametersl, is in fact the number of the random parameterthefsystem, which
correspond to the dimension of vedbor

For systems with many degrees of freedom, affelstechndomness in one or more parame-
ters, the number of equations grows in a way thatle hardly manageable by current com-
puters. In order to reduce the number of equatitresnon-linear normal modes of the system
can be introduced.

The approach followed in the application was introet by a series of works by Shaw and
Pierre (1991, 1993, 1993).

The new formulation, regarding the work by presarthors (2009), regards the resolution
of the equations (7) and (7). This equations carebelved separately. Only the equations (7)
can be resolved with the use of non-linear normadleninstead the equations (7), which are
decoupled from the (7) , with a non linear dynaamalysis.
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The first group of equations can be resolved byma-lmear normal mode approach by
means of the explicitation of the linear part af #quations of motion. The modal shapes and
associated eigenfrequencies of the linearized systn be calculated, and the LHS term of
systemErrore. L'origine riferimento non é stata trovata. can be diagonalized, obtaining

ij+Qn=f(n) (10)

wheren = ®y is the vector of the principal coordinatdsjs the matrix containing the linea-
rized modal shapes of the syst&more. L'origine riferimento non é stata trovata. andQ

is a diagonal matrix whose elements afe

If nm denotes the master degree of freedom, its evoliutidime is described by the expres-
sion:

n, =acosg (11)
n., =—aw,sing

and the remaining “slave” degrees of freedom apressed in terms of the master amplitude
and phase as

n =R(ag) (12)
1 =Q (a’ w)
The time evolution of the master amplitude and plas be expressed by the relations
13
a:——fm(n)sinqo (13)
a)m
v=aw, ——fm(")cosqo
aw

m

and also the evolution of functioRsandQ; in equations (12) can be obtained by the diagona-
lized system (10) in the form

Plag)=Q 9 (14)
Q(ag)=fm)-«r(ag

FunctionsP; andQ; in equations (12) can be expressed in increméetals, obtaining first
order differential equations where the independantble is time:

Blad)= o ar o )
Qan="rar (s

When the system is subject to free oscillations taedeforef(t) = 0 in equations (1) angr-
rore. L'origine riferimento non é stata trovata., by means of the substitution of equations
(13) and (14) into (15), first order differentiajueations are obtained for the first derivatives
of functionsP; andQ;, which are independent of time. Such equationsrdesthe geometry
of the considered non normal mode (see Pestieak (2002) for details):
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fin(n) (16)

Q(a,¢) == Using+ W, ——cosqo}

da w, op aw,

m

2 1o

t)-arpla) =52 Wsing 82, - =lcosy

m m

When the evaluation of the non normal mode is cetepl performed, the corresponding
vectory can be evaluated by means of

y= (I)tn = (17)
= q)t[Pl Pm—l acosp Pm+l PNm[]

The projection in the lagrangian coordinaiesnd the resolution of the second group of equ-

ations (13) gives the desired approximation fordependence of the system respoxsm

the random parameters vechor

As outlined in the works of Liet al. (1986) and Chiostrini and Facchini (1999), thepanse
statistics can be obtained by

2% _ _ (18)
Hy, UX, (t)+%0?1;(lh)j E[(Q _bl)(bj ~b )]
2 0% % el —5 )b -b

3 APPLICATION

The method’s application in the present work is enalth the use of a multidimensional
Duffing equation:

M% +Kx + A(x'Cx)Kx =0 (19)

In the 2DOF system usel =[1 0;0 2],K=[10 -5;-5 5], C=[1 -0.5;-0.5 1] and\,=0.001 and
0.01.

MX+K @+ x'Cx)x=0 (20)

MX,ﬁK[xthMm(x,; Cx+Xx'Cx,, )]x+ (21)
+K @+ 4,X'Cx)x,, =0

MX,,, +K 2%} Cx + 2X'Cx,, +2,, (X}, CX + 2%, Cx, , +X'Cx,,, )k (22)
+2K [xth+/1m(x,; Cx +X'Cx,, )]x,A +
+K 1+ 4, X'Cx)x,,, =0

The groups of equations (13), (13) and (13) areesbseparately; in the first is solved the sys-
tem (13) and the linear system associated giwe4.047 rad/sgp= 3.377 rad/s an®=[0.369
-0.929; 0.657 0.261].
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The non-linear mode shapes are generated forrgtegfoup of equation while the second and
third group of equations are solved directly intgong the differential equations. this is possi-
ble because the first group of equations does eemd from the derivate ones of x. A possi-
ble future development of the method is to res@ls® according to group and the third by
means of use of the NNMs.

The application is made with,=0.001 and are showed in figure 1, while the ajpgilbn with
An=0.01 in figure 2. The numeric simulation for thred oscillation are showed in figure 3
and 4 forA,=0.001 and foA,,=0.01.

Figure 1. Non linear modal shapg®; for A, =0.001 and 2, N=4.

Figure 2. Non linear modal shapg®for A, =0.01 and =2, N~4.



L. Facchini, M. Rizzo

pppppp

- \\/ v
-1
0 5 10

SN -
VYUV UV VU VU VYUY Wi

Figure 3. Numerical simulation of the amplitualand gand the system respongg)

obtained imposing,;=0.001.
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Figure 4. Numerical simulation of the amplitueland gand the system responsg)
obtained imposing,=0.01.

The method that uses the NNM's and the exact stranfain figure 3 and 4 gives results in-
distinguishable. In order to gain the expected @and the standard deviation of the variable
ones x and % the following approximations in the works of Lat al (1986) and Chiostrini
and Facchini (1999) are used:

23
X = (2, + 5%, 07 =3)
o OX. w7 (24)
KOX(E) + (6= £) B, +3 X e =6, (25)
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In the following figures the variations of are brought back and xegarding\ and variable t.
The variation coefficient used in the numericalgiamtions is 50%.

E;=0.010 CV|=50% E;=0.010 CV|=50%

Xt 3

Figure 5. Numerical simulation of the system remax,(t, ) andx,(t, A) obtained with\,, =0.01 .

In order to confront the method we have been sitedla000 dynamic analyses wikh=0.01
and coefficient of variation 50%. In figure 6 there@sponding probability distribution is
brought back.

Histogram 2
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Figure 6. Normal probability distribution for themerical simulation witi,, =0.01 and CV 50% .

The comparison between the adopted method andnthigasions random is shown in the fol-
lowing figures. The method that uses the NNM's tredsimulations random gives results in-
distinguishable.
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Figure 7. Numerical simulation of the expected gadystem responsexEand Ex, obtained with\,, =0.01 .
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Figure 8. Numerical simulation of the standard dten of the system response; andox,
obtained with\, =0.01 .

4 CONCLUSIONS

In the present formulation is developed a new aggrdhat can be effectively used for the
solution of the non linear dynamics of large diswedl structures, when the number of de-
grees of freedom considerably increase owing tgtheence of randomness.

The most severe problem in the present formulasdao obtain numerically the non linear
modal shapes, therefore future developments gbtgent method will be devoted to finding
a more efficient numerical method to obtain the NBIM
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